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Demonstration of non-Markovian process
characterisation and control on a quantum
processor
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In the scale-up of quantum computers, the framework underpinning fault-tolerance generally

relies on the strong assumption that environmental noise affecting qubit logic is uncorrelated

(Markovian). However, as physical devices progress well into the complex multi-qubit

regime, attention is turning to understanding the appearance and mitigation of correlated —

or non-Markovian — noise, which poses a serious challenge to the progression of quantum

technology. This error type has previously remained elusive to characterisation techniques.

Here, we develop a framework for characterising non-Markovian dynamics in quantum

systems and experimentally test it on multi-qubit superconducting quantum devices. Where

noisy processes cannot be accounted for using standard Markovian techniques, our recon-

struction predicts the behaviour of the devices with an infidelity of 10−3. Our results show

this characterisation technique leads to superior quantum control and extension of coherence

time by effective decoupling from the non-Markovian environment. This framework, validated

by our results, is applicable to any controlled quantum device and offers a significant step

towards optimal device operation and noise reduction.

https://doi.org/10.1038/s41467-020-20113-3 OPEN

1 School of Physics, University of Melbourne, Parkville, VIC 3010, Australia. 2 School of Mathematics and Statistics, University of Melbourne, Parkville, VIC
3010, Australia. 3 School of Physics and Astronomy, Monash University, Clayton, VIC 3800, Australia. ✉email: lloydch@unimelb.edu.au; kavan.
modi@monash.edu

NATURE COMMUNICATIONS |         (2020) 11:6301 | https://doi.org/10.1038/s41467-020-20113-3 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20113-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20113-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20113-3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-20113-3&domain=pdf
http://orcid.org/0000-0001-6673-6676
http://orcid.org/0000-0001-6673-6676
http://orcid.org/0000-0001-6673-6676
http://orcid.org/0000-0001-6673-6676
http://orcid.org/0000-0001-6673-6676
http://orcid.org/0000-0002-1483-5661
http://orcid.org/0000-0002-1483-5661
http://orcid.org/0000-0002-1483-5661
http://orcid.org/0000-0002-1483-5661
http://orcid.org/0000-0002-1483-5661
http://orcid.org/0000-0001-7672-6965
http://orcid.org/0000-0001-7672-6965
http://orcid.org/0000-0001-7672-6965
http://orcid.org/0000-0001-7672-6965
http://orcid.org/0000-0001-7672-6965
http://orcid.org/0000-0002-2054-9901
http://orcid.org/0000-0002-2054-9901
http://orcid.org/0000-0002-2054-9901
http://orcid.org/0000-0002-2054-9901
http://orcid.org/0000-0002-2054-9901
mailto:lloydch@unimelb.edu.au
mailto:kavan.modi@monash.edu
mailto:kavan.modi@monash.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The theoretical machinery for open quantum system
dynamics is well-oiled in low-coupling cases, but strong
environmental interactions can lead to non-trivial dyna-

mical memory effects that are difficult to understand, much less
control. The recent advent of high-performance quantum infor-
mation processors (QIPs) has precipitated greater sensitivity to
complex dynamical effects. In particular, it is clear that device
behaviour must be understood under a relaxed Markov
assumption1–3. The resulting non-Markovian dynamics includes
more general errors that may be temporally correlated or
dependent on broader environmental context4–6. Characterisa-
tion techniques of quantum devices such as randomised bench-
marking (RB) and gate set tomography (GST) have so far
represented the front line in understanding and addressing
noise7–11. However, constructing a digestible picture of non-
Markovian behaviour has proven difficult, and violates the error
model assumed in these methods. Chiefly, this is because quan-
tum correlations can forbid the division of dynamical processes
into arbitrary steps of completely positive (CP), linear maps12. If
information back-flow from the environment can occur, then
noisy effects can be influenced by past factors; this detail can no
longer be ‘forgotten’.

For device control, this is problematic. The circuit model of
quantum computation is predicated on identical gates imple-
mented at different times having identical actions. Markovian
errors multiply out and propagate in predictable ways. However,
non-Markovian noise gives rise to adverse effects that are much
more challenging to tame. For example, correlated errors can
spread across the device, and have been shown to lower thresh-
olds of quantum error correcting codes13,14. Similarly, context-
dependent gates allow for poorly understood forms of dynamical
errors not describable by a Markov model. This is one of the
largest obstacles to near-term QIPs; non-Markovian noise must
be either eliminated or, as some have suggested, harnessed into a
resource15–19. Until recently, there has not been a clear opera-
tional definition for quantum non-Markovianity, nor consensus
that one unifying measure could even be found.

Using the recent process tensor framework20, we develop a
robust device characterisation technique which is inclusive of
non-Markovian dynamics. We keep discussion fully general, but
demonstrate the capabilities of this method on four different IBM
Quantum superconducting quantum devices. We then examine
the robustness of the framework’s assumptions; address short-
comings; and demonstrate its functionality in process character-
isation, memory detection, and application to adaptive quantum
control. We find that we can characterise arbitrary processes
down to an average infidelity of 10−3—quantifying its predictive
power for the future states of the system given some past
operations. We show that this outperforms the characterisation
given by the standard technique of GST in the presence of non-
Markovian effects, which employs a comprehensive Markov
model. With non-Markovian dynamics fully accounted for, we
discuss applications of the process tensor generically to adaptive
quantum control. As an example, we demonstrate how two qubits
can be decoupled without any a priori knowledge or assumption
about their interactions, and how typically inaccessible user-
designated non-unitary control operations can be realised. The
efficacy of this framework over a range of devices showcases its
consistency and broad range of applicability. Our results repre-
sent significant progress towards the characterisation and optimal
control of non-Markovian QIPs and other quantum devices.

Results
Process characterisation. To characterise non-Markovian device
features, we employ the process tensor framework, which was

recently developed to describe arbitrary quantum processes. Non-
Markovian dynamics constitute any interaction between a system
and its environment which then affects the system at a later time;
the environment need not even be coherent. For superconducting
processors, this behaviour for example could stem from coupling
with neighbouring qubits, leakage into higher energy levels, or
two-level-system defects21. Here, we briefly outline some relevant
background before detailing our approach to the problem. Tra-
ditional approaches to quantum stochastic dynamics are con-
cerned with tracking the state of the system (S) as a function of
time: ρt ¼ trE½Ut:0 ðρSE0 Þ�, where U( ⋅ )= u( ⋅ )u† is a unitary map
on system-environment (SE), initially in state ρSE0 (often required
to be uncorrelated). However, real experiments are driven by
sequences of control operations, mathematically represented by
trace non-increasing CP maps fA0; ¼ ;Ak�1g ¼: Ak�1:0. The
process tensor is designed to account for the intermediate control
operations and quantifies quantum correlations between past
events and the final state of the system. In doing so, the process
tensor formally generalises the notion of a stochastic process to
the quantum domain22 and reduces to a classical stochastic
process in the correct limit23,24. The formalism gives rise to a
clear necessary and sufficient definition of quantum non-
Markovianity25, as well as other features of non-Markovian
memory26–28. Figure 1a, top and bottom, illustrates respectively
the traditional approach and the process tensor approach to
describing a quantum process. In the top panel, a quantum state
left to evolve in isolation can be reconstructed at t via quantum
state tomography (QST). In the bottom panel, events come in the
form of control operations applied to S at times t1 and t2; the
future states of the S branch at time t are conditioned on the
outcomes of the control operations.

Mathematically, the controlled dynamics has the form

ρk Ak�1:0ð Þ ¼ trE½Uk:k�1 Ak�1 � � � U1:0 A0ðρSE0 Þ�; ð1Þ
which can be rearranged, as depicted in Fig. 1b, to define a
mapping from past control to future states:
ρk Ak�1:0ð Þ ¼ T k:0½Ak�1:0�. The process tensor, T k:0 is a multi-
linear map on the control operations, and includes all of the
information hidden to the experimenter, including correlations in
the initial state, and any intermediate interaction with the
environment.

The set of possible sequences of CP maps Ak−1:0 forms a
product vector space, built up from the spaces of temporally local
operations; in particular, Ak�1:0 ¼

Nk�1
j¼0Aj when the operations

at each time are chosen independently. As such, the process
tensor is completely characterised by its input–output relations
on a complete basis of control operations, just as a quantum
channel is unambiguously defined by its input–output relations
on a complete basis of states. Let us denote the basis for CP maps

at the jth time step as fBμj
j g

d4S

μj¼1
and the basis sequences as

fBμ
k�1:0g

ðd4S ;d4S ;��� ;d4SÞ
μ¼ð1;1;��� ;1Þ such that an arbitrary sequence of operations

can be written as Ak�1:0 ¼
P

μα
μ Bμ

k�1:0, see Fig. 1c. Then the
process tensor’s action is defined by

ρkðAk�1:0Þ ¼
X
μ

αμ ρμk with ρμk :¼ T k:0½Bμ
k�1:0�: ð2Þ

In other words, to reconstruct the process tensor, we need to
experimentally estimate ρμk for all μ, this is depicted in Fig. 1d. A
key assumption to this model is that the relationship between the
gates acting on the system is ideal, and that the duration of the
gates is small when compared to the overall dynamics of the
system. For superconducting devices, single qubit gates are short,
with fidelities of Oð10�4Þ, and so we do not expect this to be a
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problem. This assumption will need to be revisited for the case of
two-qubit gates, however. In the ‘Methods’ section, we detail
explicitly the steps to go from ρμk to constructing the process
tensor. Once the process tensor is reconstructed, using Eq. (2),
one can predict the final density matrix corresponding to any
choice of control sequence Ak−1:0, as shown in Fig. 1e. We use
prediction fidelity of the final states, conditioned on controls, as a
performance metric for our process characterisation.

Experimental implementation. We look now to the practical
determination of the process tensor in experiment. The experi-
ments carried out in this work used cloud-based IBM Quantum
superconducting quantum devices. We first evaluated predictive
capabilities of process tensor over a host of different experiments
on the IBM Quantum devices ibmq_johannesburg (shortened:
‘Jo’burg’), ibmq_boeblingen (‘Boeb.’), ibmq_poughkeepsie (‘PK’),
and ibmq_valencia. Our main contribution is in demonstrating
how this framework leads to high fidelity process characterisation
and precise control over non-Markovian dynamics. Ideally,
complete process tensor construction would be achieved with the
full span of CP maps. Unfortunately, efficient measurement
within the coherence time is beyond the scope of most current
hardware. For now, this rules out non-unital and trace-decreasing
maps on superconducting devices, affording only unitary control,
i.e., we do not have a complete basis of operations. With these
limitations, processes can still be characterised in terms of

‘restricted’ process tensors T k:0
r

29, defined in a similar way to the
full process tensor, but constrained to act only on the subspace of
operations comprising the linear span of unitary maps. This
reduces the control space to d4S � 2d2S þ 2 dimensions; this work
deals only with single qubit process tensors, for which the
dimension is 10.

We reconstruct and test the four-time restricted process tensor
T 3:0

r for a single qubit process on IBM Quantum devices. To do

so, we first reconstruct the final quantum states ρijk3 . This state
depends on the past controls, i.e., the initial preparation Pi

0 2 P
and the subsequent unitaries U j

1 2 U and Uk
2 2 U . The restricted

process tensor is then obtained using Eq. (2). The set U contains
28 random unitaries, where the first n elements UðnÞ are used to
reconstruct T 3:0

r . Each smaller basis UðnÞ is a subset of the larger
bases. Randomly chosen unitaries are almost surely linearly
independent, and are selected so as not to systematically
preference any part of superoperator space. The remaining
28− n elements are contracted with the reconstructed T 3:0

r to

obtain predictions σ ijk3 . We then compute the reconstruction
fidelity

F ijk :¼ tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρijk3

q
σ ijk3

ffiffiffiffiffiffi
ρijk3

qr" #2
ð3Þ

to gauge the accuracy of the prediction.

a

c

d

b

e

Fig. 1 An illustrative summary of process characterisation. a The state of an open system over time follows a trajectory through state space until some
final time at which the state is probed (top). By applying control operations at times t1 and t2, an experimenter can anchor and change the trajectory, which
can be inferred via a linear combination of trajectories corresponding to basis operations (bottom). b A circuit model showing a sequence of operations
fAjg interleaved with SE interactions, resulting in a final state ρA. c A sequence of operations Ak−1:0 can be expressed as a tensor product of independently
chosen operations Aj at each time step. These can then be individually decomposed into a chosen basis fBμj

j g together giving a basis of sequences fBμ
k�1:0g.

d A process can be fully characterised by measuring the output state for a complete set of basis operations at different times. Then, an arbitrary process
can be expressed as a linear combination of each basis process; because of the linear construction, the intermediate evolution is completely preserved in
the description of the arbitrary process. e The final state density matrix for the process Ak−1:0 can be expressed by tracing over all of the intermediate
operations, contracting to a coefficient expansion for the measured density matrices in the basis processes. This is the same density matrix as in b.
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In theory, a minimal complete basis (n= 10) is all that is
required for a restricted process tensor. In practice, however, we
find that sampling error and, to a lesser extent, gate error,
introduces inconsistencies in the linear equations described in
Eq. (2), amplifying reconstruction errors. The Moore–Penrose
pseudoinverse (discussed in the ‘Methods’ section) finds the
coefficients minimising the least-squares error between over-
determined and inconsistent linear equations. Consequently,
adding in new basis elements will suppress the noise in the
fidelities of prediction. We find a surprisingly large improvement.
To further minimise bias in the noise, we also order our basis
from least to most overlap with the rest of the set, as determined
by the Hilbert-Schmidt inner product. This basis re-ordering
improved predictive fidelity by 20%.

We summarise the average reconstruction fidelity between
prediction and experiment of each basis in Fig. 2a. The

‘Johannesburg (extended)’ experiment refers to process tensor
experiments with idle time increased by a factor of 32. Meanwhile,
‘Johannesburg (Bell)’ is the result of creating a Bell pair, and then
acting the unitaries on one half. The intention of these is to probe
different dynamics of the system: the former to add a longer time-
scale, and the latter to test an initially correlated state. Standard CP
maps cannot describe the reduced dynamics of initially entangled
states with the environment30,31, and so this evaluates a regime in
which the process tensor is in principle more applicable. The results
both demonstrate the effects of basis size on process tensor
performance, and showcase its ability to characterise processes.
Adding in new basis elements offers substantial improvement in
comparison to a minimal complete basis. Most of the error in
reconstruction is statistical. The effects of this can be observed in
the three highest fidelity experiments, ‘Johannesburg (extended)’,
‘Johannesburg (Bell)’, and ‘Boeblingen’. The first two produce more
mixed final states, whose density matrices are naturally closer
together, and the third is performed with 4096 shots per circuit,
compared with 1600 for the remainder. For a more fine-grained
view, Fig. 2b shows box plots of the predictive fidelity distribution of
a size-24 basis on each experiment. At this size, the median fidelity
of characterisation is well within shot noise. Here, we have shown
how to extract useful and accurate predictions, and how unbiased
and overcomplete basis sets are necessary for complete practical
determination of the process tensor.

Bounding memory and comparison with GST. The impetus of
the previous section was to demonstrate an experimentally ver-
ifiable method of characterising arbitrary dynamics. We now show
that the above processes are indeed non-Markovian by lower
bounding the memory in QIPs. We will then show that process
tensors make more accurate predictions than comparable Markov
models constructed using GST. To fully account for the non-
Markovianity in a system requires in situ measurements, which
break all correlations between the system and its environment,
and represent a clean barrier to any past–future dependence25.
Barring access to these, a restricted process tensor can only infer
aspects of the non-Markovianity. Here, we introduce one such
method to extract a lower bound on non-Markovianity.

Because the maximally depolarising channel

R½ρ� ¼ I
d
; 8 ρ ð4Þ

lies within the span of unitary operations, we can use it as an
information barrier between time steps. A non-zero mutual
information between the input operation and final measurement
suggests information has travelled into the environment and
returned after R has been applied28. Figure 3a illustrates this idea
for the processes we consider here, where R takes either the first
operation position, the second, or both. This tests the timing and
duration of different memory effects.

The utility of the process tensor here is that it enables us to
numerically search for the encoding and decoding operations which
give the largest lower bound to non-Markovianity along different
paths. Respectively, these are sets E and D, the first of which
contains two unitary operations applied with equal likelihood, and
the second contains two orthogonal measurement effects.

The quantities we compute are the conditional mutual
information (CMI) for each case:

argmax
E;V1;D

IðE : DjE;V1;R;DÞ; ð5Þ

argmax
E;V2;D

IðE : DjE;R;V2;DÞ; ð6Þ
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Fig. 2 Reconstruction fidelity. For each basis size, we compare the process
tensor predictions with experimentally reconstructed density matrices for
predictions that lay outside the basis set. a The average infidelity in
reconstruction between the states predicted by the process tensor and the
experimentally measured state. This includes a 95% confidence interval,
computed using the bootstrapping method described in ref. 41. The
experiments compare the predictions of a basis n process tensor with the
experimental outcomes of the 4 × (28− n) × (28− n) experiments from
outside the basis set. In the notation of the ‘Process characterisation’
subsection, our basis is P � U ðnÞ � U ðnÞ. b The distribution of fidelities of
the predictions made by a basis-24 process tensor over a range of
experiments. The top and bottom of the boxes are, respectively, the 25th
and 75th percentiles, the whiskers are 1.5 times the inter-quartile range,
and the orange lines are the medians of the distribution, with this last figure
also provided in orange to four decimal places.
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argmax
E;D

IðE : DjE;R;R;DÞ; ð7Þ

where:

IðE : DÞ ¼
X
e2E

X
d2D

pðE;DÞðe; dÞlog
pðE;DÞðe; dÞ
pEðeÞpDðdÞ

� �
: ð8Þ

For each experiment, we summarise the memory lower bound in
Fig. 3b. Note that we include an extra experiment ‘Valencia (H
env)’, in which the neighbouring qubits are initialised into the þj i
state. In almost every case, we find non-zero CMI, flagging non-
Markovianity within the device. The extended Johannesburg
experiment is the only case for which CMI overlaps zero in all
three tests. Given that the effects are no longer observable on this
longer timescale, this suggests that the memory has a finite lifetime
which can be loosely upper-bounded by this experiment. This is
further shown with the lower values where R is contracted in both
positions. The memory size is especially high for the experiments
with coherent neighbours (‘Joburg (Bell)’ and ‘Valencia (H env)’),
suggesting a passive crosstalk interaction might account for some of
the environmental memory effects observed. The results of Fig. 3b
suggest a coupling between neighbouring qubits on Johannesburg
and Valencia (we did not assess whether the same effect was present
on Boeblingen or Poughkeepsie). These dynamics provide a useful
test-bed for the performance of the process tensor in a non-
Markovian system when compared to a Markovian model for the
process. GST, introduced in ref. 8, is a comprehensive tomographic
procedure for estimating process matrices representing gate
operations, preparations, and measurements. The maximum

likelihood estimate of a gate set employs a Markov model, where
repetitions of the gate are taken to be matrix powers.

We performed two experiments under two different scenarios
on the ibmq_valencia five-qubit quantum device. The first is
identical to the process tensor experiments the ‘Experimental
implementation’ subsection using the set U . In addition, using
GST we characterised all 28 unitary operations in U , the 4
preparations in P, as well as the the initial state and the final
measurement. The estimates for each map were multiplied out to
produce a Markovian prediction for the final density matrix. Both
the process tensor and GST experiments were conducted first
with neighbouring qubits initialised in the 0j i state, and then
again initialised in the þj i state. Figure 4 shows the distribution
of the reconstruction fidelities for both the process tensor and
GST. With a coherent environment, GST performs about 1.2%
worse. The process tensor tends to perform better in cases where
the final state density matrices are more mixed, because this
necessarily suppresses any directional bias in the noise.

We emphasise that our comparison of the outcomes of the two
techniques is not framed competitively. Indeed, they are
qualitatively different: while GST estimates the stationary maps
of a given (presumed composable) gateset, the process tensor
characterises all possible outcomes in a set process. Figure 4
observes the breakdown of a Markov model, and benchmarks the
process tensor against the state-of-the-art as a complementary
tool to describing processes.

Control in the presence of memory. In addition to non-
Markovian characterisation and diagnostics, we now show that
the process tensor can be a useful tool for quantum control. With
a direct map from control operations to experimental outcomes,
the data can be used to find which gates optimally output a
desired state in a parametrised circuit. This outcome could har-
ness external couplings to that end, using only local operations to
manipulate them. Having already captured the process, the need
for hybrid quantum-classical optimisation is eliminated. The
desired result could be the most entangled state, highest fidelity
equal superposition, or some member of a decoherence-free
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Fig. 3 Memory size and structure. a The circuit depicting the process
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confidence intervals. This shows statistically significant non-zero memory
in the device, which shows consistency in the timescale and the
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Fig. 4 Comparison with a Markov model. We benchmark the accuracy
with which different techniques can predict the outcome of a given process
for 64 circuits. When nearby qubits are initialised as 0j i, the median fidelity
from GST is similar to the process tensor in each scenario. When the
neighbouring qubits are in state þj i, however, GST suffers from a fidelity
drop of about 1.2%. This is a demonstration of how a technique like the
process tensor could complement existing characterisation techniques in
realistic non-Markovian settings.
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subspace. The procedure naturally accounts for any mitigating
background, such as environmental noise or crosstalk. It is a
matter of simple numerical optimisation to find the sequence of
operations achieving the closest possible state to the one we
desire: (i) Select an objective function L which computes some
quantity on the output density matrix, subject to the sequence

Ak−1:0 of operations performed. (ii) Find:

argmin
Ak�1:0

L T k:0½Ak�1:0�
� �

: ð9Þ

For unitaries, this is a straightforward minimisation over three
parameters per time-step.

As an example, we first consider two neighbouring qubits
initialised in the þj i state. Figure 5a shows the consequences of
their natural coupling, extracted from the reconstructed two-
qubit density matrix after some idle time. The results, which
summarise negativity, mutual information, and state purities,
show genuine entanglement between the two qubits. This form of
dynamical behaviour will give rise to correlated errors in devices.
After detection of a non-trivial interaction, we can use Eq. (9) to
decouple the qubits.

So-called ‘bang-bang’ decoupling approaches have been
thoroughly studied in the literature, but usually require a priori
knowledge of the system–environment interaction Hamilto-
nian32. Using a one-step process tensor to form outcomes, our
objective function is 2− γ1− γ2, where γi is the purity of the
reduced state: γi ¼ trðρ2i Þ. Performing the minimisation in
Eq. (9), we find the best decoupling operation. This turns out
to be the gate

0:0051 e�i�ð1:073Þ

ei�ð0:188Þ 0:0051 � ei�ð2:257Þ

 !
; ð10Þ

which amounts to a rotation of approximately π around the axis
(nx, ny, nz)= (0.8076, 0.5894, 4.609 × 10−3). We then repeat the
experiment of Fig. 5a, but periodically apply the decoupling
operation approximately every 0.5 μs. This yields the results in
Fig. 5b, wherein the purities of each qubit have been significantly
increased, and the entanglement over time suppressed. Note that
this is a demonstration of how the process tensor can be applied
as an outcome-based control tool, rather than a rigorous
benchmark of decoupling. We have not compared this to
standard decoupling techniques, and the operation spacing times
were arbitrarily chosen. For further information, see the
‘Methods’ section.

We apply this same technique to exploit non-Markovianity for
enhanced quantum control, inspired by the ideas in ref. 15.
Arguments for the use of non-Markovianity as a resource are
founded upon accessing Hilbert space trajectories otherwise
unavailable with system control. We broaden our control set by
using the process tensor to include non-unitarity, limited only by
the strength and duration of the underlying interaction. We
achieve this by constructing a single-step process tensor on one
half of a pair of coupled qubits for a set of four preparation
operations. Then, we use Eq. (9) to find the parameters that
produce final states closest to the ideal outputs of a randomly
selected non-unitary operation, before applying the correspond-
ing gate and performing quantum process tomography on it. The
process fidelity of these non-unitary maps compared to their
targets is plotted as a function of unitarity in Fig. 5c. It reaches up
to 97%, showing that we can extend the control capabilities of the
device by using the process tensor and a nearby coupled qubit.
This target gate is achieved for a given interaction of the system
with its neighbour. Since interaction time is not varied, the
maximum achievable non-unitarity is fixed, which is why the
process fidelity decreases when gates with a lower unitarity are
targeted. This shows a way forward in which extended control
regimes could be used for the implementation of non-unital and
trace-decreasing maps which are necessary for the reconstruction
of the full process tensor. Critically, for this to work, we do not
need to perform control operations on the neighbouring qubit
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Fig. 5 Coherent control with non-Markovian noise. Entanglement, mutual
information, and purities extracted from the two-qubit density matrix after
being initialised in the þþj i state. a Both qubits are left idle and the natural
evolution is tracked. b As a simple demonstrative application of the process
tensor, we use the construction from Eq. (9) to find the optimal decoupling
pulse. We periodically apply this gate to qubit 1. We see greatly improved
coherences and almost complete elimination of entanglement between the
two qubits, without actually characterising the nature of the interaction.
c We use the process tensor to implement specific non-unitary gates. We
plot the process fidelity as a function of the unitarity for two randomly
chosen operations, according to the measure given in ref. 42.
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beyond its initialisation. For further details about this imple-
mentation, see the ‘Methods’ section.

This simple framework is widely applicable to many forms of
quantum control. In particular, it allows for either mitigating or
controlling non-Markovian noise without first understanding it at
a microscopic level. Broadly, the user need only specify a desired
outcome, without studying the means to achieve it.

Discussion
In this paper, we have bridged the gap from a theoretical fra-
mework of non-Markovian dynamics to an experimental method
which verifiably offers non-Markovian diagnostics and control.
First, we demonstrated a high fidelity non-Markovian char-
acterisation technique over a range of devices. We used this to
bound the non-Markovian memory present. Then, using the
reconstructed process tensor, we demonstrated operationally
tractable control techniques to decouple the system qubit from its
neighbour, as well as applying well-characterised intermediary
non-unitary operations on the system. These methods pave the
way to mitigate non-Markovian noise and streamline the per-
formance of quantum devices. Although tested on super-
conducting qubits, the principles behind this technique are
agnostic to the hardware. Implementation of the control opera-
tions across different platforms would be a useful avenue to
explore in future work.

Like many tomographic techniques, the construction of the
process tensor scales unfavourably in both the number of time-
steps and number of qubits. However, for processes with finite
Markov order, it is possible to reconstruct a primitive building
block, from which the whole process can be inferred28. One
immediate future avenue is complete process characterisation, as
suggested in the previous section, which will offer better bench-
mark for the length of the memory. Although we found success
with the use of an overcomplete basis, it would likely be fruitful to
explore coupling smaller bases with conventional denoising
techniques, the use of a mutually unbiased unitary basis33, or
machine learning reconstruction methods34. Much like with the
study of many-body entanglement, there is ample room to reduce
experimental overhead with some well-placed physical
assumptions.

Methods
Process tensor experiments. Here, we discuss the construction of a multi-time
process tensor both in particular to the experiments conducted in this work, and
more generally with respect to a greater set of controls. The process tensor con-
structed was over three time-steps of varying sizes. The experimental steps for this
are as follows:

1. Initialise the qubit in state 0j i.
2. Apply Pi 2 P ¼ fH; S � H; I;Xg.
3. Apply U j 2 U .
4. Leave some amount of time.
5. Apply Uk 2 U .
6. Leave idle.
7. Repeat this sequence three times for the three QST basis measurements

required.
8. Store this density matrix as ρijk3 .
9. Repeat this for all combinations of the elements of P and U in each slot.

For our experiments, this is a total of (4 × 28 × 28) × 3= 9408 experiments.
Interleaved between each operation is idle time equivalent to a single gate. The

circuit diagram for these experiments is given in Fig. 6. We ran these at 1600 shots
each with the exception of ‘Boeblingen’, which had 4096 shots. These data were
then partitioned into process tensor construction, and experimental verification.
The former consists of the construction of a basis-n process tensor, which used the
first 4 × n × n control sequences to form a basis. We then used the remaining 4 ×
(28−n) × (28−n) sequences which lie outside the basis set as verification density
matrices for the process tensor predictions. It is worth noting that action of the
process tensor is insensitive to state preparation and measurement (SPAM) errors.
Any initial state or final measurement error channels are absorbed into the
definition of the process tensor, and the expansion remains the same.

The unitary basis was constructed with a randomly generated set of 28 ordered
unitary matrices using the scipy.stats.unitary_group.rvs() function.

We parametrise these gates using the standard qiskit unitary
parametrisation:

Uðθ; ϕ; λÞ ¼ cosðθ=2Þ �eiλsinðθ=2Þ
eiϕsinðθ=2Þ eiλþiϕcosðθ=2Þ

 !
: ð11Þ

On the IBM superconducting devices, these so-called u3 gates are implemented in
two physical pulses corresponding to rotations around the x-axis, and three frame
shifts corresponding to rotations around the z-axis35,36. Explicitly,

Uðθ;ϕ; λÞ ¼ Rzðϕþ 3πÞRxðπ=2ÞRzðθ þ πÞRxðπ=2ÞRzðλÞ: ð12Þ

Consequently, the physical duration of each u3 gate is independent of the
θ, ϕ, λ parameters—approximately 72 ns. We then leave the system idle for a
duration of one u3 gate. Following this is one more u3 gate, an identical wait time,
and then each of three basis measurements in X, Y, and Z Pauli bases required to
reconstruct the output density matrix. The maximum likelihood method
introduced in ref. 37 is then used to find the closest physical density matrix
consistent with the data. The ordered list of density matrices collected make up the
experimental data required for the process tensor.

The IBM Quantum devices are fixed-frequency superconducting transmon
devices, each with similar error rates and coherence times; ibmq_boeblingen,
ibmq_poughkeepsie, and ibmq_johannesburg are each 20 qubits, while
ibmq_valencia is a five-qubit processor.

Control basis and process reconstruction. An arbitrary Aj , at time step j, on a
system of dimension dS may be decomposed into a linear expansion of some
ordered basis fBμj

j g such that

Aj ¼
Xd4S
μj¼1

α
μj
j B

μj
j : ð13Þ

A sequence of (independently chosen) control operations may be written with a
tensor product structure Ak�1:0 ¼

Nk�1
j¼0Aj , for which each constituent map can be

further decomposed into the chosen basis. The complete spatio-temporal basis of
operations is then given by

Bμ
k�1:0 ¼

Ok�1

j¼0

Bμj
j

( )ðd4S ;d4S ;��� ;d4SÞ

μ¼ð1;1;��� ;1Þ

; ð14Þ

where μ= (μ0, μ1, ⋯ , μk−1) is a k-dimensional vector of index elements, each
taking values between 1 and d4S . That is, it is the set with cardinality d4kS of all

combinations of the k tensor products of each member of fBμj
j g at each time step.

Measuring the output state ρμk for each of these basis operations is sufficient to
construct the process tensor. We signify the matrix form of the process tensor T
with a caret: T̂

T̂ k:0 ¼
X
μ

Δμ
k�1:0

� �T � ρμk ; ð15Þ

where the set fΔμ
k�1:0g is known as the dual set to fB̂μ

k�1:0g, satisfying
tr B̂

μ
k�1:0Δ

ν
k�1:0

h i
¼ δμν . This dual set can be easily computed for any linearly

independent set of vectors. To be explicit, the matrix form for the two-step process
tensor using a basis of n operations is given as

T̂ 3:0 ¼
X4
i¼1

Xn
j¼1

Xn
k¼1

Di
0 � Δj

1 � Δk
2

� �T
� ρijk3 ; ð16Þ

where the fDi
0g are dual to the preparation operations P, and the fΔj

1g ¼ fΔk
2g are

dual to the circuit operations UðnÞ. Sampling error in the final state density matrix,
as well as error in the gates themselves, will collectively introduce inconsistencies in
the set of linear equations described by Eq. (2). The error becomes significant if the
basis is biased in a particular direction of superoperator space. Originally, our
minimal complete basis—which had been randomly selected—produced a recon-
struction fidelity of around 70%. To mitigate this error, we re-ordered our basis
according to the least to most overlap with the remainder of the set according to
the Hilbert-Schmidt inner product. For the first ten elements, this overlap was

Fig. 6 Circuit diagram depicting the generic experiment required to
construct the two-step process tensor. Each gate represents an element
from either the preparation set P or the more general unitary basis set U .
The identity gates represent idle time which we allow to vary. Finally,
measurements in three bases are made for QST.
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[0.0336, 0.0409, 0.0438, 0.0489, 0.0505, 0.0518, 0.0594, 0.0600, 0.0619, 0.0621].
After re-ordering, the reconstruction fidelity of the minimal complete basis
improved to around 95%. This effect was only discovered after the completion of
the experiments, at which point it was too late to change the operational basis itself.
In future, a better course of action would be to examine the selection of a set of
mutually unbiased unitary operators.

In general, the only positive dual operators are entanglement-breaking
channels. With a restricted basis, the process tensor constructed here is not unit
trace, nor is it a positive operator. Physically meaningful quantities can only be
extracted from its action on the restricted basis, rather than from the explicit form
given in Eq. (16). For this reason, we keep the emphasis of the process tensor in this
work on its ‘actions’ rather than on information that can be gleaned from the object
itself. Note that the expansion coefficients are calculated in the contraction of the
operation with the process tensor. We discuss this explicitly below.

Construction of a dual set. The procedure to construct the dual operators is as
follows: for a complete set of linearly independent operations fBig whose matrix

forms are fB̂ig, we can compile the basis into a single matrix B. Write each

B̂i ¼
P

jbijΓj , where {Γj} form a Hermitian, self-dual, linearly independent basis
satisfying tr½ΓjΓk� ¼ δjk . In our case, we select {Γj} to be the standard basis, meaning

that the kth column of the matrix B ¼
P

ijbij ij i jh j is B̂k
flattened into a 1D vector.

Because the fB̂ig are linearly independent, B is invertible. Let the matrix Fy ¼
B�1 such that B �Fy ¼ I. This means that the rows of Fy are orthogonal to the
rows of B. The dual matrices can then be defined as Δi= ∑jfijΓj, ensuring that

tr½B̂i
Δj� ¼ δij . Note that in this work, our basis is restricted to the sub-manifold of

unitary matrices. This means that the dimension d of the space is less than the
order n of the matrices. Therefore, we construct Fy as the Moore–Penrose or the
right inverse of B. We also primarily operate in an over-complete setting, where
the number of basis operations is greater than the dimension of the space, meaning
that they cannot all be linearly independent. Here, we relax the duality condition

tr½B̂i
Δj� ¼ δij , but retain

P
iΔ

i ¼ I to ensure that the expansion of any operation
within the basis is complete. The over-completeness technique is necessary for a
high fidelity reconstruction, owing to the sensitivity of the matrix pseudoinverse to
shot-noise.

Contracting an operation. The expansion coefficients discussed are useful in
conceptual discussions of the process tensor, but in practice these are not directly
computed. Instead, the action of the process tensor on a sequence of operations is
found by projecting the process tensor onto the Choi state of this sequence (up to a
transpose). Below, we explicitly step through this computation.

T k:0 Ak�1:0½ � ¼ trin Âk�1:0 � Iout
� �TT̂ k:0
h i

¼ trin
Ok�1

i¼0

ÂT

i � I

 !X
ν

Δν
k�1:0

� �T � ρνk

" #

¼ trin
X
μ

αμ
Ok�1

i¼0

B̂μiT
i

X
ν

Ok�1

j¼0

Δ
νjT
j � ρνk

" #

¼ trin
X
μ;ν

αμ
Ok�1

i;j¼0

fB̂μiT
i Δ

νjT
j g � ρνk

" #

¼
X
μ;ν

αμ
Yk�1

i;j¼0

tr B̂μi
i Δ

νj
j

h i
ρνk

¼
X
μ;ν

αμ
Yk�1

i¼0

δμν ρνk

¼
X
μ

αμρμk

¼ ρkðAk�1:0Þ:

ð17Þ

The direct calculation of each expansion coefficient is therefore given by

αμ ¼ tr Âk�1:0Δ
μ
k�1:0

	 

ð18Þ

¼ tr
Ok�1

i¼0

ÂiΔ
ðμ;iÞ

" #
ð19Þ

¼
Yk�1

i¼0

tr ÂiΔ
μi
i

h i
¼
Yk�1

i¼0

α
μi
i : ð20Þ

Bounding memory. In this subsection, we estimate a lower bound for the memory
present in the devices. This is accomplished with the contraction of different

encoding operations with the process tensor and forming predictions for the output
in this way. For the case where R is contracted in position one, the explicit steps
are as follows:

1. Pick E0; E1 2 Uð2Þ.
2. Pick pe0 and pe1 s.t. pai 2 ½0; 1� and pe0 þ pe1 ¼ 1 (in this experiment, we set

pe0 ¼ pe1 ¼ 0:5).
3. Pick D 2 Uð2Þ.
4. Pick V 2 Uð2Þ.
5. Compute the four values of p(E, D)(ei, dj) by collecting the density matrix

ρi ¼ T 3:0½Ei;V;R� and then setting pðE;DÞðei; djÞ ¼ pei � Trðjjihjj � DρiDyÞ.
6. Compute the marginal distributions: pE(ei) = ∑jp(E, D)(ei, dj) and

pD(dj) = ∑ip(E, D)(ei, dj).
7. Finally, compute I(E: D).

These steps are framed as an optimisation problem where E;D; and V are
chosen such that I(E: D) is maximised.

Implicit in this exercise is the assumption that operations outside the
preparation set achieve the same reconstruction fidelity as the latter steps shown in
Fig. 2. Although we did not examine this assumption for every machine, in Fig. 7
we construct a four time process tensor on Valencia using the basis
Uð4Þ � UðnÞ � UðnÞ . We then compare the reconstruction infidelity from
predictions made by the process tensor: firstly, compared to gate sequences where
the preparation operation lay inside the basis set (with U i

1 and U j
2 outside), and

secondly compared to gate sequences where the preparation operations were the
next four elements of U . We find these two collections to be identical within error
bars for all basis sizes 10 and above. Given that Valencia had the worst
reconstruction fidelity of the machines, we view this as sufficient evidence that the
assumption is valid across all machines.

GST comparison. The GST experiments conducted in the ‘Comparison with GST’
subsection were completed using the pyGSTi quantum processor performance
package38,39. Following the procedures outlined in the documentation, with back-
ground given in refs. 9,40, we characterised the 28 random unitaries as well as the 4
preparation gates in 8 groups of 4 gates. The software package designates the circuits
required, and carries out the maximum likelihood reconstruction of the gates with
the constraint of complete positivity and trace preservation. The gate sequences
were repeated in powers of 2: 1, 2, 4, 8, 16, and 32 times. Included in this estimate
are the SPAM vectors, jρii and hhEj. The process tensor and GST experiments were
conducted in the one calibration period for the device in a window of ~5 h. The
gates were characterised in different groups for computational convenience; how-
ever, this means that the final estimate for each group cannot necessarily be mixed.
There exists a gauge freedom in GST, in which measurement outcomes hhEjGjρii is
invariant under the transformation hhEj 7! hhEjB, jρii 7!B�1jρii and G ↦ B−1GB.
In the GST estimate, this gauge is optimised to bring the gate set as close as possible
to the target set. However, in principle, each of the sets characterised will be in
slightly different gauges. In order to estimate the effects of this, we computed the
reconstruction fidelities with respect to the SPAM vector estimates of each gate set
estimate. Of the different gauges, the one with the maximum average difference
between the data points in any of these distributions and the for the þj i neighbour
given in Fig. 4 is 5.9 × 10−3, which is similar in magnitude to sampling error and
does not significantly affect the comparison. This suggests that the absolute per-
formance of the GST estimates could be marginally better than what is shown.
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Fig. 7 Reconstruction infidelity for a process tensor experiment on the
ibmq_valencia. Here, we examine a four time process tensor whose basis is
U ð4Þ � UðnÞ � U ðnÞ . We compare the reconstruction fidelity between
predictions made for the experimental sequences U ð1:4Þ � U ðn:28Þ � U ðn:28Þ

(inside the preparation set) with U ð5:8Þ � U ðn:28Þ � Uðn:28Þ (outside the
preparation set). We find that they are, within error, the same. Indeed with
slightly better performing results for the unitaries outside of the basis set.
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Adaptive control methods. Here, we more explicitly discuss our adaptive control
methods using the process tensor. In each case, the system qubit and its neighbour
were both initialised in the þj i state. We sought to use the process tensor to control
the always-on interaction between the two qubits without actually learning it. The
circuit diagrams describing both experiments are in Fig. 8.

In the first scenario, using operations only on qubit 1, we construct a single-step
process tensor with a size-24 basis, 256 ns of idle time on either side, and two-qubit
state tomography at the end. Altogether, this is 24 × 9= 216 experiments. Strictly
speaking, only single qubit state tomography is required for the purpose of
decoupling one qubit; however, we created a mapping to the two-qubit output in
order to specifically best show these two qubits decoupled. With the intermediate
operation parametrised as in Eq. (11), the minimisation performed was:

argmin
θ;ϕ;λ

2� γ1 � γ2 ð21Þ

where γi is the purity of the ith reduced density matrix produced by the process
tensor. The total density matrix is T 1:0 Uðθ; ϕ; λÞ½ �. The decoupling operation
found was

0:0051 e�i�ð1:073Þ

ei�ð0:188Þ 0:0051 � ei�ð2:257Þ

 !
:

This amounts to a rotation of approximately π around the axis (nx, ny, nz)=
(0.8076, 0.5894, 4.609 × 10−3). In Fig. 5b, we periodically apply this operation to
the system after the equivalent amount of time in order to decouple the two
qubits.

For the purpose of implementing our own chosen non-unitary operations, we
created a one-step basis-24 process tensor on a single qubit whose neighbour was in
the þj i state: ~800 ns of idle time after P preparations, followed by Uð24Þ, followed
by another 800 ns and then QST. We then generated a set of random non-unitary
operations with unitarity ranging from 1/3 to 1.0. These are denoted by Nðα; ηÞ,
where

Nðα; ηÞ ¼ ffiffiffi
η

p EðαÞ þ ffiffiffiffiffiffiffiffiffiffiffi
1� η

p
YEðαÞ;

and EðαÞ ¼ ðRXðαÞRY ðαÞRZðαÞÞ:
ð22Þ

The two operations shown in Fig. 5c are two different randomly generated values
for α. The unitarity of the operations is then varied by varying η from 0 to 0.5 in the
above equation. Using these operations as a target map, we numerically found the
gate parameters minimising the trace distance between the target outputs of the
non-unitary map and the process tensor predictions for a set of four inputs. That is,
we applied the minimisation:

argmin
θ;ϕ;λ

1
2

jjτX � ρX jj1 þ jjτY � ρY jj1
�
þjjτZ � ρZ jj1 þ jjτI�Z � ρI�Z jj1

�
;

ð23Þ

where each ρj is the ideal output of Nðα; ηÞ acting on the X, Y, Z, and I� Z

eigenvectors, and each τj is the T 2:0 Pj;Uðθ; ϕ; λÞ
h i

predicted density matrices.

Then, using the optimal values of θ, ϕ, and λ, we performed quantum process
tomography and compared the process tensor of our implementation N 0ðα; ηÞ
with the ideal Nðα; ηÞ.
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a

b

Fig. 8 Circuit diagrams for each of the application experiments. a For the
decoupling of two qubits, we allow evolution time before and after the
process tensor. The distinction between here and other process tensor
experiments that we conducted is that we map from the operation on one
qubit to the two-qubit density matrix, rather than solely single qubits. b To
enact non-unitary gates of our choosing, we conduct a similar experiment.
This time, however, there are four basis preparation operations to begin
with, and QST only on the single qubit. This is so that we can optimise the
action of the gate over a complete basis of inputs.
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