117 research outputs found

    Singular value decomposition for the 2D fan-beam Radon transform of tensor fields

    Get PDF
    In this article we study the fan-beam Radon transform Dm{\cal D}_m of symmetrical solenoidal 2D tensor fields of arbitrary rank mm in a unit disc D\mathbb D as the operator, acting from the object space L2(D;Sm){\mathbf L}_{2}(\mathbb D; {\bf S}_m) to the data space L2([0,2π)×[0,2π)).L_2([0,2\pi)\times[0,2\pi)). The orthogonal polynomial basis sn,k(±m){\bf s}^{(\pm m)}_{n,k} of solenoidal tensor fields on the disc D\mathbb D was built with the help of Zernike polynomials and then a singular value decomposition (SVD) for the operator Dm{\cal D}_m was obtained. The inversion formula for the fan-beam tensor transform Dm{\cal D}_m follows from this decomposition. Thus obtained inversion formula can be used as a tomographic filter for splitting a known tensor field into potential and solenoidal parts. Numerical results are presented.Comment: LaTeX, 37 pages with 5 figure

    Simultaneous Identification of the Diffusion Coefficient and the Potential for the Schr\"odinger Operator with only one Observation

    Full text link
    This article is devoted to prove a stability result for two independent coefficients for a Schr\"odinger operator in an unbounded strip. The result is obtained with only one observation on an unbounded subset of the boundary and the data of the solution at a fixed time on the whole domain

    A global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem

    Full text link
    We consider a transmission wave equation in two embedded domains in R2R^2, where the speed is a1>0a1 > 0 in the inner domain and a2>0a2 > 0 in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strictly convex and a1>a2a1 > a2 . As a consequence of this inequality, uniqueness and Lip- schitz stability are obtained for the inverse problem of retrieving a stationary potential for the wave equation with Dirichlet data and discontinuous principal coefficient from a single time-dependent Neumann boundary measurement

    Inverse problems with partial data for a magnetic Schr\"odinger operator in an infinite slab and on a bounded domain

    Full text link
    In this paper we study inverse boundary value problems with partial data for the magnetic Schr\"odinger operator. In the case of an infinite slab in RnR^n, n≥3n\ge 3, we establish that the magnetic field and the electric potential can be determined uniquely, when the Dirichlet and Neumann data are given either on the different boundary hyperplanes of the slab or on the same hyperplane. This is a generalization of the results of [41], obtained for the Schr\"odinger operator without magnetic potentials. In the case of a bounded domain in RnR^n, n≥3n\ge 3, extending the results of [2], we show the unique determination of the magnetic field and electric potential from the Dirichlet and Neumann data, given on two arbitrary open subsets of the boundary, provided that the magnetic and electric potentials are known in a neighborhood of the boundary. Generalizing the results of [31], we also obtain uniqueness results for the magnetic Schr\"odinger operator, when the Dirichlet and Neumann data are known on the same part of the boundary, assuming that the inaccessible part of the boundary is a part of a hyperplane

    A direct D-bar reconstruction algorithm for recovering a complex conductivity in 2-D

    Get PDF
    A direct reconstruction algorithm for complex conductivities in W2,∞(Ω)W^{2,\infty}(\Omega), where Ω\Omega is a bounded, simply connected Lipschitz domain in R2\mathbb{R}^2, is presented. The framework is based on the uniqueness proof by Francini [Inverse Problems 20 2000], but equations relating the Dirichlet-to-Neumann to the scattering transform and the exponentially growing solutions are not present in that work, and are derived here. The algorithm constitutes the first D-bar method for the reconstruction of conductivities and permittivities in two dimensions. Reconstructions of numerically simulated chest phantoms with discontinuities at the organ boundaries are included.Comment: This is an author-created, un-copyedited version of an article accepted for publication in [insert name of journal]. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at 10.1088/0266-5611/28/9/09500

    Determination of the characteristic directions of lossless linear optical elements

    Full text link
    We show that the problem of finding the primary and secondary characteristic directions of a linear lossless optical element can be reformulated in terms of an eigenvalue problem related to the unimodular factor of the transfer matrix of the optical device. This formulation makes any actual computation of the characteristic directions amenable to pre-implemented numerical routines, thereby facilitating the decomposition of the transfer matrix into equivalent linear retarders and rotators according to the related Poincare equivalence theorem. The method is expected to be useful whenever the inverse problem of reconstruction of the internal state of a transparent medium from optical data obtained by tomographical methods is an issue.Comment: Replaced with extended version as published in JM

    The stability for the Cauchy problem for elliptic equations

    Full text link
    We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality.Comment: 57 pages, review articl

    3D Reconstruction for Partial Data Electrical Impedance Tomography Using a Sparsity Prior

    Get PDF
    In electrical impedance tomography the electrical conductivity inside a physical body is computed from electro-static boundary measurements. The focus of this paper is to extend recent result for the 2D problem to 3D. Prior information about the sparsity and spatial distribution of the conductivity is used to improve reconstructions for the partial data problem with Cauchy data measured only on a subset of the boundary. A sparsity prior is enforced using the â„“1\ell_1 norm in the penalty term of a Tikhonov functional, and spatial prior information is incorporated by applying a spatially distributed regularization parameter. The optimization problem is solved numerically using a generalized conditional gradient method with soft thresholding. Numerical examples show the effectiveness of the suggested method even for the partial data problem with measurements affected by noise.Comment: 10 pages, 3 figures. arXiv admin note: substantial text overlap with arXiv:1405.655

    Limiting Carleman weights and anisotropic inverse problems

    Get PDF
    In this article we consider the anisotropic Calderon problem and related inverse problems. The approach is based on limiting Carleman weights, introduced in Kenig-Sjoestrand-Uhlmann (Ann. of Math. 2007) in the Euclidean case. We characterize those Riemannian manifolds which admit limiting Carleman weights, and give a complex geometrical optics construction for a class of such manifolds. This is used to prove uniqueness results for anisotropic inverse problems, via the attenuated geodesic X-ray transform. Earlier results in dimension n≥3n \geq 3 were restricted to real-analytic metrics.Comment: 58 page

    Quantitative estimates of unique continuation for parabolic equations, determination of unknown time-varying boundaries and optimal stability estimates

    Full text link
    In this paper we will review the main results concerning the issue of stability for the determination unknown boundary portion of a thermic conducting body from Cauchy data for parabolic equations. We give detailed and selfcontained proofs. We prove that such problems are severely ill-posed in the sense that under a priori regularity assumptions on the unknown boundaries, up to any finite order of differentiability, the continuous dependence of unknown boundary from the measured data is, at best, of logarithmic type
    • …
    corecore