research

Singular value decomposition for the 2D fan-beam Radon transform of tensor fields

Abstract

In this article we study the fan-beam Radon transform Dm{\cal D}_m of symmetrical solenoidal 2D tensor fields of arbitrary rank mm in a unit disc D\mathbb D as the operator, acting from the object space L2(D;Sm){\mathbf L}_{2}(\mathbb D; {\bf S}_m) to the data space L2([0,2π)×[0,2π)).L_2([0,2\pi)\times[0,2\pi)). The orthogonal polynomial basis sn,k(±m){\bf s}^{(\pm m)}_{n,k} of solenoidal tensor fields on the disc D\mathbb D was built with the help of Zernike polynomials and then a singular value decomposition (SVD) for the operator Dm{\cal D}_m was obtained. The inversion formula for the fan-beam tensor transform Dm{\cal D}_m follows from this decomposition. Thus obtained inversion formula can be used as a tomographic filter for splitting a known tensor field into potential and solenoidal parts. Numerical results are presented.Comment: LaTeX, 37 pages with 5 figure

    Similar works