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Abstract — In this article we study the fan-beam Radon transform Dm of symmet-
rical solenoidal 2D tensor fields of arbitrary rank m in a unit disc D as the operator,
acting from the object space L2(D;Sm) to the data space L2([0, 2π) × [0, 2π)). The

orthogonal polynomial basis s
(±m)
n,k of solenoidal tensor fields on the disc D was built

with the help of Zernike polynomials and then a singular value decomposition (SVD)
for the operator Dm was obtained. The inversion formula for the fan-beam tensor
transform Dm follows from this decomposition. Thus obtained inversion formula can
be used as a tomographic filter for splitting a known tensor field into potential and
solenoidal parts. Numerical results are presented.

1 Introduction

The problem of determining vector or tensor field from the integral information
arises in various applications, for instance in ultrasound probing of fluid or gas
flows and deformed elastic media. In the first case it’s required to determine
the velocity vector field in the flow and in the second case — the stress tensor
field.

One of the most complete monograph of the tensor tomography is [23].
Reversibility and stability of different kinds of transforms of tensor fields on the
Riemannian manifolds are studied there. In [5], [19] the solution of the vector
tomography problem is reduced to the scalar Radon problem. An approximate
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solution of the vector and tensor (of rank 2) tomography problem is given in
[9], [10] with the help of polynomial non-orthogonal basis.

More information and references about vector and tensor tomography prob-
lems are given in [2], [22], [24], [25].

In this article we derive an inversion formula on the basis of singular value
decomposition (SVD) for the fan-beam transform of tensor fields. To this end
the orthonormal polynomial basis of solenoidal tensor fields, supported in unit
disk, are built from Zernike polynomials. In the scalar case thus obtained
SVD corresponds to the known SVD for the Radon transform in the classical
(parallel) formulation [6], [7], [12], [16], [15].

Unlike the scalar case, Radon transform of tensor fields has a non-zero kernel
and it’s possible to reconstruct uniquely (without additional information) only
the solenoidal part of a tensor field, so the inversion formula can be used as a
tomographic filter for splitting a known tensor field into potential and solenoidal
parts.

This article is organized as follows: In Section 2 we formulate the problem
of 2D tensor tomography. In Section 3 we review those part of the tensor fields
theory that are needed in this paper. Section 4 contain a novel properties of
Zernike polynomials. Sections 5 is devoted to the orthogonal polynomial basis
in the space of solenoidal (divergence free) tensor fields and a singular value
decomposition (SVD) for the tensor tomograph problem. A short description
of the implementation issues and numerical tests are presented in Section 6.

2 Formulation of the problem

Let us consider the Cartesian coordinate system (x1, x2) on the plane R
2 and

let Tm denote for m = 0, 1, ... the space of all real-valued m-covariant tensors

a := ai1...imdx
i1 ⊗ dxi2 ⊗ ...⊗ dxim or a = {ai1...im , i1, ..., im = 1, 2},

where ⊗ is the tensor product and ai1...im are the components of a in the Carte-
sian basis (x1, x2). Here and throughout we imply the summation convention.
By Sm we denote the subspace of symmetric m-covariant tensors and there
exists a canonical projection σ : Tm → Sm (called symmetrization) onto this
space defined by the equation

(σa)i1...im :=
1

m!

∑

π∈Πm

aiπ(1)...iπ(m)
, (2.1)

where Πm is the group of all permutations of degree m. A symmetric m-
covariant tensor a = {ai1...im , i1, ..., im = 1, 2} has only m + 1 independent
components which we denoted by ak, so that

ak := a1...1
︸︷︷︸

k

2...2
︸︷︷︸
m−k

, (k = 0, ...,m). (2.2)
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We will always denote vector and tensor fields and any related quantities
such as functional spaces by boldface characters.

Let D := {(x1, x2) ∈ R
2
∣
∣
∣ (x1)2+(x2)2 < 1} be a unit disc on the plane R2.

The symmetric m-covariant tensor field a(x1, x2) defined on D can be treated
as a mapping

a : D → Sm, a(x
1, x2) = {ai1...im(x1, x2), i1, ..., im = 1, 2}.

The fan-beam Radon transform Dm of tensor field a(x1, x2) is defined by

[Dma](β, ϕ) :=

2 cos(β−ϕ)∫

0

θi1 · θi2 · ... · θimai1...im(cosβ− l cosϕ, sinβ− l sinϕ) dl,

(2.3)

where β ∈ [0, 2π), θ =

(
θ1

θ2

)

=

(
cosϕ
sinϕ

)

, |β − ϕ| ≤ π

2
.

The difference between the parallel-beam and the fan-beam geometry is shown
in figure 1.

Figure 1: Left: parallel-beam scanning geometry. Middle: fan-beam scanning geometry.
Right: an example of the fan-beam transform (the data function or sinogram) f(β, ϕ), the
angle β defines the vertex point of the fan-beam projection f(β, ·) and the angle ϕ defines
the direction of scanning.

For |β−ϕ| > π

2
we complete the definition of the fan-beam transform (2.3)

with the condition

[Dma](β, ϕ) := (−1)m+1[Dma](β, ϕ + π). (2.4)
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Note, that the case m = 0 corresponds to the fan-beam Radon transform
D0 ≡ D of a scalar function a(x1, x2).

Now, the problem is to recover the unknown tensor field a(x1, x2) in the
unit disc D from the data function f(β, ϕ), see Figure 1c, such that

[Dma](β, ϕ) = f(β, ϕ), (β, ϕ) ∈ [0, 2π)× [0, 2π).

This problem will be solved here by the SVD-method.

3 Preliminaries

In this section, we introduce the definition of SVD method and then review
some facts from vector and tensor analysis [23] and, in particular, consider
real-valued tensor fields in complex coordinates (variables) [26]. We define
here some functional spaces of tensor fields — L2(D;Sm), for example, and
also establish the notations that will be used in the sequel.

3.1 Singular value decomposition (SVD)

Now we define the concept of a singular value decomposition, see [17], [18], [15],
[21]. Let U and V be Hilbert spaces, and A be a compact linear operator from
U to V, A ∈ L(U, V ). Then there exists a sequence {σk}k≥1 of positive num-
bers, monotonically tending to zero (or a finite sequence) and two orthonormal
systems {uk}k≥1 ⊂ U, {vk}k≥1 ⊂ V, such that for all u ∈ U we have a singular
value decomposition

Au =

∞∑

k=1

σk(u, uk)Uvk, Auk = σkvk, σ1 ≥ σ2 ≥ ... > 0.

The adjoint of A is given by

A∗v =

∞∑

k=1

σk(v, vk)V uk, A
∗vk = σkuk

and the generalized inverse of A is

A+v =

∞∑

k=1

σ−1
k (v, vk)V uk.

Operator A+ can be unbounded, so one can use a truncated SVD for its regu-
larization

Tγv =
∑

k≤1/γ

σ−1
k (v, vk)V uk,

where γ is the parameter of regularization. SVD is one of the methods for solv-
ing ill-posed problems and it allows to characterize the range of the operator,
invert it and estimate an incorrectness of the corresponding inverse problem.

4



3.2 Tensor fields in complex coordinates

Let’s identify R2 with the complex plane C by the usual way

z1 ≡ z := x1 + ix2, z2 ≡ z := x1 − ix2, i2 = −1.

Let a = {ai1...im(x1, x2)} be anm-covariant real-valued tensor field in Cartesian
coordinates (x1, x2), then in complex coordinates or variables (z, z) it will have
new components Ai1...im(z, z), which are formally expressed by the covariant

tensor law

Ai1...im(z, z) =
∂xs1

∂zi1
...
∂xsm

∂zim
as1...sm(x1, x2), (3.1)

where the Jacobian matrix is

J ≡ (J ij) :=








∂z1

∂x1
∂z1

∂x2

∂z2

∂x1
∂z2

∂x2








=

(
1 i
1 −i

)

and the inverse matrix of it is

J−1 =








∂x1

∂z1
∂x1

∂z2

∂x2

∂z1
∂x2

∂z2








=
1

2

(
1 1

−i i

)

.

Here the formal partial derivatives with respect to z1 and z2 are defined in
the usual way

∂

∂z1
≡ ∂

∂z
:=

1

2

(
∂

∂x1
− i

∂

∂x2

)

,
∂

∂z2
≡ ∂

∂z
:=

1

2

(
∂

∂x1
+ i

∂

∂x2

)

. (3.2)

We shall write transformation (3.1) as

a = {ai1...im(x1, x2)}  A = {Ai1...im(z, z)}.

From now on small letters will be used to denote tensor fields in the initial
Cartesian coordinate system (x1, x2) and capital letters will be used for the
same tensor fields in complex coordinates (z, z).

An inverse relationship also takes place

ai1...im(x1, x2) =
∂zs1

∂xi1
...
∂zsm

∂xim
As1...sm(z, z), (3.3)

and we shall also write this as

A = {Ai1...im(z, z)}  a = {ai1...im(x1, x2)}.
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A symmetric m-covariant tensor A could also be given by its components
Ak

Ak := A1...1
︸︷︷︸

k

2...2
︸︷︷︸
m−k

, (k = 0, ...,m) (3.4)

and subject to the conditions

Ak = Am−k, (k = 0, ...,m). (3.5)

So we may image the symmetric tensor as pseudovector, expanding the one as
a column array for convenience, that the following notations will be used

a =









am
am−1

...
a1
a0









, A =









Am
Am−1

...
A1

A0









(3.6)

Taking into account the tensor law (3.1), (3.3) we get the formulae that link
independent components (2.2) and (3.4) in pseudovectors (3.6)

ak = (−i)m−k
m−k∑

p=0

k∑

q=0

Cpm−kC
q
k(−1)pAp+q, (3.7)

Ak =
im−k

2m

m−k∑

r=0

k∑

s=0

Crm−kC
s
k(−i)k+r−sar+s, (3.8)

where k = 0, 1, ...,m and Cij are binomial coefficients.

3.3 Metric tensor G and pointwise inner product in com-
plex coordinates

On parity with covariant components of the tensor we shall also use its con-

travariant components. In Cartesian coordinates (x1, x2) covariant and con-
travariant components gij and g

ij of the metric tensor g are the same

g = {gij} = {gij} =

{
1 0
0 1

}

. (3.9)

Thus contravariant components of the tensor a coincide with its correspond-
ing covariant components, ai1...im = ai1...im . The pointwise inner product 〈·, ·〉
on Sm induced by the Euclidian metric g (3.9) is defined by the formula

〈a, b〉 := ai1i2...imbi1i2...im .

In complex coordinates (z, z) the metric tensor G has the following covariant

{Gij} =

{
0 1/2

1/2 0

}
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and contravariant components

{Gij} =

{
0 2
2 0

}

. (3.10)

Contravariant components of tensor A in complex coordinates are obtained by
raising indexes with contravariant components of the metric tensor (3.10)

Ai1i2...im = Gi1j1Gi2j2 ...GimjmAj1j2...jm

and the pointwise inner product of tensor fields is evaluated by formula

〈A,B〉 = Ai1i2...imBi1i2...im = Ai1i2...imB
i1i2...im .

If tensors A = {Ak} and B = {Bk} are considered as pseudovectors in
complex coordinates then their pointwise inner product will be equal to

〈A, B〉 = 2m
m∑

k=0

CkmAkBm−k. (3.11)

The pointwise norm of tensor A then will be

|A|2 = 2m
m∑

k=0

Ckm|Ak|2. (3.12)

It is clear that the pointwise inner product is invariant, i.e. if a  A and
b  B, than

〈a, b〉 = 〈A, B〉. (3.13)

3.4 The space of integrable tensor fields L2(D;Sm)

Let L2(D;Sm) denote a Hilbert space comprising real-valued symmetric m-
covariant tensor fields on D with the inner product, denoted by 〈〈·, ·〉〉

〈〈a, b〉〉 ≡ 〈〈a, b〉〉L2(D;Sm) :=

∫∫

D

〈a(x1, x2), b(x1, x2)〉dV 2, dV 2 = dx1∧dx2

and the finite norm || · ||

||a||2 ≡ ||a||2
L2(D;Sm) :=

∫∫

D

〈a(x1, x2), a(x1, x2)〉dV 2.

In complex coordinates for a  A and b  B we have

〈〈A, B〉〉 =
∫∫

D

〈A(z, z), B(z, z)〉dV 2, dV 2 =
dz ∧ dz

−2i
.

By virtue of invariance of inner product (3.13) the following equalities take
place

〈〈a, b〉〉 = 〈〈A, B〉〉, ||a|| = ||A||.
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3.5 Differential operations on symmetric tensor fields

We shall denote the class of real-valued m-covariant symmetric tensor fields
a = {ai1...im(x1, x2)}, whose all components are functions from Ck(D), 1 ≤
k ≤ ∞ by Ck(D;Sm). A subset of Ck(D;Sm) whose finite support is contained
in D will be denoted by Ck

0(D;Sm).
The operator of covariant differentiation ∇ (in the vectorial case ≡ grad)

∇ : C∞(D;Sm) → C∞(D;Sm+1)

in Cartesian coordinate system (x1, x2) is defined by equation

∇a := {ai1...im;j} =

{
∂ai1...im
∂xj

, j = 1, 2

}

.

The covariant differentiation ∇ operates on any tensor field of rank m ≥ 0 and
produces a tensor field that is one rank higher. For example, the gradient of a
(co)vector field is a second rank tensor field.

In complex coordinates we have

∇A = {Ai1...im;j} =

{
∂Ai1...im
∂zj

, j = 1, 2

}

,

where formal partial derivatives with respect to z1 and z2 are defined by (3.2).
The operator of divergence δ (in the vectorial case ≡ div)

δ : C∞(D;Sm) → C∞(D;Sm−1)

in Cartesian coordinate system (x1, x2) is defined by

δa := {ai1i2...im−1s

;xj } =

{
∂ai1i2...im−1j

∂xj
, j = 1, 2

}

.

The divergence δ can operate on any tensor field of rank m ≥ 1 and above
produces a tensor that is one rank lower. For example, the divergence of a
second rank tensor field is a (co)vector field.

In complex variables the divergence is calculated with the help of contravari-
ant components Gij of the metric tensor (3.10)

δA =
{
Ai1i2...im;zsG

ims
}

=

{

2
∂Ai1i2...im−12

∂z
+ 2

∂Ai1i2...im−11

∂z
, i1, ..., im−1 = 1, 2

}

. (3.14)

A smooth tensor field a ∈ Ck(D;Sm) is called solenoidal if its divergence equals
to zero. The condition for the tensor field A to be solenoidal can be expressed
in complex coordinates in terms of its independent components A0, ..., Am






(A0)z + (A1)z = 0
...
(Ak)z + (Ak+1)z = 0
...
(Am−1)z + (Am)z = 0

or
∂

∂z









Am
Am−1

...
A2

A1









+
∂

∂z









Am−1

Am−2

...
A1

A0









= 0. (3.15)

8



The next differential operation on the symmetric tensor fields is the sym-

metric inner differentiation d

d : C∞(D;Sm−1) → C∞(D;Sm),

defined in the following way
d := σ∇,

where σ is the symmetrization operator (2.1).
A tensor field a ∈ C∞(D;Sm) is called a smooth potential field, if for some

tensor field v ∈ C∞
0 (D;Sm−1) with boundary condition v|∂D = 0 we have

a = dv and v is the potential.
The symmetric inner differentiation d in complex variables is calculated in

the following manner. If a = dv and a  A, v  V then A = dV and

Ak =
m− k

m

∂Vk
∂z

+
k

m

∂Vk−1

∂z
, (m ≥ 1, k = 0, 1, ...,m). (3.16)

3.6 Orthogonal decomposition of the space L2(D;Sm) into
the sum of solenoidal and potential parts

Operators d and −δ are formally conjugate and for a bounded region G with a
piecewise-smooth boundary ∂G the Gauss-Ostrogradsky formula takes place

∫∫

G

(〈dv, a〉 + 〈v, δa〉) dV 2 =

∫

∂G

〈iνv, a〉dV 1, (3.17)

where a ∈ Sm, v ∈ Sm−1 are smooth tensor fields, and ν = {ν1, ν2} ∈ S1 is
a unit covector of outward normal to the boundary ∂G, and iν is the operator
of symmetric multiplication with the covector ν

iν : Sm → Sm+1,

which is defined by the equation

(iνv)i1...imim+1 := σ(νi1vi2...im+1).

In terms of the Gauss-Ostrogradsky formula (3.17) we can define that a tensor
field a ∈ L2(D;Sm) is solenoidal if the following equation takes place

〈〈dv, a〉〉 =
∫∫

D

〈dv, a〉dV 2 = 0 (3.18)

for all smooth tensor fields v(x1, x2) ∈ C∞
0 (D;Sm−1).

We denote by H(D;Sm, δ) the graph space of δ over L2(D;Sm), i.e.

H(D;Sm, δ) := {u ∈ L2(D;Sm)
∣
∣
∣ δu ∈ L2(D;Sm)}.

9



It is a Hilbert space under the graph norm

〈〈u,v〉〉H(D;Sm,δ) := 〈〈u,v〉〉 + 〈〈δv, δv〉〉, ||u||2
H(D;Sm,δ)

:= ||u||2 + ||δu||2.

Finally, we define subspace of solenoidal tensor fields (i.e. which satisfies the
equation (3.18))

H(D;Sm, δ = 0) := {a ∈ H(D;Sm, δ)
∣
∣
∣ δa = 0}

and it is clear that this subspace is a completion of the set of smooth solenoidal
tensor fields with respect to the norm || · || of L2(D;Sm).

By HN (D;Sm, δ = 0) we denote the finite-dimensional subspace of poly-
nomial (of degree at most N) solenoidal m-covariant tensors fields. Then we
have

H0(D;Sm, δ = 0) ⊂ H1(D;m , δ = 0) ⊂ ... ⊂ HN(D;Sm, δ = 0) ⊂ ... ⊂ L2(D;Sm)

and

H(D;Sm, δ = 0) = clos

(
∞⋃

N=0

HN (D;Sm, δ = 0)

)

,

where clos means the closure in L2(D;Sm).
It is well known, see [8], [27], that a vector field can be represented as

a sum of solenoidal and potential vector fields. The classical result in this
direction belongs to H. Weyl and is connected with the decomposition of the
L2 space of vector fields into the orthogonal sum of solenoidal and potential
fields. The analogous result is true for tensor fields, see [11], [14], [23]. Namely,
for u ∈ L2(D;Sm) we have

u = a+ dv, 〈〈a, dv = 0〉〉,

where a is a solenoidal tensor field and v ∈ H1
0(D;Sm−1). Or, in another words

the orthogonal decomposition

L2(D;Sm) = H(D;Sm, δ = 0)⊕ dH1
0(D;Sm−1)

takes place, where the Sobolev space H1
0(D;Sm−1) is a completion of the space

of smooth tensor fields C1
0(D;Sm−1) with respect to the Sobolev norm || · ||1,

corresponding to the scalar product 〈〈·, ·〉〉1 that is defined by the formula

〈〈u, v〉〉1 = 〈〈u, v〉〉 + 〈〈∇u, ∇v〉〉.

3.7 Fan-beam Radon transform Dm of tensor fields in
complex variables

Let’s assume that some (constant) vector field is given in Cartesian coordinates

θ =

(
θ1

θ2

)

=

(
cosϕ
sinϕ

)

,

10



then according to the tensor law for contravariant components its representa-
tion in complex coordinates will look like

θ  Θ, Θj =
∂zj

∂xs
θs, Θ =

(
Θ1

Θ2

)

=

(
eiϕ

e−iϕ

)

.

Then we denote by theta
m the tensor product

theta
m := θ ⊗ θ ⊗ ...⊗ θ

︸ ︷︷ ︸

m

= {θj1 · θj2 · ... · θjm},

and θ
m will be an m-contravariant tensor in Cartesian coordinates and in

complex coordinates we have the tensor product

Θm := Θ⊗Θ⊗ ...⊗Θ
︸ ︷︷ ︸

m

= {Θj1 ·Θj2 · ... ·Θjm}.

It is clear that θm  Θm. As soon as the inner product of tensors is invariant
(3.13), we get

〈a, θm〉 = aj1...jmθ
j1 · θj2 · ... · θjm = 〈A, Θm〉 = Aj1...jmΘj1 ·Θj1 · ... ·Θjm .

Thus we can evaluate the fan-beam transform (2.3) through the components
of the tensor A(z, z)

[Dma](β, ϕ) =

2 cos(β−ϕ)∫

0

〈θm, a(cos β − l cosϕ, sinβ − l sinϕ)〉dl

=

t∫

τ(t,ϕ)

〈Θm, A(ζ, ζ)〉| dζ| =
t∫

τ(t,ϕ)

Θj1 ...ΘjmAj1...jm(ζ, ζ)| dζ|, (3.19)

where t = eiβ , τ(t, ϕ) = −te2iϕ = −ei(2ϕ−β), β ∈ [0, 2π), ϕ ∈
[

β − π

2
, β +

π

2

]

.

Here and in the sequel, we use notation

z2∫

z1

...| dζ|

for a line integral along the line segment with end points z1, z2 ∈ D.
At last we can get the fan-beam transform (3.19) in terms of components

Ak and for ϕ ∈
[

β − π

2
, β +

π

2

]

we have

11



[Dma](β, ϕ) =

t∫

τ(t,ϕ)

m∑

k=0

Ckme
ikϕe−(m−k)ϕAk(ζ, ζ)| dζ| (3.20)

=

m∑

k=0

Ckme
i(2k−m)ϕ

t∫

τ(t,ϕ)

Ak(ζ, ζ)| dζ| =
m∑

k=0

Ckme
i(2k−m)ϕ[DAk](3.21)

=

m∑

k=0

Ckme
i(m−2k)ϕ[DAm−k]. (3.22)

Recall that for |β − ϕ| ≥ π
2 the fan-beam transform Dma is defined by

condition (2.4).
Now we verify that the potential part of a tensor field is “invisible” for

tensor transform Dm. Let a = dv and a  A = dV, v  V. Substituting the
potential tensor (3.16) in the expansion (3.20) and making evident evaluations,
we get

[Dma](β, ϕ) =

t∫

τ(t,ϕ)

m∑

k=0

Ckme
ikϕe−(m−k)ϕ

(
m− k

m

∂Vk
∂z

+
k

m

∂Vk−1

∂z

)

d|z|

=

t∫

τ(t,ϕ)

m∑

k=0

ei(2k−m)ϕ

(

Ckm−1

∂Vk
∂z

+ Ck−1
m−1

∂Vk−1

∂z

)

d|z|

=

t∫

τ(t,ϕ)

(
m−1∑

k=0

ei(2k−m)ϕCkm−1

∂Vk
∂z

+

m∑

k=1

ei(2k−m)ϕCk−1
m−1

∂Vk−1

∂z

)

d|z|

=

t∫

τ(t,ϕ)

(
m−1∑

k=0

ei(2k−m)ϕCkm−1

∂Vk
∂z

+

m−1∑

k=0

ei(2k−m+2)ϕCkm−1

∂Vk
∂z

)

d|z|

=

m−1∑

k=0

ei(2k−m+1)ϕCkm−1

t∫

τ(t,ϕ)

∂Vk
∂Θ

d|z|

=

m−1∑

k=0

ei(2k−m+1)ϕCkm−1

(
Vk(t, t)− Vk(τ, τ )

)
= 0.

Here

∂

∂Θ
:= eiϕ

∂

∂z
+ e−iϕ ∂

∂z
(3.23)

is the derivative in the direction Θ =

(
Θ1

Θ2

)

=

(
eiϕ

e−iϕ

)

, written in the complex

12



form and after integration we take into account that the potential V vanishes
on the boundary of the disc D.

At the end of this section we resume, that we consider the operator Dm as
follows

Dm : L2(D;Sm)) → L2([0, 2π)× [0, 2π),

and kerDm coincides with the space of potential fields dH1
0(D;Sm−1), so one

can say that potential fields are “invisible” for the tensorial Radon transform
Dm.

4 Zernike polynomials

We will identify complex plane C with R
2 as above. Let D = {z : |z| < 1} be

the open unit disc in C and L2(D) denote a Hilbert space comprising square
integrable (complex-valued) functions on D with the inner product denoted by
〈〈·, ·〉〉

〈〈a, b〉〉 :=
∫∫

D

a(x1, x2)b(x1, x2)dV 2, dV 2 = dx1 ∧ dx2

and the finite norm || · ||

||a||2 :=

∫∫

D

|a(x1, x2)|2dV 2.

It is known that Zernike polynomials [4] form a complete orthogonal system
(basis) over the Hilbert space L2(D). Let z = reiψ ∈ D, r = |z|, ψ = arg(z).
Traditionally, Zernike polynomials, see [4], [16], [20], are defined by

Vn,l(r, ψ) := eilψRn,|l|(r), (−n ≤ l ≤ n, ), (4.1)

where

Rn,m(r) :=

(n−m)/2
∑

p=0

(−1)p
(n− p)!

p!
(
n+m

2 − p
) (

n−m
2 + p

)rn−2p

are the so-called real-valued Zernike radial polynomials [20], defined for integers
n and m so that 0 ≤ m ≤ n and n−m is even. The family Rn,m(r) is related
to the Jacobi polynomials

Rn,m(r) = rmP
(0,m)
n−m

2

(2r2 − 1),

where the Jacobi polynomials [13] are given through the Rodriguez formula

P
(a,b)
k (s) :=

(−1)k

k!2k
(1− s)−a(1 + s)−b

dk

dsk

[

(1 − s)(k+a)(1 + s)(k+b)
]
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for a, b > −1; n = 0, 1, 2, ..., and s ∈ R form a complete orthogonal system in
the Hilbert space L2[−1, 1] of square integrable functions on [−1, 1].

In this paper we will use another numbering of Zernike polynomials (4.1)
and treat them as polynomials in z, z. For this reason the new notation Zn,k

is introduced according to the transformation of indexes l = n − 2k in (4.1).
Thus we get

Vn,n−2k(r, ψ) = zn−2kP
(0,|n−2k|)
k (2|z|2 − 1), (k = 0, 1, ..., n).

So, we define

Zn,k(z, z) := (−1)kVn,n−2k(r, ψ) = (−1)kzn−2kP
(0,|n−2k|)
k (2|z|2 − 1), (4.2)

where n = 0, 1, 2, ... and k = 0, 1, ..., n. The first index (superscript) n indicates
the degree of a polynomial Zn,k and the second superscript k denotes its order
in a bunch Zn,0, Zn,1, ..., Zn,n. The multiplier (−1)k in (4.2) was introduced
for convenience of further computations.

This definition can also be rewritten as

Zn,k(z, z) =







∑k
s=0 C

s
kC

s
n−kz

n−k−s(1 − zz)s(−z)k−s for k = 0, 1, ...,
[n

2

]

(−1)nZ
n,n−k

(z, z) for k =
[n

2

]

+ 1, ..., n,

(4.3)
where [·] denotes the integer part of a number.

After the evaluation of (4.3) we get

Zn,k(z, z) =







∑k
s=0(−1)k−sCsn−kC

k−s
n−sz

k−szn−k−s for k = 0, 1, ...,
[n

2

]

(−1)nZ
n,n−k

(z, z) for k =
[n

2

]

+ 1, ..., n.

(4.4)
For example, the first Zernike polynomials up to the degree (order) n = 4 are

Z0,0 = 1

Z1,0 = z Z1,1 = −z

Z2,0 = z2 Z2,1 = 1− 2zz Z2,2 = z2

Z3,0 = z3 Z3,1 = 2z − 3z2z Z3,2 = 3zz2 − 2z Z3,3 = −z3

Z4,0 = z4 Z4,1 = 3z2 − 4z3z Z4,2 = 1− 6zz + 6z2z2 Z4,3 = 3z2 − 4zz3 Z4,4 = z4.

The Zernike polynomials are orthogonal in the unit disc D, obey the follow-
ing orthogonality relation

〈〈Zn,k, Zm,s〉〉 = π

n+ 1
δn,mδk,s (4.5)
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and their L2-norms are equal to

||Zn,k|| =
√

π

n+ 1
, (k = 0, 1, ..., n).

It allows the expansion of an arbitrary function a(z, z) ∈ L2(D) in terms of
a unique combination of Zernike polynomials.

a(z, z) =

∞∑

n=0

n+ 1

π

n∑

k=0

〈〈a, Zn,k〉〉Zn,k(z, z). (4.6)

Since we use the complex variables z and z and treat them as independent
variables here, we’ll sometimes write a(z) instead of a(z, z). The formal partial
derivatives with respect to z and z are defined in the usual way by (3.2).

In the following theorem we formulate in complex variables some novel
properties of Zernike polynomials.

Theorem 1. The following properties take place:
(a) Zernike polynomials (4.3) have the differential representation

Zn,k(z, z) =
1

k!

∂k

∂zk

[

zn
(
1

z
− z

)k
]

, (n ≥ 0, k = 0, 1, ..., n). (4.7)

(b) Zernike polynomials (4.3) are the solution of the elliptic system







(Zn,n)z = 0
(Zn,n)z + (Zn,n−1)z = 0

...
(Zn,k)z + (Zn,k−1)z = 0

...
(Zn,1)z + (Zn,0)z = 0
(Zn,0)z = 0

(4.8)

and satisfy boundary conditions

Zn,k(t, t) = (−1)ktn−2k, |t| = 1, (n ≥ 0, k = 0, 1, ..., n). (4.9)

(c) Zernike polynomials (4.3) can be represented in the form of Cauchy-type
integral

1

2π i

∫

|t|=1

tn(t− z)k

(t− z)k+1
dt =







Zn,k(z, z) for n ≥ 0, k = 0, 1, ..., n

0 for n ≥ 0, k > n or k < 0.

(4.10)

Proof. (a) Let’s first prove (4.7) for k = 0, 1, ...,
[n

2

]

.
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By Leibnitz formula
[

uv
](k)

=
∑k
s=0 C

s
ku

(s)v(k−s) we get

[

zn
(
1

z
− z

)k
](k)

z

=
[

zn−k(1− zz)k
](k)

z
=

k∑

s=0

Csk

[

zn−k
](s)

z

[

(1− zz)k
](k−s)

z

=

k∑

s=0

Csk(n− k)(n− k − 1)...(n− k − s+ 1)zn−k−s

×k(k − 1)...(s+ 1)(1− zz)s(−z)k−s

= k!
k∑

s=0

CskC
s
n−kz

n−k−s(1 − zz)s(−z)k−s = k!Zn,k(z, z). (4.11)

Now let’s substitute k → n− k in (4.11). Taking into account that k ≤ n− k,
we get

[

zn
(
1

z
− z

)n−k
](n−k)

z

=
[

zk(1− zz)n−k
](n−k)

z

=

k∑

s=0

Csn−k

[

zk
](s)

z

[

(1− zz)n−k
](n−k−s)

z

=

k∑

s=0

Csn−kk(k − 1)...(k − s+ 1)zk−s

×(n− k)(n− k − 1)...(s+ 1)(1− zz)s(−z)n−k−s

= (n− k)!

k∑

s=0

CskC
s
n−k(−1)n(z)n−k−s(1− zz)s(−z)k−s

= (−1)n(n− k)!Z
n,k

(z, z) = (n− k)!Zn,n−k(z, z).

And the assertion (a) follows.
(b) It is easy to verify equations (4.8) by direct computation using formula (4.4).

On the boundary of the unit disc D, due to the normalization P
(0,|n−2k|)
k (1) = 1

of Jacobi polynomials, we get

Zn,k(t, t) = (−1)ktn−2k, |t| = 1, (n ≥ 0, k = 0, 1, ..., n).
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(c) In (4.10) we take advantage of Newtonian binomial formula

1

2π i

∫

|t|=1

tn(t− z)k

(t− z)k+1
dt =

k∑

s=0

Csk(−z)k−s
1

2π i

∫

|t|=1

tnt
s

(t− z)k+1
dt

=

k∑

s=0

Csk(−z)k−s
1

2π i

∫

|t|=1

tn−s

(t− z)k+1
dt

=
k∑

s=0

Csk(−z)k−s
1

k!

k!

2π i

∫

|t|=1

tn−s

(t− z)k+1
dt

=

k∑

s=0

Csk(−z)k−s
1

k!

dk

dzk

[

zn−s
]

=
1

k!

∂k

∂zk

[
k∑

s=0

Csk(−z)k−szn−s
]

=
1

k!

∂k

∂zk

[

zn
(
1

z
− z

)k
]

.

Theorem 1 is proved. ✷

4.1 Fan-beam Radon transform of Zernike polynomials

The fan-beam Radon transform D of a scalar function a(x1, x2) is defined by
(3.19) for m = 0. We have

[Da](β, ϕ) =
t∫

τ(t,ϕ)

a(ζ, ζ)| dζ|, (4.12)

where t = eiβ , β ∈ [0, 2π), τ(t, ϕ) = −te2iϕ, |β − ϕ| ≤ π

2
, ϕ = arg(t− τ). For

|β − ϕ| > π
2 we complete the definition of the fan-beam transform (4.12) with

the condition
[Da](β, ϕ) = −[Da](β, ϕ+ π).

Theorem 2. The fan-beam Radon transformDZn,k of Zernike polynomials
Zn,k equals to

[DZn,k](β, ϕ) = 2ei(n−2k)ϕ

n+ 1
×







cos[(n+ 1)(β − ϕ)] for n = even

i sin[(n+ 1)(β − ϕ)] for n = odd,

(4.13)

where β ∈ [0, 2π), ϕ ∈ [0, 2π).

Proof. At first we introduce the auxiliary polynomials Xn,k defined by

Xn,k(z, z) :=
1

k!

∂k−1

∂zk−1

[

zn
(
1

z
− z

)k
]

, (n ≥ 1, k = 1, ..., n).
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Then the next equations follows directly from (4.7)

∂Xn,k

∂z
= Zn,k(z, z),

∂Xn,k

∂z
= −Zn,k−1(z, z). (4.14)

Using (4.7) we can verify, that

Xn,k =
1

k

(
Zn−1,k−1 − zZn,k−1

)
.

Then combining above and (4.9) we obtain the boundary conditions

Xn,k(t, t) = 0, |t| = 1. (4.15)

Let’s compute the fan-beam transformation of Zernike polynomials. To this
end we use previously obtained derivatives (4.14) for computing by (3.23) the

derivative of Xn,k in the direction Θ =

(
Θ1

Θ2

)

=

(
eiϕ

e−iϕ

)

. So we get

∂Xn,k

∂Θ
= eiϕ

∂Xn,k

∂z
+ e−iϕ ∂X

n,k

∂z
= eiϕZn,k − e−iϕZn,k−1,

or the same in another form

Zn,k(z, z) = e−2iϕZn,k−1 + e−iϕ ∂X
n,k

∂Θ
.

This equation combined with (4.15) is used for evaluation of the next integral

t∫

τ

Zn,k| dζ| = e−2iϕ

t∫

τ

Zn,k−1| dζ|+ e−iϕ(Xn,k(t, t)−Xn,k(τ, τ ))

= e−2iϕ

t∫

τ

Zn,k−1| dζ|,

where t = eiβ , τ(t, ϕ) = −te2iϕ. Unwrapping the recurrence relation gives

t∫

τ

Zn,k| dζ| = e−2kiϕ

t∫

τ

Zn,0| dζ|.

The last integral is computed directly, taking into account that Zn,0(z, z) = zn

t∫

τ

Zn,0| dζ| =
t∫

τ

ζn| dζ| =
|t−τ |∫

0

(τ + seiϕ)n ds

=
1

n+ 1
(τ + seiϕ)n+1e−iϕ

∣
∣
∣

|t−τ |

0
=

1

n+ 1
e−iϕ(tn+1 − τn+1).
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Finally, we get

[DZn,k](β, ϕ) =

t∫

τ

Zn,k| dζ| = e−2kiϕ

n+ 1
(e−iϕtn+1 + (−1)nei(2n+1)ϕt

n+1
)

=
2ei(n−2k)ϕ

n+ 1
×







cos[(n+ 1)(β − ϕ)] for n = even

i sin[(n+ 1)(β − ϕ)] for n = odd.

Theorem 2 is proof. ✷

5 Construction of the orthogonal polynomial
basis and SVD

In this section we describe the construction of orthogonal polynomial basis in
the space of solenoidal (divergence free) tensor fields H(D;Sm, δ = 0).

We are given a polynomial of degree N solenoidal m-covariant tensor field
a ∈ HN (D;Sm, δ = 0) and in complex coordinates we have a  A = {Ak}. As
was mentioned earlier, we use a pseudovector notation for the tensor field A

A =









Am
Am−1

...
A1

A0









. (5.1)

The condition (3.5) now looks like









Am
Am−1

...
A1

A0









=









A0

A1

...
Am−1

Am









. (5.2)

For m, n ≥ 0, k = 0, ..., n+m and 2k 6= m+n we define polynomial of degree
n symmetric tensor fields (in complex variables )

S
(+m)
n,k := (−1)n











Zn,k + Z
n,k−m

Zn,k−1 + Z
n,k−m+1

...

Zn,k−m+1 + Z
n,k−1

Zn,k−m + Z
n,k











, S
(−m)
n,k :=

1

i











Zn,k − Z
n,k−m

Zn,k−1 − Z
n,k−m+1

...

Zn,k−m+1 − Z
n,k−1

Zn,k−m − Z
n,k











,

(5.3)
where for convenience we set Zn,k ≡ 0 for k < 0 or k > n.
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For 2k = m+ n we have two cases:
the first one is when m and n = even

S
(+m)

n,m+n
2

:=










Zn,
m+n

2

Zn,
m+n

2 −1

...

Zn,
m+n

2 −m+1

Zn,
m+n

2 −m










, S
(−m)

n,m+n
2

:= 0; (5.4)

the second one is when m and n = odd

S
(+m)

n,m+n
2

:= 0, S
(−m)

n,m+n
2

:=
1

i










Zn,
m+n

2

Zn,
m+n

2 −1

...

Zn,
m+n

2 −m+1

Zn,
m+n

2 −m










. (5.5)

Remark 1. Polynomial tensor fields (5.4) and (5.5) can be evaluated by
general formulae (5.3), but then the result should be divided by 2.

Remark 2. Note, that for k + s = m+ n the equation

S
(±m)
n,k = (−1)nS(±m)

n,s

takes place, therefore in (5.3) we set only k = 0, 1, ...,
[
n+m

2

]
, where [·] defines

the integer part of a number.
So, if we now make transformations (3.3) or (3.7) from complex variables

to real variables

S
(±m)
n,k (z, z) → s

(±m)
n,k (x1, x2),

(

n ≥ 0, k = 0, 1, ...,

[
n+m

2

])

, (5.6)

then we get polynomial real-valued tensors s
(±m)
n,k in Cartesian variables (x1, x2).

Lemma 1. The tensor fields s
(±m)
n,k

(
n = 0, ..., N, k = 0, 1, ...,

[
n+m

2

])

defined by (5.6) form an orthogonal basis of finite-dimensional subspace
HN (D;Sm, δ = 0), thus

dimHN (D;Sm, δ = 0) =
(N + 1)(N + 2 + 2m)

2
.

Proof. Consider a tensor field a ∈ HN (D;Sm, δ = 0) and let a  A.
Expand each component Ak of pseudovector (5.1) in the sum of Zernike poly-
nomials and use the solenoidality condition (3.15). Taking into account the
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property (b) from Theorem 1, we get an expansion of tensor A into the sum

A =









Am
Am−1

...
A1

A0









=
N∑

n=0

n+m∑

k=0

cn,k









Zn,k

Zn,k−1

...
Zn,k−m+1

Zn,k−m









. (5.7)

From another hand, (5.2) yields

A =









A0

A1

...

Am−1

Am









=

N∑

n=0

n+m∑

k=0

cn,k











Z
n,k−m

Z
n,k−m+1

...

Z
n,k−1

Z
n,k











=

N∑

n=0

n+m∑

k=0

cn,n+m−k











Z
n,n−k

Z
n,n−k+1

...

Z
n,n−k+m−1

Z
n,n−k+m











=

N∑

n=0

n+m∑

k=0

(−1)ncn,n+m−k









Zn,k

Zn,k−1

...
Zn,k−m+1

Zn,k−m









. (5.8)

Comparing the last expression with (5.7), we obtain

cn,k = (−1)ncn,n+m−k, (k = 0, ..., n+m). (5.9)

Splitting the coefficients cn,k in (5.7) into the real and imaginary parts

cn,k = an,k + ibn,k,

(

k = 0, ...,

[
n+m

2

])

,

taking into account (5.9) and definition of S
±m)
n,k , we finally get









Am
Am−1

...
A1

A0









=
N∑

n=0

[n+m
2 ]∗
∑

k=0

an,k











Zn,k + Z
n,k−m

Zn,k−1 + Z
n,k−m+1

...

Zn,k−m+1 + Z
n,k−1

Zn,k−m + Z
n,k











+ibn,k











Zn,k − Z
n,k−m

Zn,k−1 − Z
n,k−m+1

...

Zn,k−m+1 − Z
n,k−1

Zn,k−m − Z
n,k











=

N∑

n=0

[n+m
2 ] ∗
∑

k=0

(−1)nan,kS
(+m)
n,k (z, z)− bn,kS

(−m)
n,k (z, z).

The sign ∗ here means that in the case of even n and even m the coefficient
bn,n+m

2
should be set to 0, and in the case of odd n and odd m the coefficient

an,n+m
2

should be set to 0.
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So, we have that the tensor field a is a linear combination of polynomial
tensor fields (5.6).

Now we show that polynomial tensor fields (5.6) are orthogonal. Let k 6=
s, k, s = 0, 1, ...,

[
n+m

2

]
and remark, that then k+ s 6= m+n take place. Using

formula (3.11) we have

〈〈s(±m)
n,k , s(±m)

n,s 〉〉 = 〈〈S(±m)
n,k , S(±m)

n,s 〉〉

= ±2m
∫∫

D

m∑

p=0

Cpm(Zn,k−m+p ± Z
n,k−p

)(Zn,s−p ± Z
n,s−m+p

) dV 2.

Taking into account the orthogonality of Zernike polynomials we obtain

〈〈s(±m)
n,k , s(±m)

n,s 〉〉 = 0, k 6= s.

Let’s now evaluate the norms of polynomial tensor s
(±m)
n,k by the formula (3.12).

At first we consider the case n+m 6= 2k, then

||s(±m)
n,k ||2 = ||S(±m)

n,k ||2 = 2m
∫∫

D

m∑

p=0

Cpm|Zn,k−m+p ± Z
n,k−p|2 dV 2

= 2m
m∑

p=0

Cpm

(

||Zn,k−m+p ± Z
n,k−p||2

)

= 2m
m∑

p=0

Cpm||Zn,k−m+p||2 + ||Zn,k−p||2

= 2m+1
k∑

p=k−n

Cpm||Zn,k−p||2 =
2m+1π

n+ 1
α
(m)
n,k , (5.10)

where coefficients α
(m)
n,k are defined by

α
(m)
n,k =

k∑

p=k−n

Cpm,

(

n ≥ 0, k = 0, 1, ...,

[
m+ n

2

])

. (5.11)

Remark 3. In this formula for convenience we set Cpm = 0 if p < 0 or
p > m.
If n+m = 2k, i.e. k = n+m

2 , then taking into account the above calculations,
we get

||s(+m)

n,m+n
2

||2 =







0 for n=odd

2mπ

n+ 1
α
(m)

n,m+n
2

for n=even,
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||s(−m)

n,m+n
2

||2 =







2mπ

n+ 1
α
(m)

n,m+n
2

for n=odd

0 for n=even.

Obviously,

dimHN(D;Sm, δ = 0) =

m+N∑

n=m

n =
(N + 1)(N + 2+ 2m)

2
.

Lemma 1 is proved. ✷

Lemma 1 and the definition of the subspace of solenoidal tensor fields
H(D;Sm, δ = 0) yield

Corollary 1. Polynomial tensor fields s
(±m)
n,k

(
n ≥ 0, k = 0, 1, ...,

[
n+m

2

])

form an orthogonal basis in the subspace of solenoidal tensor fields
H(D;Sm, δ = 0) ⊂ L2(D;Sm).

Now we are in a position to define the SVD for the fan-beam Radon trans-
form Dm.

Theorem 3. The singular values of the operator (2.3)

Dm : L2(D;Sm) → L2([0, 2π)× [0, 2π))

are given by

σ
(m)
n,k ≡ σ

(±m)
n,k :=

√

8π

(n+ 1)2m
α
(m)
n,k ,

(

n ≥ 0, k = 0, 1, ...,

[
n+m

2

])

,

where coefficients α
(m)
n,k are defined by the formula (5.11). If a solenoidal real-

valued symmetrical tensor field a(x1, x2) ∈ L2(D;Sm) has an expansion

a(x1, x2) =

∞∑

n=0

[n+m
2 ] ∗
∑

k=0

1

||s(±m)
n,k ||

(

an,ks
(+m)
n,k (x1, x2) + bn,ks

(−m)
n,k (x1, x2)

)

,

(5.12)
then the fan-beam Radon transform Dma has the following singular value de-
composition

[Dma](β, ϕ) =

∞∑

n=0

[n+m
2 ] ∗
∑

k=0

σ
(m)
n,k

(

an,kf
(+m)
n,k (β, ϕ) + bn,kf

(−m)
n,k (β, ϕ)

)

, (5.13)

where singular functions are

f
(+m)
n,k (β, ϕ) :=

1

π







cos[(n+ 1)(β − ϕ)] cos[(n− 2k +m)ϕ]

sin[(n+ 1)(β − ϕ)] sin[(n− 2k +m)ϕ],
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f
(−m)
n,k (β, ϕ) :=

1

π







cos[(n+ 1)(β − ϕ)] sin[(n− 2k +m)ϕ]

sin[(n+ 1)(β − ϕ)] cos[(n− 2k +m)ϕ],

when n ≥ 0, k = 0, ...,
[
n+m

2

]
and 2k 6= m+ n and

f
(+m)

n,m+n
2

(β, ϕ) :=
1√
2π

{

cos[(n+ 1)(β − ϕ)]

0,

f
(−m)

n,m+n
2

(β, ϕ) :=
1√
2π

{

0

sin[(n+ 1)(β − ϕ)],

when 2k = m + n. In all expressions above top line corresponds to the even
values of n, and bottom line — to the odd n. The sign ∗ in (5.12) and (5.13)
near by the inner sum denotes that in the case of even n and m the coefficient
bn,n+m

2
should be set to 0, and in the case of odd n and m — the coefficient

an,n+m
2

respectively.

Proof. Note, that the system of functions f
(±)
n,k for n ≥ 0, k = 0, 1, ...,

[
n+m

2

]

is the subsystem of the standard orthonormal basis of L2([0, 2π)× [0, 2π)) and
there is the basis of the image of the tensor fan beam transform Dm.

Let’s evaluate now the fan-beam transform Dm for basis polynomial tensor
(5.6). For this we introduce

A :=









Zn,k

Zn,k−1

...
Zn,k−m+1

Zn,k−m









, Am−s = Zn,k−s and B :=











Z
n,k−m

Z
n,k−m+1

...

Z
n,k−1

Z
n,k











, Bs = Z
n,k−s

.

Hence in case of n+m 6= 2k we get

S
(+m)
n,k = (−1)n(A+B), S

(−m)
n,k =

1

i
(A−B).
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Then by using formulae (3.21) and Theorem 2 we have

[DmA] = Dm









Zn,k

Zn,k−1

...
Zn,k−m+1

Zn,k−m









=
m∑

s=0

Csme
i(m−2s)ϕ[DZn,k−s]

=
2ei(m+n−2k)ϕ

n+ 1

k∑

s=k−n

Csm ×







cos[(n+ 1)(β − ϕ)] for n = even

i sin[(n+ 1)(β − ϕ)] for n = odd

=
2ei(m+n−2k)ϕ

n+ 1
α
(m)
n,k ×







cos[(n+ 1)(β − ϕ)] for n = even

i sin[(n+ 1)(β − ϕ)] for n = odd,

where α
(m)
n,k are defined by the formula (5.11).

Analogically, using the formula (3.22) and Theorem 2 we get

[DmB] = Dm











Z
n,k−m

Z
n,k−m+1

...

Z
n,k−1

Z
n,k











=
m∑

s=0

Csme
i(2s−m)ϕ[DZn,k−s]

=
2e−i(m+n−2k)ϕ

n+ 1

k∑

s=k−n

Csm ×







cos[(n+ 1)(β − ϕ)] for n = even

−i sin[(n+ 1)(β − ϕ)] for n = odd

=
2e−i(m+n−2k)ϕ

n+ 1
α
(m)
n,k ×







cos[(n+ 1)(β − ϕ)] for n = even

−i sin[(n+ 1)(β − ϕ)] for n = odd,
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From two formulas, derived above, it follows that
[

Dms
(+m)
n,k

]

(β, ϕ) =
[

DmS
(+m)
n,k

]

(β, ϕ) = (−1)n[Dm(A+B)]

=
2(−1)n

n+ 1
α
(m)
n,k (e

i(n−2k+m)ϕ ± e−i(n−2k+m)ϕ)×







cos[(n+ 1)(β − ϕ)]

i sin[(n+ 1)(β − ϕ)]

=
4α

(m)
n,k

n+ 1
×







cos[(n− 2k +m)ϕ] cos[(n+ 1)(β − ϕ)]

sin[(n− 2k +m)ϕ] sin[(n+ 1)(β − ϕ)]

=
4||s(+m)

n,k ||2

π2m+1
×







cos[(n− 2k +m)ϕ] cos[(n+ 1)(β − ϕ)] for n=even

sin[(n− 2k +m)ϕ] sin[(n+ 1)(β − ϕ)] for n=odd.

By the same way we evaluate the fan-beam transform of the other part of basis
for n+m 6= 2k.

[

Dms
(−m)
n,k

]

(β, ϕ) =
[

DmS
(−m)
n,k

]

(β, ϕ) =
1

i
[Dm(A−B)]

=
2α

(m)
n,k

n+ 1

(
ei(n−2k+m)ϕ ∓ e−i(n−2k+m)ϕ

)
×







1

i
cos[(n+ 1)(β − ϕ)]

sin[(n+ 1)(β − ϕ)]

=
4α

(m)
n,k

n+ 1
×







sin[(n− 2k +m)ϕ] cos[(n+ 1)(β − ϕ)]

cos[(n− 2k +m)ϕ] sin[(n+ 1)(β − ϕ)]

=
4||s(−m)

n,k ||2

π2m+1
×







sin[(n− 2k +m)ϕ] cos[(n+ 1)(β − ϕ)] for n=even

cos[(n− 2k +m)ϕ] sin[(n+ 1)(β − ϕ)] for n=odd.

Consider the case n+m = 2k and n, m = even, then

[

Dms
(+m)

n,m+n
2

]

(β, ϕ) =
[

DmS
(+m)

n,m+n
2

]

(β, ϕ) =
4α

(m)
n,k

2(n+ 1)
×
{

cos[(n+ 1)(β − ϕ)]

0

=
4||s(+m)

n,m+n
2

||2

π2m+1
×
{

cos[(n+ 1)(β − ϕ)] for n=even

0 for n=odd.

If n+m = 2k and n, m = odd, then

[

Dms
(−m)

n,m+n
2

]

(β, ϕ) =
[

DmS
(−m)

n,m+n
2

]

(β, ϕ) =
4α

(m)
n,k

2(n+ 1)
×
{

0

sin[(n+ 1)(β − ϕ)]
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=
4||s(−m)

n,m+n
2

||2

π2m+1
×
{

0 for n=even

sin[(n+ 1)(β − ϕ)] for n=odd.

Using equations for norms (5.10), we get (5.13). Theorem 3 is proved. ✷

At the end of this section we present some examples.

Example 1. Let’s take for instance m = 0, that corresponds to the scalar

field, hence we have a(x1, x2) = A(z, z) and the orthogonal basis s
(±0)
n,k = S

(±0)
n,k

in L2(D) is

s
(+0)
n,k =







(−1)n2Re Zn,k for 2k 6= n

s
(+0)
n,n2

= Zn,
n
2 for 2k = n,

s
(−0)
n,k =







2 Im Zn,k for 2k 6= n

s
(−0)
n,n2

= 0 for 2k = n,

where n ≥ 0, k = 0, 1, ...,
[
n
2

]
. We have dimHN(D;S0, δ = 0) = (N+1)(N+2)

2
and singular values are

σn,k ≡ σ
(±0)
n,k =

√

8π

n+ 1
,
(

n ≥ 0, k = 0, ...,
[n

2

])

.

Example 2. For m = 1 one gets covector field a(x1, x2) = {a1, a2}, which
in the complex variables according to the tensor law has the representation

A(z, z) =

{
a1 − ia2

2
,
a1 + ia2

2

}

. Dimension of the finite-dimensional subspace

HN (D;S1, δ = 0) equals to (N+1)(N+4)
2 and singular values are

σ
(±1)
n,k =







√
4π

n+ 1
if n ≥ 0 and k = 0

√
8π

n+ 1
if n ≥ 1 and k = 1, ...,

[
n+ 1

2

]

.

The polynomial orthogonal basis s
(±1)
n,k of the space of solenoidal covectors fields
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H(D;S1, δ = 0) looks as follows

s
(+1)
n,k  S

(+1)
n,k =







(−1)n
{

Zn,k + Z
n,k−1

, Zn,k−1 + Z
n,k
}

for 2k 6= n+ 1

S
(+1)

n,n+1
2

= {0, 0} for 2k = n+ 1,

s
(−1)
n,k  S

(−1)
n,k =







1

i

{

Zn,k − Z
n,k−1

, Zn,k−1 − Z
n,k
}

for 2k 6= n+ 1

S
(−1)

n,n+1
2

=
1

i

{

Zn,
n+1
2 , Zn,

n+1
2 −1

}

for 2k = n+ 1,

where n ≥ 0, k = 0, 1, ...,
[
n+1
2

]
.

Example 3. For m = 2 we have a symmetric second-order 2D tensor field

a(x1, x2) =

{
a11 a12
a21 a22

}

, which in complex variables has components

A(z, z) =

{
A11 A12

A21 A22

}

=







a11 − a22 − 2ia12
4

a11 + a22
4

a11 + a22
4

a11 − a22 + 2ia12
4







.

We also have inverse equalities

a(x1, x2) =

{
2(A12 +ReA11) −2 ImA11

−2 ImA11 2(A12 − ReA11)

}

.

Singular values for this case are

σ
(±2)
n,k =







√
2π

n+ 1
if n ≥ 0 and k = 0

√
4π

n+ 1
if n = 0 and k = 1

√
6π

n+ 1
if n ≥ 1 and k = 1

√
8π

n+ 1
if n ≥ 2 and k = 2, ...,

[
n+2
2

]
,
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where n ≥ 0, k = 0, 1, ...,
[
n+2
2

]
and basis tensor fields are

s
(+2)
n,k  S

(+2)
n,k =







(−1)n

{

Zn,k + Z
n,k−2

Zn,k−1 + Z
n,k−1

Zn,k−1 + Z
n,k−1

Zn,k−2 + Z
n,k

}

for 2k 6= n+ 2

S
(+2)

n,n+2
2

=

{

Zn,
n+2
2 Zn,

n+2
2 −1

Zn,
n+2
2 −1 Zn,

n+2
2 −2

}

for 2k = n+ 2,

s
(−2)
n,k  S

(−2)
n,k =







1

i

{

Zn,k − Z
n,k−2

Zn,k−1 − Z
n,k−1

Zn,k−1 − Z
n,k−1

Zn,k−2 − Z
n,k

}

for 2k 6= n+ 2

S
(−2)

n,n+2
2

=
1

i

{

0 0

0 0

}

for 2k = n+ 2.

Also in this case we have dimHN(D;S2, δ = 0) = (N+1)(N+6)
2 .

6 Implementation

Scalar and vector cases of the inversion formula were numerically implemented
and tested. The algorithm consists of 3 parts: solving the direct problem (that
emulates the data acquisition in real life), finding coefficients of the polynomial
that represents a function being reconstructed and evaluation of this polynomial
on a grid for visualization.

In the scalar case, given a test function, defined by its values on a rectan-
gular grid, the direct problem was solved by computing integrals (4.12) for the
number of discrete values βp, ϕq

[Da](βp, βp −
π

2
+ ϕq) = fp,q, (p, q = 0, 1, ...,M + 1). (6.1)

Bilinear interpolation was used to get the values of the original function between
knots. So the obtained data set is an (M +2)× (M +2) matrix of (fp,q) values
that serves as an input for the inversion algorithm. Consider the scalar case
for instance. Then, the function a(x, y) is approximated by the polynomial of
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degree N ≤M (note, that in this section we use notations x ≡ x1 and y ≡ x2)

aN (x, y) = 2

N∑

n=0

[n/2]∗
∑

k=0

[(
an,k cos((n− 2k)ψ)− bn,k sin((n− 2k)ψ)

)

×(−1)krn−2kP
(0,n−2k)
k (2r2 − 1)

]

. (6.2)

Here (r, ψ) are the polar coordinates of the point (x, y) and the sign ∗ means
that in the case of even n the coefficient an,[n/2] should be divided by 2 and
bn,[n/2] should be set to 0. Then the fan-beam transform of (6.2) will look like

[DaN ](β, ϕ) =

N∑

n=0

4

n+ 1

[n/2]∗
∑

k=0

an,k ×
{

cos[(n+ 1)(β − ϕ)] cos(n− 2k)ϕ

sin[(n+ 1)(ϕ− β)] sin(n− 2k)ϕ

−bn,k ×
{

cos[(n+ 1)(β − ϕ)] sin(n− 2k)ϕ

sin[(n+ 1)(β − ϕ)] cos(n− 2k)ϕ,
(6.3)

where the upper lines in the braces are used for the even n and the lower lines
— for the odd n. The sign ∗ means the same as in (6.2). After the substitution
of (6.3) into the (6.1) we get a system of linear equations for determining
(N + 1)(N + 2)

2
unknown coefficients an,k and bn,k.

In the case of regular scanning scheme βp = pε, ϕq = q
ε

2
, ε =

2π

M + 2
an explicit formulas for determining coefficients an,k and bn,k were derived,
provided that M = N

an,k = (−1)k
n+ 1

(M + 2)2

M+1∑

p=0

M+1∑

q=0

fp,q sin
[

ε
(

p(2k − n) +
q

2
(2k + 1)

)]

, (6.4)

bn,k = (−1)k+1 n+ 1

(M + 2)2

M+1∑

p=0

M+1∑

q=0

fp,q cos
[

ε
(

p(2k − n) +
q

2
(2k + 1)

)]

. (6.5)

Analogical formulae for the parallel-beam geometry can be found in [16]. The
implementation of formulas (6.4) and (6.5) uses FFT and requiresO(N2 log2N)
operations, see [3].

After the coefficients an,k and bn,k are found, the polynomial that represents
the reconstructed function is effectively evaluated using a recurrent formula,
see [3].

The inversion algorithm was also tested under the presence of a noise in the
input data (sinogram). Uniform and Poisson random distributions were used
for this purpose.

A representative set of numerical tests was performed for scalar and vector
cases of the inversion algorithm. Some of the results are shown on figures 2–4.
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On the top of the figure 2 there are original function (to be reconstructed)
on the left-hand side and its sinogram (an input data set for the inversion
algorithm) on the right-hand side. The middle row contains reconstructions
from 32 and 256 fan-beam projections (free of noise). The number of terms
in SVD was 30 and 254 respectively. The bottom row contains examples of
reconstruction from noisy data. A random noise was superimposed on the
sinogram. The L2-norm of the noise was 10% of the L2-norm of the sinogram.
1024 noisy fan-beam projections were used. The number of terms in SVD that
were taken for reconstruction are 1022 and 254 respectively. It’s possible to
reduce the noise in the output image by taking less terms in the SVD.

Another example of scalar tomography is shown on the figure 3. Again,
the original unknown function (the fast oscillating one, with fine features) is at
the top row, on the left-hand side and it’s sinogram is on the right-hand side.
The middle row contains reconstructions from 32 and 512 fan-beam projections
(free of noise). The number of terms in SVD was 30 and 510 respectively. The
bottom row contains examples of reconstruction from noisy data. A random
noise was superimposed on the sinogram. TheL2-norm of the noise was 10% of
the L2-norm of the sinogram. 2048 noisy fan-beam projections were used. The
number of terms in SVD that were taken for reconstruction are 1022 and 510
respectively. Again, one can observe significant enhancement of reconstruction
when only part of terms are taken in SVD.

The figure 4 illustrates the vector case of the inversion algorithm. The first
solenoidal vector field (the top row, where the first component a1 is on the left
and the second component a2 is on the right) is defined by the formulae

a1(x, y) = 2xy cos(x2 + y2) + cos(6xy)− 6xy sin(6xy),

a2(x, y) = − sin(x2 + y2)− 2x2 cos(x2 + y2) + 6y2 sin(6xy). (6.6)

Another vector field (the middle row) was obtained from the previous solenoidal
vector field by adding the potential part

a1(x, y) = 2xy cos(x2 + y2) + cos(6xy)− 6xy sin(6xy)

+ 2πx cos(π(x2 + y2)),

a2(x, y) = − sin(x2 + y2)− 2x2 cos(x2 + y2) + 6y2 sin(6xy)

+ 2πy cos(π(x2 + y2)). (6.7)

As it can be seen (on the bottom row of the figure), reconstruction from these
two vector fields is identical and contains only the solenoidal part of the vector
field.

The figure 5 illustrates another solenoidal vector field (the top row). Its
reconstruction from the 20 irregular fan-projections is in the middle row. Here
the positions of the fan-projection centers are shown as white dots on the
boundary of the circle. Scanning was performed only over those lines, whose
endpoints belong to this set of 20 points. The last reconstruction (the bottom
row) was made under the presence of noise in the sinogram. The noise level
was 3% (again, in L2-norm).
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Figure 2: Top row: image of the original function (on the left) and its sinogram (on the
right). Middle and bottom rows: reconstructions of the function from different number of
fan-projections and under the presence of noise in the sinogram, see the text for detailed
explanation.
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Figure 3: Top row: image of the original function (on the left) and its sinogram (on the
right). Middle and bottom rows: reconstructions of the function from different number of
fan-projections and under the presence of noise in the sinogram, see the text for detailed
explanation.
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Figure 4: Top row: solenoidal vector field (first component on the left, second component on
the right) given by formulae (6.6). Middle row: non-solenoidal vector field given by formulae
(6.7). Bottom row: reconstruction from 20 fan-projections is identical in both cases, relative
error 0.21%.
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Figure 5: Top row: original solenoidal vector field. Middle row: its reconstruction from
20 irregular fan-projections, relative error 2.6%. Bottom row: its reconstruction from the 20
regular fan-projections under the presence of noise (3%) in the sinogram, relative error 1.6%.
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7 Conclusion

The novel inversion algorithm for the tensor tomography problem was devel-
oped and numerically implemented. The algorithm is based on the SVD of the
tensor Radon transform that allows to characterize the range of the operator,
invert it and estimate an incorrectness of the corresponding inverse problem.
The algorithm can also be used with noisy measurements.

REFERENCES

1. E.V. Arbuzov, A.L. Bukhgeim, and S.G. Kazantsev, Two-dimentional
tomography problems and the theory of A-analytic function. Siberian

Advances in Mathematics (1998) 8, No. 4, 1–20.

2. J. Boman, Injectivity for a weighted vectorial Radon transform, Con-
temp. Math. (2001), 278, 87–95.

3. A.A. Bukhgeim and S.G. Kazantsev, Singular value decomposition of the

2D fan-beam Radon transform of tensor fields in a unit disc. Novosibirsk,
2001. (Preprint/RAS. Siberian Dep. Institute of Mathematics, No. 86)
(in Russian).

4. M. Born and E. Wolf, Principles of Optics. Pergamon, New-York, 1983.

5. H. Braun and A. Hauck, Tomographic reconstruction of vector fields.
IEEE Transaction on Signal Processing (1991) 39, No. 2, 464–471.

6. A.M. Cormack, Representation of a function by its line integrals, with
some radiological applications. I J. Appl. Phys. (1963), No. 34, 2722–
2727.

7. A.M. Cormack, Representation of a function by its line integrals with
some radiological applications. II J. Appl. Phys. (1964), No. 35, 195–
207.

8. R. Dautray and J.- L. Lions, Mathematical Analysis and Numerical Meth-

ods for Science and Technology. V.3. Spectral Theory and Applications.
Springer, 2000.

9. M.A. Bezuglova, E.Yu. Derevtsov, and S.B. Sorokin, The reconstruction
of a vector field by finite difference methods. J. Inverse Ill-posed Problems

(2002) 10, No. 2, 125–154.

10. E.Yu. Derevtsov and I.G. Kashina, Numerical solution to the vector to-
mography problem by tools of polynomial basis. Sib. J. Numerical Math.

(2002) 5, No. 3, 233–254 (in Russian).

11. M. Cantor, Elliptic operators and the decomposition of tensor fields. Bull.
AMS (1981) 5, No. 3, 1981, 235-262.

36



12. G.T. Herman, Image Reconstruction from Projections: The Fundamen-

tals of Computerized Tomography. Academic Press, New-York, 1980.

13. I.S. Gradshteyn and I.M. Ryzhik, Tables of integrals, sums, series and

products. Academic Press, New-York, 1965.

14. O. Gil-Medrano and A.M. Amilibia, About a Decomposition of the Space
of Symmetric Tensors of Compact Support on a Riemannian Manifold.
New York J. Math. 1994 1, 10–25.

15. P. Maass, Singular value decompositions for Radon transform. In: Math-

ematical Mathods in Tomography. Springer-Verlag, 1990, 6–14.

16. R.B. Marr, On the Reconstruction of a Function on a Circular Domain
from a Sampling of its Line Integrals. J. of Mathematical Analysis and

Applications (1974) 45, No. 2, 357–374.

17. F. Natterer, The mathematics of Computerized Tomography. Teubner
Verlag, Stuttgart, 1986.

18. F. Natterer and F. Wubbeling, Mathematical Methods in Image Recon-

struction. Philadelphia, SIAM, 2001.

19. S.J. Norton, Tomographic reconstruction of 2-D vector fields: application
to flow imaging. J. of Geophysics (1987) 97, 161–168.

20. A. Prata and W.V. Rusch, Algorithm for computation of Zernike poly-
nomials expansion coefficient. Applied Optics (1989) 28, No. 4, 749–754.

21. E.T. Quinto, Singular Value Decomposition and Inversion Methods for
the Exterior Radon Transform and thr Spherical Transform. J. of math-

ematical analysis and applications (1983) 95, No. 2, 437–448.

22. Th. Schuster, An efficient mollifier method for three-dimensional vector
tomography: convergence analysis and implementation. Inverse Prob-

lems (2001) 17, 739–766.

23. V.A. Sharafutdinov, Integral Geometry of Tensor Fields. VSP, Utrecht,
1994.

24. K. Strahlen, Studies of Vector Tomography. Ph.D. thesis. Lund Uni-
versity, 1999.

25. L.V. Vertgeim, Integral geometry problems for symmetric tensor fields
with incomplete data. J.Inv. Ill-Posed Problems (2000) 8, No. 3, 353–
362.

26. I.I. Vekua, Tensor analysis. Nauka, 1988.

27. H. Weyl, The method of orthogonal projection in potential theory. Duke

Math. J. (1940), No. 7, 411–444.

37



This figure "EAGLE.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/math/0404442v1

http://arxiv.org/ps/math/0404442v1


This figure "HEAD.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/math/0404442v1

http://arxiv.org/ps/math/0404442v1


This figure "Scheme.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/math/0404442v1

http://arxiv.org/ps/math/0404442v1


This figure "V.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/math/0404442v1

http://arxiv.org/ps/math/0404442v1


This figure "VV.jpg" is available in "jpg"
 format from:

http://arxiv.org/ps/math/0404442v1

http://arxiv.org/ps/math/0404442v1

