129 research outputs found
Cluster structures for 2-Calabi-Yau categories and unipotent groups
We investigate cluster tilting objects (and subcategories) in triangulated
2-Calabi-Yau categories and related categories. In particular we construct a
new class of such categories related to preprojective algebras of non Dynkin
quivers associated with elements in the Coxeter group. This class of
2-Calabi-Yau categories contains the cluster categories and the stable
categories of preprojective algebras of Dynkin graphs as special cases. For
these 2-Calabi-Yau categories we construct cluster tilting objects associated
with each reduced expression. The associated quiver is described in terms of
the reduced expression. Motivated by the theory of cluster algebras, we
formulate the notions of (weak) cluster structure and substructure, and give
several illustrations of these concepts. We give applications to cluster
algebras and subcluster algebras related to unipotent groups, both in the
Dynkin and non Dynkin case.Comment: 49 pages. For the third version the presentation is revised,
especially Chapter III replaces the old Chapter III and I
Cluster algebras of type
In this paper we study cluster algebras \myAA of type . We solve
the recurrence relations among the cluster variables (which form a T--system of
type ). We solve the recurrence relations among the coefficients of
\myAA (which form a Y--system of type ). In \myAA there is a
natural notion of positivity. We find linear bases \BB of \myAA such that
positive linear combinations of elements of \BB coincide with the cone of
positive elements. We call these bases \emph{atomic bases} of \myAA. These
are the analogue of the "canonical bases" found by Sherman and Zelevinsky in
type . Every atomic basis consists of cluster monomials together
with extra elements. We provide explicit expressions for the elements of such
bases in every cluster. We prove that the elements of \BB are parameterized
by \ZZ^3 via their --vectors in every cluster. We prove that the
denominator vector map in every acyclic seed of \myAA restricts to a
bijection between \BB and \ZZ^3. In particular this gives an explicit
algorithm to determine the "virtual" canonical decomposition of every element
of the root lattice of type . We find explicit recurrence relations
to express every element of \myAA as linear combinations of elements of
\BB.Comment: Latex, 40 pages; Published online in Algebras and Representation
Theory, springer, 201
The first Hochschild cohomology group of a schurian cluster-tilted algebra
Given a cluster-tilted algebra B we study its first Hochschild cohomology group HH1(B) with coefficients in the B-B-bimodule B. We find several consequences when B is representation-finite, and also in the case where B is cluster-tilted of type Ã.Fil: Assem, Ibrahim. University of Sherbrooke; CanadáFil: Redondo, Maria Julia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin
Torsion pairs and rigid objects in tubes
We classify the torsion pairs in a tube category and show that they are in
bijection with maximal rigid objects in the extension of the tube category
containing the Pruefer and adic modules. We show that the annulus geometric
model for the tube category can be extended to the larger category and
interpret torsion pairs, maximal rigid objects and the bijection between them
geometrically. We also give a similar geometric description in the case of the
linear orientation of a Dynkin quiver of type A.Comment: 25 pages, 13 figures. Paper shortened. Minor errors correcte
Repetitive higher cluster categories of type A_n
We show that the repetitive higher cluster category of type A_n, defined as
the orbit category D^b(mod kA_n)/(tau^{-1}[m])^p, is equivalent to a category
defined on a subset of diagonals in a regular p(nm+1)-gon. This generalizes the
construction of Caldero-Chapoton-Schiffler, which we recover when p=m=1, and
the work of Baur-Marsh, treating the case p=1, m>1. Our approach also leads to
a geometric model of the bounded derived category D^b(mod kA_n)
MORFOLOGI KAWASAN KOTA LAMA KUPANG
Kota Kupang Merupakan ibu kota provinsi Nusa Tenggara Timur dan menjadi
kota terbesar di pulau Timor. Kota Kupang terletak di pesisir teluk Kupang, bagian
barat laut pulau Timor. Menurut sejarah terbentuknya kota Kupang berawal dari kota
bandar yang dikuasai oleh Raja Helong yaitu kawasan kota lama Kupang.
Perkembangan kawasan kota lama Kupang dimulai pada periode abad ke 15. Dalam
perkembangan kawasan kota lama Kupang terdapat faktor-faktor yang mempengaruhi
penting yang mempengaruhi morfologi kawasan kota lama yang terjadi selama
beberapa periode. Tujuan dari penulisan ini adalah memberikan gambaran mengenai
perkembangan kawasan kota lama Kupang selama beberapa periode dan melihat
perubahan dan perbandingan apa saja terkait morfologi kawasan beserta faktor-faktor
yang mempengaruhi morfologi kawasan kota lama kupang. Penelitian ini merupakan
penelitian deskriptif eksploratif dengan metode analisis sinkronik (tissue analysis)
digunakan untuk membaca sejarah yang terjadi pada kawasan kota lama Kupang secara
beberapa periode waktu atau pada abad ke 15 awal terbentuk sampai pada abad ke 21
dan Diakronik (historical reading) digunakan melihat perubahan dan perbandingan
Morfologi kawasan kota lama Kupang periode abad ke 15 sampai 21 dan memaparkan
bagiamana ruang-ruang tersebut mulai bertumbuh, berkembang dari hasil analisis
tersebut akan didapatkan faktor-faktor yang mempengaruhi morfologi kawasan kota
lama Kupang dengan menggunakan teori Branch (1995). Studi ini menghasilkan
kesimpulan bahwa kawasan kota lama Kupang mulai berkembang karena memiliki
generator utama ialah masuknya Raja Helong dan kawasan ini menjadi salah satu kota
bandar yang ada di pulau Timor. Kemudian Perubahan dan perbandingan
perkembangan morfologi kawasan kota lama Kupang saat masuknya Bangsa
Belanda,Portugis dan Etnis Cina dan saat ditetapkan batas-batas kota pada tahun 1886
serta kebijakan-kebijakan politik terhadap status kawasan setelah Indonesia merdeka.
faktor-faktor yang mempengaruhi morfologi kawasan kota lama Kupang berupa faktor
Sejarah dan Budaya, Geografis, politik, Sosial dan Ekonomi
Cluster algebras in algebraic Lie theory
We survey some recent constructions of cluster algebra structures on
coordinate rings of unipotent subgroups and unipotent cells of Kac-Moody
groups. We also review a quantized version of these results.Comment: Invited survey; to appear in Transformation Group
Comment on "Is the nonlinear Meissner effect unobservable?"
In a recent Letter (Phys. Rev. Lett. 81, p.5640 (1998), cond-mat/9808249 v3),
it was suggested that nonlocal effects may prevent observation of the nonlinear
Meissner effect in YBCO. We argue that this claim is incorrect with regards to
measurements of the nonlinear transverse magnetic moment, and that the most
likely reason for a null result lies elsewhere.Comment: 1 pag
Theory of Nonlinear Meissner Effect in High-Tc Superconductors
We investigate the nonlinear Meissner effect microscopically. Previous
studies did not consider a certain type of interaction effect on the nonlinear
phenomena. The scattering amplitude barely appears without being renormalized
into the Fermi-liquid parameter. With this effect we can solve the outstanding
issues (the quantitative problem, the temperature and angle dependences). The
quantitative calculation is performed with use of the fluctuation-exchange
approximation on the Hubbard model. It is also shown that the perturbation
expansion on the supercurrent by the vector potential converges owing to the
nonlocal effect
- …