research

Cluster algebras of type A2(1)A_2^{(1)}

Abstract

In this paper we study cluster algebras \myAA of type A2(1)A_2^{(1)}. We solve the recurrence relations among the cluster variables (which form a T--system of type A2(1)A_2^{(1)}). We solve the recurrence relations among the coefficients of \myAA (which form a Y--system of type A2(1)A_2^{(1)}). In \myAA there is a natural notion of positivity. We find linear bases \BB of \myAA such that positive linear combinations of elements of \BB coincide with the cone of positive elements. We call these bases \emph{atomic bases} of \myAA. These are the analogue of the "canonical bases" found by Sherman and Zelevinsky in type A1(1)A_{1}^{(1)}. Every atomic basis consists of cluster monomials together with extra elements. We provide explicit expressions for the elements of such bases in every cluster. We prove that the elements of \BB are parameterized by \ZZ^3 via their g\mathbf{g}--vectors in every cluster. We prove that the denominator vector map in every acyclic seed of \myAA restricts to a bijection between \BB and \ZZ^3. In particular this gives an explicit algorithm to determine the "virtual" canonical decomposition of every element of the root lattice of type A2(1)A_2^{(1)}. We find explicit recurrence relations to express every element of \myAA as linear combinations of elements of \BB.Comment: Latex, 40 pages; Published online in Algebras and Representation Theory, springer, 201

    Similar works