65 research outputs found

    Uracil recognition by replicative DNA polymerases is limited to the archaea, not occurring with bacteria and eukarya

    Get PDF
    Family B DNA polymerases from archaea such as Pyrococcus furiosus, which live at temperatures ∼100°C, specifically recognize uracil in DNA templates and stall replication in response to this base. Here it is demonstrated that interaction with uracil is not restricted to hyperthermophilic archaea and that the polymerase from mesophilic Methanosarcina acetivorans shows identical behaviour. The family B DNA polymerases replicate the genomes of archaea, one of the three fundamental domains of life. This publication further shows that the DNA replicating polymerases from the other two domains, bacteria (polymerase III) and eukaryotes (polymerases δ and ε for nuclear DNA and polymerase γ for mitochondrial) are also unable to recognize uracil. Uracil occurs in DNA as a result of deamination of cytosine, either in G:C base-pairs or, more rapidly, in single stranded regions produced, for example, during replication. The resulting G:U mis-pairs/single stranded uracils are promutagenic and, unless repaired, give rise to G:C to A:T transitions in 50% of the progeny. The confinement of uracil recognition to polymerases of the archaeal domain is discussed in terms of the DNA repair pathways necessary for the elimination of uracil

    Perspectives on shipping emissions and their impacts on the surface ocean and lower atmosphere: An environmental-social-economic dimension

    Get PDF
    Shipping is the cornerstone of international trade and thus a critical economic sector. However, ships predominantly use fossil fuels for propulsion and electricity generation, which emit greenhouse gases such as carbon dioxide and methane, and air pollutants such as particulate matter, sulfur oxides, nitrogen oxides, and volatile organic compounds. The availability of Automatic Information System (AIS) data has helped to improve the emission inventories of air pollutants from ship stacks. Recent laboratory, shipborne, satellite and modeling studies provided convincing evidence that ship-emitted air pollutants have significant impacts on atmospheric chemistry, clouds, and ocean biogeochemistry. The need to improve air quality to protect human health and to mitigate climate change has driven a series of regulations at international, national, and local levels, leading to rapid energy and technology transitions. This resulted in major changes in air emissions from shipping with implications on their environmental impacts, but observational studies remain limited. Growth in shipping in polar areas is expected to have distinct impacts on these pristine and sensitive environments. The transition to more sustainable shipping is also expected to cause further changes in fuels and technologies, and thus in air emissions. However, major uncertainties remain on how future shipping emissions may affect atmospheric composition, clouds, climate, and ocean biogeochemistry, under the rapidly changing policy (e.g., targeting decarbonization), socioeconomic, and climate contexts

    Perspectives on shipping emissions and their impacts on the surface ocean and lower atmosphere: An environmental-social-economic dimension

    Get PDF
    Shipping is the cornerstone of international trade and thus a critical economic sector. However, ships predominantly use fossil fuels for propulsion and electricity generation, which emit greenhouse gases such as carbon dioxide and methane, and air pollutants such as particulate matter, sulfur oxides, nitrogen oxides, and volatile organic compounds. The availability of Automatic Information System (AIS) data has helped to improve the emission inventories of air pollutants from ship stacks. Recent laboratory, shipborne, satellite and modeling studies provided convincing evidence that ship-emitted air pollutants have significant impacts on atmospheric chemistry, clouds, and ocean biogeochemistry. The need to improve air quality to protect human health and to mitigate climate change has driven a series of regulations at international, national, and local levels, leading to rapid energy and technology transitions. This resulted in major changes in air emissions from shipping with implications on their environmental impacts, but observational studies remain limited. Growth in shipping in polar areas is expected to have distinct impacts on these pristine and sensitive environments. The transition to more sustainable shipping is also expected to cause further changes in fuels and technologies, and thus in air emissions. However, major uncertainties remain on how future shipping emissions may affect atmospheric composition, clouds, climate, and ocean biogeochemistry, under the rapidly changing policy (e.g., targeting decarbonization), socioeconomic, and climate contexts

    Advancing sustainability through digital servitization: An exploratory study in the maritime shipping industry

    No full text
    Global businesses are transforming towards capturing more value from services, a business model transition called servitization. Digital servitization can help create and maintain a competitive advantage, as well as offering opportunities to tackle major challenges related to environmental pressures and rapidly changing market conditions. This study aims to bridge the gap between the theory of digital servitization and its implementation in the maritime shipping sector. This paper presents a multi-case study that explores the status, perceived challenges, and enablers for the adoption of digital servitization. Empirical data were collected from interviews with 13 companies and analyzed using the PESTEL and DPSIR frameworks. The results are presented across three categories based on the PESTEL framework: organizational context, global priorities, and sustainability. This study contributes to theory by providing empirical insights from the status of digital servitization in the maritime shipping industry. Also, it identifies challenges and needs that can support the transition towards digital servitization and the development of more sustainable solutions. Future research avenues are suggested to advance digital servitization in other industrial sectors.Validerad;2024;Nivå 2;2024-01-22 (joosat);Full text license: CC BY</p
    corecore