161 research outputs found

    Convective and absolute Eckhaus instability leading to modulated waves in a finite box

    Get PDF
    We report experimental study of the secondary modulational instability of a one-dimensional non-linear traveling wave in a long bounded channel. Two qualitatively different instability regimes involving fronts of spatio-temporal defects are linked to the convective and absolute nature of the instability. Both transitions appear to be subcritical. The spatio-temporal defects control the global mode structure.Comment: 5 pages, 7 figures (ReVTeX 4 and amsmath.sty), final versio

    Isotope shifts of the (3s3p)3^3P0,1,2_{0,1,2} - (3s4s)3^3S1_1 Mg I transitions

    Full text link
    We report measurements of the isotope shifts of the (3s3p)3^3P0,1,2_{0,1,2} - (3s4s)3^3S1_1 Mg I transitions for the stable isotopes 24^{24}Mg (I=0), 25^{25}Mg (I=5/2) and 26^{26}Mg (I=0). Furthermore the 25^{25}Mg 3^3S1_1 hyperfine coefficient A(3^3S1_1) = (-321.6 ±\pm 1.5) MHz is extracted and found to be in excellent agreement with state-of-the-art theoretical predictions giving A(3^3S1_1) = -325 MHz and B(3^3S1_1) 105\simeq 10^{-5} MHz. Compared to previous measurements, the data presented in this work is improved up to a factor of ten.Comment: 4 pages, 4 figures submitted to PR

    Frequency evaluation of the doubly forbidden 1S03P0^1S_0\to ^3P_0 transition in bosonic 174^{174}Yb

    Get PDF
    We report an uncertainty evaluation of an optical lattice clock based on the 1S03P0^1S_0\leftrightarrow^3P_0 transition in the bosonic isotope 174^{174}Yb by use of magnetically induced spectroscopy. The absolute frequency of the 1S03P0^1S_0\leftrightarrow^3P_0 transition has been determined through comparisons with optical and microwave standards at NIST. The weighted mean of the evaluations is ν\nu(174^{174}Yb)=518 294 025 309 217.8(0.9) Hz. The uncertainty due to systematic effects has been reduced to less than 0.8 Hz, which represents 1.5×10151.5\times10^{-15} in fractional frequency.Comment: 4 pages, 3 figure -Submitted to PRA Rapid Communication

    SPIRAL INSTABILITIES IN PERIODICALLY FORCED EXTENDED OSCILLATORY MEDIA

    Get PDF
    We investigate two instabilities of spiral waves in oscillatory media subject to different types of forcing using the complex Ginzburg-Landau equation. First, the transition of spiral waves via so-called superspirals to spatio-temporal chaos is related to a coexistence of the Eckhaus instability of the wave field and the intrinsic oscillatory meandering instability of the spiral core. Second, resonantly forced oscillatory media are shown to possess a novel scenario of spiral breakup. Bifurcation analysis and linear stability analysis yield explanations for the phenomenology observed by direct simulations

    Accurate spectroscopy of Sr atoms

    Full text link
    We report the frequency measurement with an accuracy in the 100 kHz range of several optical transitions of atomic Sr : 1S03P1^1S_0- ^3P_1 at 689 nm, 3P13S1^3P_1- ^3S_1 at 688 nm and 3P03S1^3P_0- ^3S_1 at 679 nm. Measurements are performed with a frequency chain based on a femtosecond laser referenced to primary frequency standards. They allowed the indirect determination with a 70 kHz uncertainty of the frequency of the doubly forbidden 5s^2^1S_0- 5s5p^3P_0 transition of 87^{87}Sr at 698 nm and in a second step its direct observation. Frequency measurements are performed for 88^{88}Sr and 87^{87}Sr, allowing the determination of 3P0^3P_0, 3P1^3P_1 and 3S1^3S_1 isotope shifts, as well as the 3S1^3S_1 hyperfine constants.Comment: 12 pages, 16 figure

    Forecasting the SST space-time variability of the Alboran Sea with genetic algorithms

    Get PDF
    We propose a nonlinear ocean forecasting technique based on a combination of genetic algorithms and empirical orthogonal function (EOF) analysis. The method is used to forecast the space-time variability of the sea surface temperature (SST) in the Alboran Sea. The genetic algorithm finds the equations that best describe the behaviour of the different temporal amplitude functions in the EOF decomposition and, therefore, enables global forecasting of the future time-variability.Comment: 15 pages, 3 figures; latex compiled with agums.st

    Dewetting of thin films on heterogeneous substrates: Pinning vs. coarsening

    Full text link
    We study a model for a thin liquid film dewetting from a periodic heterogeneous substrate (template). The amplitude and periodicity of a striped template heterogeneity necessary to obtain a stable periodic stripe pattern, i.e. pinning, are computed. This requires a stabilization of the longitudinal and transversal modes driving the typical coarsening dynamics during dewetting of a thin film on a homogeneous substrate. If the heterogeneity has a larger spatial period than the critical dewetting mode, weak heterogeneities are sufficient for pinning. A large region of coexistence between coarsening dynamics and pinning is found.Comment: 4 pages, 4 figure

    An Optical Lattice Clock with Spin-polarized 87Sr Atoms

    Full text link
    We present a new evaluation of an 87Sr optical lattice clock using spin polarized atoms. The frequency of the 1S0-3P0 clock transition is found to be 429 228 004 229 873.6 Hz with a fractional accuracy of 2.6 10^{-15}, a value that is comparable to the frequency difference between the various primary standards throughout the world. This measurement is in excellent agreement with a previous one of similar accuracy

    On elliptic solutions of the cubic complex one-dimensional Ginzburg-Landau equation

    Full text link
    The cubic complex one-dimensional Ginzburg-Landau equation is considered. Using the Hone's method, based on the use of the Laurent-series solutions and the residue theorem, we have proved that this equation has neither elliptic standing wave nor elliptic travelling wave solutions. This result amplifies the Hone's result, that this equation has no elliptic travelling wave solutions.Comment: LaTeX, 12 page

    Ligand-Specific c-Fos Expression Emerges from the Spatiotemporal Control of ErbB Network Dynamics

    Get PDF
    SummaryActivation of ErbB receptors by epidermal growth factor (EGF) or heregulin (HRG) determines distinct cell-fate decisions, although signals propagate through shared pathways. Using mathematical modeling and experimental approaches, we unravel how HRG and EGF generate distinct, all-or-none responses of the phosphorylated transcription factor c-Fos. In the cytosol, EGF induces transient and HRG induces sustained ERK activation. In the nucleus, however, ERK activity and c-fos mRNA expression are transient for both ligands. Knockdown of dual-specificity phosphatases extends HRG-stimulated nuclear ERK activation, but not c-fos mRNA expression, implying the existence of a HRG-induced repressor of c-fos transcription. Further experiments confirmed that this repressor is mainly induced by HRG, but not EGF, and requires new protein synthesis. We show how a spatially distributed, signaling-transcription cascade robustly discriminates between transient and sustained ERK activities at the c-Fos system level. The proposed control mechanisms are general and operate in different cell types, stimulated by various ligands
    corecore