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We investigate two instabilities of spiral waves in oscillatory media subject to dif-
ferent types of forcing using the complex Ginzburg-Landau equation. First, the

transition of spiral waves via so-called superspirals to spatio-temporal chaos is re-

lated to a coexistence of the Eckhaus instability of the wave field and the intrinsic
oscillatory meandering instability of the spiral core. Second, resonantly forced

oscillatory media are shown to possess a novel scenario of spiral breakup. Bifurca-
tion analysis and linear stability analysis yield explanations for the phenomenology

observed by direct simulations.

1. Introduction

Rotating spiral waves are well-known patterns in oscillatory media 1. Re-

cently, superspiral structures (see Fig. 1) have been observed experimen-

tally in the Belousov-Zhabotinsky reaction2 and have been treated by linear

analysis 3. In previous work, we have shown that moving sources emit mod-

ulated amplitude waves analogous to the way a stationary source emits a

plane wave4. After introducing the model in Sec. 2 we use these results in

Sec. 3 to conjecture bifurcation diagrams of two-dimensional superspirals.

Additional resonant forcing of an oscillatory medium yields a plethora of
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new patterns due to frequency locking (see 5,6 and references therein). We

study in Sec. 4 how spiral waves destabilize under these conditions.

2. Complex Ginzburg-Landau Equation

A universal description of oscillatory media near a supercritical Hopf bifur-

cation is given by the complex Ginzburg-Landau equation (CGLE)1

∂tA = (ǫ + iν)A + (1 + ic1)∆A − (1 − ic3)|A|2A + γĀn−1 . (1)

The complex field A(x, y, t) contains amplitude and phase of local oscilla-

tions, ǫ measures the distance from the Hopf bifurcation, ν measures the

frequency detuning, c1 (c3) give the linear (nonlinear) dispersion and γ

describes the strength of resonant forcing.

For a homogeneous system we assume that ǫ = 1 and ν = 0. If forcing is

absent (γ = 0) then the CGLE exhibits spiral waves of the form A(r, θ, t) =

F (r)ei(θ + f(r, t)) in polar coordinates (r, θ). For r → ∞ the radial dynam-

ics approaches a travelling wave with F (r) →
√

1 − q2
S , f(r, t) → qSr−ωSt,

a selected wavenumber qS uniquely determined by c1, c3 and a frequency

ωS = −c3 + q2
S(c1 + c3)

7.

3. Superspirals

3.1. Simulations

We first perform numerical simulations of the CGLE (1) without forcing γ =

0 and detuning ν = 0. A non-saturating core instability has been observed

for large values of c1
8. However, if a small and localized heterogeneity near

the spiral core of the form ǫ = 1 + b0e
−r2/σ is added, meandering behavior

similar to the one typically seen in reaction-diffusion systems is found 9.

A unique meandering period is selected which depends on the parameters

c1, c3, b0, σ.

One example of a meandering spiral that possesses saturated modula-

tions in its wave field (superspiral) is presented in Fig. 1. The real part

of A(x, y, t) (Fig. 1(a)) shows phase waves with non-uniform wave length

that travel from left to right. The spiral-shaped amplitude modulation in

Fig. 1(b) lead to the name superspiral. This amplitude modulation satu-

rates away from the core (near x = 64) as is evident from the profile of |A|

in Fig. 1(c) along a one-dimensional cut.

In order to study the underlying mechanisms it is useful to control

the meandering period and the properties of the wave field independently.
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Figure 1. Numerical simulations of (meandering) superspirals in the CGLE (1). (a)
Snapshot of the real part of A, (b) |A| and (c) profile of |A| along a horizontal cut through

the 2D system. Simulations of the one-dimensional radial dynamics of |A| for meandering
spirals reveal three regimes with (d) damped modulations for small meandering period,

(e) saturated modulations for intermediate and (f) growing modulations with subsequent
spiral breakup for large meandering period. Parameters are c1 = 3.5, c3 = 0.37, γ =

0, ǫ = 1 + 0.7e−r2/10 in (a-c) and c1 = 3.5, c3 = 0.4, γ = 0, ǫ = 1 and oscillating left

boundary (Eq. (2)) with RS = 0.5 in (d) with T = 8, (e) T = 13 and (f) T = 15.
Grayscale between minimum (black) and maximum (white) values.

Hence, we studied a one-dimensional analogue of a meandering spiral, i.e.

a 1D system with a moving Dirichlet boundary condition (BC) at one end

and the usual zero-flux BC at the opposite end. For fixed Dirichlet source

A(0, t) = 0, the selected “1D spiral” has the same general properties as

the 2D spiral (see Sec. 2) and the selected wavenumber qS1 ∼ qS is known

analytically7. To introduce meandering, we vary the source position xS by

A(x ≤ xS) = 0 with xS = RS cos(2πt/T ) . (2)

In the 1D simulations we observe that the modulations possess the same

temporal period as the forcing period T independent of RS .

For different choices of the meandering period T we find at most three

distinct regimes with damped (Fig. 1(d)), saturated (e) or growing (f) mod-

ulation. Below we summarize the underlying selection mechanism.
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Figure 2. Two scenarios of superspiral formation (a) with the Eckhaus instability (E)
occuring before the meandering instability (M) or (b) with the opposite order. Squares

represent possible observations of ∆|A| = |A|max −|A|min near the boundary of a finite
system in simulations or experiments with control parameter µ. Thin curves denote the

family of MAWs from which a unique one is selected by the period T = T (µ) of the
meandering. The selected solution vanishes in a of saddle-node bifurcation (SN).

3.2. Bifurcation Diagram

Previous work has shown that the asymptotic solution in the far field of

the superspiral is a modulated amplitude wave (MAW)4. MAWs have the

form A(x, t) = a(z)eiφ(z)ei(qx−ωt) with z = x − vt and periodic functions

a(z), φ(z). Notice, the saturated profile in Fig. 1(c) corresponds to an exact

solution a(z). MAWs have been studied in Ref. 10 and are a two-parameter

family which is conveniently parameterized by the mean wavenumber q and

the temporal period T of the modulation. The wave source selects the MAW

wavenumber q and the meandering period selects the MAW period T . Two

bifurcations (Hopf where MAWs emerge and saddle-node where they van-

ish) delimit the three distinct regimes seen in simulations and experiments

(Fig. 1(d-f) and Ref. 2).

So far we examined both selection criteria independently in a 1D system.

In a 2D system both are uniquely determined by the control parameters.

Now we can draw tentative bifurcation diagrams of spirals that meander in

the Eckhaus unstable regime as shown in Fig. 2. The spiral becomes unsta-

ble by meandering near an Eckhaus instability of the selected wave train via

one of the following two scenarios. Either the Eckhaus instability appears

just before (panel (a) where the modulation amplitude jumps upon small

changes in control parameter µ) or shortly after the meandering (panel (b)

where damped modulations continuously increase). Near the meander in-

stability, the motion of the core has a small amplitude and saturation may

not be reached within the finite system. However, for larger systems the

onset of superspirals tends to a first order transition in (a) and a second
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order transition in (b). Careful observation of the onset can thus reveal the

locations of the two contributing instabilities.

Figure 3. Spiral breakup at γ = 0.21 and n = 2. The snapshots show |A|2. From left to
right and top to bottom, t=25,50,75,100,125 and 200. White(black) corresponds to the

larger (smaller) |A|2. Other parameters are ǫ = 1.0, ν = 0.5, c1 = −1.4 and c3 = −0.3.

4. Resonant Forcing

Here, we briefly illustrate how a resonant 2:1-forcing (n = 2) destabilizes ro-

tating spirals in the CGLE by assuming that γ 6= 0. Upon external forcing,

frequency-locked standing wave patterns are obtained for ν > −c3ǫ, while

defect turbulence arises for ν < −c3ǫ as in 5 for strong enough forcing. If

the forcing crosses the threshold of instability, spirals in 2D become unsta-

ble and form new defects at a certain distance from their center, see Fig.

3. These defects evolve into new spirals, which interact with the original

spiral and among each other. As the external forcing strength increases,

the size of the surviving core region shrinks and finally disappears. Far

from the spiral core, defects results from the merging of fronts. In the un-

forced CGLE (γ = 0), a spiral becomes more unstable and breakup (BU)

occurs as c3 is decreased. A shift of c3 towards more negative values induces
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absolute instability and BU occurs without forcing due to the absolute Eck-

haus instability. The breakup process upon external forcing is essentially

as follows: as γ increases, BU occurs via the merging of fronts. A recent

stability analysis shows that indeed the absolute instability of the periodic

waves far from the core is related to modes that represent front interactions
6.

5. Conclusions

We have analysed spiral instabilities in periodically forced oscillatory media.

First, superspirals have been found if the convective Eckhaus instability is

excited by the intrinsic oscillatory meandering instability due to a nonlinear

problem 4. Our tentative bifurcation diagram of superspirals links their

far-field breakup to a saddle-node bifurcation of spirals. Second, spirals in

resonantly forced oscillatory media can be destabilized by suitable resonant

2:1 forcing that causes a front merging instability in the emitted wavetrain
6.
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