11,806 research outputs found

    Blood ties : the labyrinth of family membership in long term adoption reunion : a thesis presented in partial fulfilment of the requirements for the degree of Master of Arts in Social Anthropology at Massey University

    Get PDF
    This thesis reports original research conducted with twenty adoptees, adopted under closed-stranger protocols, who have been experiencing regular post-reunion contact with their birth families for more than ten years. It examines the themes of the mothering role, family obligation and family membership to uncover how adoptees navigate their family membership within and between two families (adoptive and birth family). This study presents the thoughts, feelings and observations of the participants in their own words to convey a deeper understanding of their experiences. Drawing upon in-depth interviews, this study has sought to expand on earlier research focusing on the search and reunion and immediate post-reunion stages to examine the long-term experiences of adoptees in post-reunion. The principal finding is that reunited relationships have no predictable pathways and are approached with varying levels of ambivalence and emotional strain, and that there is no fixed pattern of family arrangements and relational boundaries. While closed-stranger adoptions and the subsequent reunions may eventually cease, this research may assist in understanding the issues surrounding the reunion between gamete (egg) and sperm donor's and their offspring in the future. KEYWORDS: Adoption Post-reunion, Adoptee, Birth Family, Family Membership, Family Relationships, Closed Adoption Reunion

    Modeling the Rise of Fibril Magnetic Fields in Fully Convective Stars

    Get PDF
    Many fully convective stars exhibit a wide variety of surface magnetism, including starspots and chromospheric activity. The manner by which bundles of magnetic field traverse portions of the convection zone to emerge at the stellar surface is not especially well understood. In the Solar context, some insight into this process has been gleaned by regarding the magnetism as consisting partly of idealized thin flux tubes (TFT). Here, we present the results of a large set of TFT simulations in a rotating spherical domain of convective flows representative of a 0.3 solar-mass, main-sequence star. This is the first study to investigate how individual flux tubes in such a star might rise under the combined influence of buoyancy, convection, and differential rotation. A time-dependent hydrodynamic convective flow field, taken from separate 3D simulations calculated with the anelastic equations, impacts the flux tube as it rises. Convective motions modulate the shape of the initially buoyant flux ring, promoting localized rising loops. Flux tubes in fully convective stars have a tendency to rise nearly parallel to the rotation axis. However, the presence of strong differential rotation allows some initially low latitude flux tubes of moderate strength to develop rising loops that emerge in the near-equatorial region. Magnetic pumping suppresses the global rise of the flux tube most efficiently in the deeper interior and at lower latitudes. The results of these simulations aim to provide a link between dynamo-generated magnetic fields, fluid motions, and observations of starspots for fully convective stars.Comment: 20 pages, 15 figures, accepted to Astrophysical Journa

    Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment

    Get PDF
    Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters

    An analytical investigation of NO sub x control techniques for methanol fueled spark ignition engines

    Get PDF
    A thermokinetic SI engine simulation was used to study the effects of simple nitrogen oxide control techniques on performance and emissions of a methanol fueled engine. As part of this simulation, a ring crevice storage model was formulated to predict UBF emissions. The study included spark retard, two methods of compression ratio increase and EGR. The study concludes that use of EGR in high turbulence, high compression engines will both maximize power and thermal efficiency while minimizing harmful exhaust pollutants

    Power-free values of polynomials on symmetric varieties

    Get PDF
    Given a symmetric variety Y defined over the rationals and a non-zero polynomial with integer coefficients, we use techniques from homogeneous dynamics to establish conditions under which the polynomial can be made r-free for a Zariski dense set of integral points on Y. We also establish an asymptotic counting formula for this set. In the special case that Y is a quadric hypersurface, we give explicit bounds on the size of r by combining the argument with a uniform upper bound for the density of integral points on general affine quadrics.Comment: 47 pages; accepted versio

    Coronal heating in multiple magnetic threads

    Get PDF
    Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread. Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread can also trigger a release of energy in a nearby thread. Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic threads that are initially in an equilibrium state. Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this event can destabilise a nearby thread, which is a necessary requirement for starting an avalanche of energy release in magnetic threads. Conclusions. It is possible to initiate an energy release in a nearby, non-potential magnetic thread, because the energy released from one unstable magnetic thread can trigger energy release in nearby threads, provided that the nearby structures are close to marginal stability

    Three-Dimensional Simulations of Solar and Stellar Dynamos: The Influence of a Tachocline

    Full text link
    We review recent advances in modeling global-scale convection and dynamo processes with the Anelastic Spherical Harmonic (ASH) code. In particular, we have recently achieved the first global-scale solar convection simulations that exhibit turbulent pumping of magnetic flux into a simulated tachocline and the subsequent organization and amplification of toroidal field structures by rotational shear. The presence of a tachocline not only promotes the generation of mean toroidal flux, but it also enhances and stabilizes the mean poloidal field throughout the convection zone, promoting dipolar structure with less frequent polarity reversals. The magnetic field generated by a convective dynamo with a tachocline and overshoot region is also more helical overall, with a sign reversal in the northern and southern hemispheres. Toroidal tachocline fields exhibit little indication of magnetic buoyancy instabilities but may be undergoing magneto-shear instabilities.Comment: 14 pages, 5 color figures, to appear in Proc. GONG 2008/SOHO XXI Meeting on Solar-Stellar Dynamos as Revealed by Helio and Asteroseismology, held August 15-18, 2008, Boulder, CO, Astronomical Soc. Pac. Conf. Series, volume TB

    Inferring physical conditions in interstellar clouds of H_2

    Get PDF
    We have developed a code that models the formation, destruction, radiative transfer, and vibrational/rotational excitation of H_2 in a detailed fashion. We discuss how such codes, together with FUSE observations of H_2 in diffuse and translucent lines of sight, may be used to infer various physical parameters. We illustrate the effects of changes in the major physical parameters (UV radiation field, gas density, metallicity), and we point out the extent to which changes in one parameter may be mirrored by changes in another. We provide an analytic formula for the molecular fraction, f_H2, as a function of cloud column density, radiation field, and grain formation rate of H_2. Some diffuse and translucent lines of sight may be concatenations of multiple distinct clouds viewed together. Such situations can give rise to observables that agree with the data, complicating the problem of uniquely identifying one set of physical parameters with a line of sight. Finally, we illustrate the application of our code to an ensemble of data, such as the FUSE survey of H_2 in the Large and Small Magellanic Clouds (LMC/SMC), in order to constrain the elevated UV radiation field intensity and reduced grain formation rate of H_2 in those low- metallicity environments.Comment: 33 pages (aastex, manuscript), 9 figures (3 color). accepted to Ap
    corecore