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Coronal heating in multiple magnetic threads
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ABSTRACT

Context. Heating the solar corona to several million degrees requires the conversion of magnetic energy into thermal energy. In this
paper, we investigate whether an unstable magnetic thread within a coronal loop can destabilise a neighbouring magnetic thread.
Aims. By running a series of simulations, we aim to understand under what conditions the destabilisation of a single magnetic thread
can also trigger a release of energy in a nearby thread.
Methods. The 3D magnetohydrodynamics code, Lare3d, is used to simulate the temporal evolution of coronal magnetic fields during
a kink instability and the subsequent relaxation process. We assume that a coronal magnetic loop consists of non-potential magnetic
threads that are initially in an equilibrium state.
Results. The non-linear kink instability in one magnetic thread forms a helical current sheet and initiates magnetic reconnection. The
current sheet fragments, and magnetic energy is released throughout that thread. We find that, under certain conditions, this event can
destabilise a nearby thread, which is a necessary requirement for starting an avalanche of energy release in magnetic threads.
Conclusions. It is possible to initiate an energy release in a nearby, non-potential magnetic thread, because the energy released from
one unstable magnetic thread can trigger energy release in nearby threads, provided that the nearby structures are close to marginal
stability.

Key words. Sun: corona - Sun: magnetic fields - magnetohydrodynamics (MHD) - magnetic reconnection - coronal heating -
avalanche

1. Introduction

Energy release in the solar corona is now known to occur over
a wide range of spatial and temporal scales from large eruptive
flares, through compact flares, to microflares and the (hypoth-
esised) nanoflares that may be responsible for heating the qui-
escent corona. At microflare energies and above (> 1027 ergs),
these events have been observed and they form a power law dis-
tribution E−δ where E is the inferred energy, and δ is in the range
1.4 − 1.8 (Crosby et al. 1993; Hannah et al. 2008). Evidence for
nanoflares is only now becoming clear with modern instrumenta-
tion: energies close to 1024 ergs are inferred (Warren et al. 2011;
Testa et al. 2013; Cargill 2014). A task for theoretical models is
to account for this range of event sizes, with the added caveat that
larger events should be more ‘difficult’ to trigger than smaller
ones.

The largest solar flares are commonly discussed in terms
of an associated eruption and ejection of plasma from the Sun
(e.g. Priest & Forbes (2000) and Nishida et al. (2009)). How-
ever, the applicability of this scenario to small (compact) flares,
microflares and smaller events is questionable, and other mech-
anisms need to be identified. One such fundamental process is
the kink instability of a twisted magnetic field that forms a loop-
like structure in the corona. This is an ‘ideal’ MHD instability
and it has fast (Alfvénic) growth during its initial phase. There
is observational evidence of the kink instability (Liu et al. 2007;
Liu & Alexander 2009; Nandy et al. 2008; Srivastava et al. 2010)
along with simulations of its development in a single magnetic

loop (Linton et al. 1996; Galsgaard & Nordlund 1997; Baty et al.
1998; Gerrard et al. 2004). A very attractive feature of its non-
linear evolution is the rapid formation and dissipation of multiple
regions of intense current (Browning & Van der Linden 2003;
Browning et al. 2008; Hood et al. 2009; Bareford et al. 2011).
Such non-linear development of magnetic reconnection can re-
sult in a turbulent state (Browning & Lazarian 2013) that is also a
good facilitator of particle acceleration (Gordovskyy et al. 2013).
The field subsequently relaxes to a lower energy state, a process
that can be described by helicity-conserving, Taylor relaxation
(Taylor 1974; Browning & Van der Linden 2003; Browning et al.
2008; Bareford et al. 2013). The energy released in the instabil-
ity is of the order of 1028 ergs, which is characteristic of a mi-
croflare or a nanoflare storm. It has been shown that random foot-
print driving within a single loop leads to a temporal sequence
of heating events of various sizes, which can take a power law
form (Bareford et al. 2010, 2011).

It is likely that the magnetic footpoints of a large coronal
loops are not located in a single magnetic source but that field
lines begin and end in several separate photospheric sources.
This is the idea used in the coronal tectonics models of Priest
et al. (2002), Mellor et al. (2005) and Browning et al. (1986). The
tectonics model assumes that simple photospheric motions cre-
ate current sheet along the separatrix surfaces that form between
the sources. Hence, large coronal loops will have many current
sheets within them and magnetic reconnection will produce heat
at these locations. This suggests that individual threads (identi-
fied by the current sheets) will be heated. A second approach is
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to assume that photospheric motions braid the magnetic field in
a complex pattern. The magnetic field will try to relax towards
an equilibrium that may contain current sheets, as discussed by
Pontin et al. (2011). Whether the currents in a randomly stressed
magnetic field result in a smooth equilibrium or they collapse
to singular current sheets, as discussed by Parker (1972), is still
debated. For example, a field that should produce singular cur-
rent sheets has been shown by Candelaresi et al. (2015), using an
ideal MHD relaxation method, to consist of well resolved current
layers in equilibrium. A third approach is the individual mag-
netic sources could be rotated by photospheric vortex motions
De Moortel & Galsgaard (2006a,b).

All of the above approaches indicate that the coronal mag-
netic field is non-potential and that an actual loop may consist of
many closely packed, stressed magnetic threads. Now the ques-
tion arises as to whether one ideally unstable thread can desta-
bilise a nearby stable thread. An example of one event desta-
bilising neighbouring magnetic fields was investigated by Török
et al. (2011). They investigated how the onset of a highly dy-
namic coronal mass ejection might trigger others in the adjoining
fields.

This paper presents an initial study using 3D MHD simula-
tions to demonstrate how an individual unstable magnetic ele-
ment can lead to the destabilisation of neighbouring, ideally sta-
ble elements, and so constitutes a first ‘proof of principle’ that
energy release in a non-erupting magnetic field can spread across
the volume of a larger structure. Our demonstration consists of
an initial state of two twisted magnetic threads (or strands or flux
tubes or flux ropes), one of which is unstable to the kink insta-
bility, whereas its neighbour is stable. As indicated above, there
are several ways of generating twisted magnetic fields: (i) flux
emergence that can bring already twisted fields into the corona;
(ii) relaxation of fields with non-zero relative magnetic helicity;
(iii) sunspot rotation; and (iv) vortex motions at supergranular
downflows. We assume that the net result is two twisted threads.
This assumption is made to ensure that the initial state is both
non-potential and in force balance. One of these threads is then
twisted further to exceed the marginal stability threshold. The
amount of twist injected beyond the marginal value depends on
the length of time and speed of rotation, the length of the thread
and the growth rate of the instability. Once all boundary motions
have stopped, the subsequent evolution of the non-potential field
only arises in response to coronal disturbances. Following the
work of Hood et al. (2009), the unstable thread is given a small
initial velocity disturbance, so that the instability will grow and
develop a complex current sheet structure. Subsequently, recon-
nection will occur, releasing magnetic energy and heating this
thread.

Gold & Hoyle (1960) were the first to consider the interac-
tion of two neighbouring magnetic loops. They argued that mov-
ing the loops together could release sufficient magnetic energy
to explain a solar flare. The axial fields of the two loops were of
opposite sign, in contrast with the fields modelled here, and so
aided reconnection. Kondrashov et al. (1999) investigated the in-
teraction of two magnetic loops. Both loops have non-zero total
axial current and so they are not in equilibrium. They are im-
mediately attracted to each other. In our case, we consider two
magnetic threads with zero total axial current that are in equi-
librium. Milano et al. (1999) use Reduced MHD to investigate
the formation of quasi-separatrix layers during the interaction of
two loops. Mok et al. (2001) investigated how a newly emerg-
ing loop interacts with a pre-existing magnetic loop, as a model
for a small solar flare. Unlike the above MHD models, in which
the flux tubes are actively pushed together, we will investigate

the interaction of two flux ropes in more detail, using full MHD
simulations of magnetic fields that are initially in equiilbrium.

The questions we wish to address include: can an unstable
thread trigger energy release in a stable one, does the relative
rotation of the magnetic field in the two threads matter, how far
apart do the threads need to be to suppress any spreading of the
instability and how close to marginal stability does the stable
thread need to be for it to be triggered? How much free en-
ergy can be released as heat? We restrict attention to two threads
because the nonlinear evolution of the kink instability requires
high numerical resolution in order to conserve total energy and
to resolve the current sheets created. Hence, there are insuffi-
cient computing resources at the present time to investigate, in
the required detail, a truly multi-threaded loop, though this will
be presented in subsequent papers.

The rest of the paper is structured in the following manner.
Section 2 describes the MHD equations used and the numerical
method for their solution, together with the initial equilibria and
boundary conditions used. Section 3 presents the main results for
the evolution of the energetics, the fieldline evolution, the energy
dissipation and the resulting heating. Finally, a discussion of the
results and our conclusions are given in the last section.

2. Numerical method and initial equilibrium

2.1. MHD equations

To understand if the relaxation of an unstable loop can result not
only in heating a particular unstable thread but also in the release
of magnetic energy in a neighbouring thread, we have run a va-
riety simulations using the 3D MHD code, Lare3d (see Arber
et al. 2001). Lare3d solves numerically the MHD equations

∂ρ

∂t
= −∇ · (ρv) , (1)

∂

∂t
(ρv) = −∇ · (ρvv) +

1
µ0

(∇ × B) × B − ∇P + ∇ · S, (2)

∂B

∂t
= ∇ × (v × B) − ∇ ×

(

η
∇ × B

µ0

)

, (3)

∂

∂t
(ρǫ) = −∇ · (ρǫv) − P∇ · v + ηj2 + Qvisc, (4)

with internal energy density, ǫ, given by

ǫ =
P

(γ − 1) ρ
. (5)

v is the plasma velocity, B the magnetic field, P the gas pressure,
γ = 5/3 the ratio of specific heats, ρ the mass density, µ0 the
magnetic permeability and η the resistivity. The viscous heating
term is Qvisc = ǫi jS i j, where ǫi j is the strain rate and S = S i j

is the viscous stress tensor, as discussed by Arber et al. (2007).
The shock viscosities, used to ensure that the Rankine-Hugoniot
relations are satisfied across shocks, result in shock heating and
this must be added to the viscous heating term at the correct
location.

In this study, we ignore the effects of gravity, thermal con-
duction and optically thin radiation, which are included in Botha
et al. (2011) and Bareford et al (in prep). The application of this
code to relaxation theory has been discussed in Browning et al.
(2008) and Hood et al. (2009).

The equations in Lare3d are made dimensionless as follows

r → r∗r̃, B→ B∗B̃, v→ vAṽ,

P → P∗P̃, t→ t∗ t̃, ρ→ ρ∗ρ̃,
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where a tilde denotes a dimensionless variable. vA = B∗/
√
µ0ρ∗

is the typical Alfvén speed, t∗ = τA = r∗/vA is the Alfvén transit
time across the thread and P∗ = B∗2/µ0. Here, r∗ = R is the
thread radius, and B∗ = B0 is the maximum value of the initial
axial field. The electric current is expressed in units of B∗0/µ0r∗

and the dimensionless temperature is determined from the ideal
gas law for a fully ionised Hydrogen plasma

P̃ = 2ρ̃T̃. (6)

In addition to the variables in Equations (1) - (4), the magnetic,
kinetic and internal energies are also calculated. A dimension-
less resistivity, η, essentially the inverse Lundquist number, is
obtained by setting η∗ = µ0r∗vA. The resistivity is not assumed
uniform and we take

η = ηb +

{

η0, |j| ≥ jcrit,
0, |j| < jcrit.

(7)

where η0 = 10−3 is the anomalous resistivity and ηb = 0 is the
background value. The anomalous resistivity is only switched
on when the magnitude of the current exceeds a critical value of
jcrit = 5. This value is chosen to be greater than the maximum of
the equilibrium current, (see below), ensuring that the anomalous
resistivity is only switched on when a current sheet is forming.

Each equilibrium thread has a normalised radius of unity.
The length of each thread is taken as 20 so that the width to
length ratio is 10. This value of the inverse aspect ratio is, of
course, a compromise between modelling very narrow magnetic
threads and computational resolution. The computational reso-
lution is discussed below.

2.2. Initial equilibria

Consider the coronal situation, where the ratio of the gas pres-
sure to the magnetic pressure is so small (around 10−3), then
the magnetic field can be assumed to be force-free. Hence,
∇ × B = αB. For simplicity, we assume that each equilibrium
magnetic thread can be modelled by a straight twisted cylin-
der, with the cylinder axis located at (x0, y0), and we use the
smooth α profile that only depends on radius, r, as described
by Hood et al. (2009). Therefore, each magnetic thread has zero
net axial current. It is expected that the threads in a coronal loop
do consist of stressed magnetic fields and our model provides a
simple description of non-potential magnetic fields within each
thread. By considering an idealised generic configuration, we
can focus on the underlying physical processes involved. We
do not expect that increasing the geometric complexity will sig-
nificantly change the underlying physics and, indeed, Bareford
et al. (2015) have demonstrated that the main features of energy
release through nonlinear physics are retained in more more re-
alistic configurations.

For a radial coordinate defined by r2 = (x − x0)2 + (y − y0)2,
the magnetic field components of each thread have the form

Bθ =

{

B0λr(1 − r2)3, r < 1,
0, r > 1, (8)

Bz =























B0

√

1 − λ2

7 +
λ2

7 (1 − r2)7 − λ2r2(1 − r2)6, r < 1,

B0

√

1 − λ2

7 , r > 1,
(9)

α =

{

2λ(1−r2)2(1−4r2)
Bz

, r < 1,
0, r > 1.

B0 is the magnetic field strength on r = 0 and λ is a constant
parameter related to the twist in the magnetic field. The maxi-
mum value of λ is restricted by the fact that B2

z must be positive
and, therefore, λ < 64/965

√
1351 = 2.438. λ controls the sta-

bility properties of the thread and the marginal stability value,
λcrit does depend on the length, 2Lz, of the thread. For our case,
2Lz = 20 and λcrit = 1.586. The stability threshold for longer
threads will given by smaller values of λ (Bareford et al. 2010).
λ also controls the maximum value of the magnitude of the cur-
rent, i.e. 2λB0. Note that λ is positive in each thread so that they
both have the same sense of rotation. The critical current used
in switching on the anomalous resistivity is always chosen to be
larger than this value. The axial flux within a thread is

Φ = 2π
∫ r=1

r=0
Bzrdr = 2πB0 f (λ),

where f (λ) is a monotonically decreasing function of λ. Thus, B0
is proportional to the axial magnetic flux in the thread. Note that
the values of λ and B0 are related for the different threads. From
Equation (9), a smaller value of λ requires a smaller value of B0
so that all threads are embedded in the same uniform potential
field.

Since the α profile has both positive and negative values, the
total magnetic helicity in the equilibrium field will be relatively
small. In this case, the Taylor relaxed state will be very close to
a potential field. Hence, in the mid-plane z = 0, the magnetic
fields will evolve to a nearly uniform field in the axial direction.
Bx and By will only be significantly different from zero near the
photospheric boundaries, z = ±Lz.

2.3. Boundary conditions

For each of the numerical experiments investigated below, we
have a computational domain with 2Lx = 8, 2Ly = 4 and
2Lz = 20. We run the simulation on a numerical grid of 640
(in x) by 3202 (in y and z). This maintains the same resolution
in x and y. Convergence studies were undertaken with coarser
grids. We assume that the side boundaries are given by a per-
fectly conducting wall. Hence, the velocity components vanish
at x = ±Lx and at y = ±Ly. Obviously the Sun does not have
perfectly conducting side boundaries but these conditions result
in a more stable magnetic field. Hence, any instability that shows
up in our simulations will definitely occur when alternative (and
less stabilising) boundary conditions are used. Nonetheless, the
values of Lx and Ly are chosen large enough to reduce the influ-
ence of the side boundaries on the subsequent evolution. It has
been shown by Browning et al. (2008) that the outer boundary
does not significantly influence the stability properties of zero
net current magnetic fields, if the boundary is located at a dis-
tance that is more than twice the radius of the magnetic field.

In order to simulate the anchoring of the magnetic footpoints
in the dense chromosphere/photosphere (see Hood 1986), we as-
sume line-tying boundary conditions, namely that the velocity
components vanish at the two ends z = ±Lz. The axial length,
2Lz = 20, is taken as large as is computationally viable, while
retaining numerical resolution. Increasing Lz reduces the stab-
lising effect of the line-tying and, again, any instability found
in these simulations will occur in a longer thread. The magnetic
field vector components, density and temperature are assumed
free-floating at the footpoints so that

∂Bx

∂z
=
∂By

∂z
=
∂Bz

∂z
=
∂ρ

∂z
=
∂T

∂z
= 0, at z = ±Lz. (10)
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3. Numerical results

The aim of our studies is to investigate whether an unstable
thread can trigger an energy release in nearby threads, as the ini-
tial stages of an avalanche. An unstable equilibrium thread will
always be located at right-hand side of the system. The twist
parameter for the unstable thread is taken as λ = 1.8, a value
beyond the ideal MHD marginal stability threshold. This thread
is given an initial helical velocity perturbation (see Hood et al.
2009) and the perturbation is chosen to be close to the form of the
most unstable mode. The instability develops and, by t = 70τA,
where τA is the Alfvén crossing time, it is dynamically impor-
tant.

We have selected λ = 1.8 simply because it is beyond the
marginal value and generates a fast enough instability for inter-
actions with the other thread to develop within a computation-
ally reasonable time. Previous work (Gerrard et al. 2002, 2004;
Rappazzo et al. 2013) has shown that an initially potential loop
can be twisted by photospheric motions until the kink instabil-
ity occurs. We can increase λ beyond the marginal value by im-
posing a dimensionless rotational velocity, V0, at both ends, that
increases the value of λ by approximately 70V0 or, equivalently,
twice the distance each footpoint rotates through in the given
time 70. This time is a lower limit based on the time it takes the
instability to develop nonlinearly. For λ is closer to the marginal
value and the growth of the instability will be slower. Thus, we
can estimate the rotational velocity needed to reach λ = 1.8 as
0.15/70 = 0.002 or 0.2% of the background Alfvén speed.

Before looking for evidence of triggering an instability in
a stable thread, we must discuss how the individual magnetic
threads behave when there is no initial perturbation imposed.
The initial magnetic fields are analytically in equilibrium but, be-
cause of truncation errors introduced by the finite difference ap-
proach, there will be a small but non-zero Lorentz force. The size
of this force depends on the grid resolution. Hence, due to these
small truncation errors, an unstable magnetic field will eventu-
ally excite the kink instability after just over 200 τA on our high
resolution grid. A thread is destabilised by an unstable neigh-
bouring thread if it releases magnetic energy the time interval,
70τA < t < 200τA.

There is no such issue with the stable threads having, say,
λ = 1.4. There is no instability, due to truncation errors, during
the runtime of the simulations. In such a case, any release of
magnetic energy is entirely due to the destabilisation created by
the unstable neighbour. It is worth pointing out that, when λ is
close to the critical value, λcrit, for marginal stability, a non-zero
value for the background resistivity, ηb > 0, can result in a slight
diffusion of the field and current. This can generate a non-zero
Lorentz force that creates a small flow and changes the radial
profile of the current. Hence, to avoid this, we assume ηb = 0.

From now on, we will only present results for the simula-
tions in which the right-hand thread is disturbed by a helical ve-
locity perturbation. This thread is placed with its axis at either
(x, y) = (2, 0) or (x, y) = (0, 0). Since this thread is always un-
stable, the initial perturbation will eventually grow in amplitude,
allowing the kink instability to develop reasonably quickly. A
nearby twisted thread is always placed at the left-hand side of
the system, with its axis at (x, y) = (−2, 0). Our aim is to investi-
gate whether the unstable thread on the right can destabilise the
one on the left or not.

We consider four different configurations of the two neigh-
bouring magnetic threads. The properties, parameters and re-
sults are summarised in Table 1. As well as the locations of the
threads’ axes, the λ values and whether the thread is stablue or

Fig. 1: Initial profiles of (a) velocity and (b) axial current, jz, at
the mid-plane for Case 1.

unstable, Table 1 presents the time at which magnetic energy
starts to decrease in each case and the changes in magnetic and
internal energies by the end of simulation. The reduction in mag-
netic energy, as a percentage of the initial value, is also given.

Table 1: Parameters and properties of the four cases considered.

Case 1 Case 2 Case 3 Case 4
Location of centres

1st thread (2,0) (0,0) (2,0) (0,0)
2nd thread (-2,0) (-2,0) (-2,0) (-2,0)

λ values
1st thread 1.8 1.8 1.8 1.8
2nd thread 1.8 1.8 1.4 1.4

Stability
1st thread Unstable Unstable Unstable Unstable
2nd thread Unstable Unstable Stable Stable

Energy Release Time (τA)
1st thread 68 68 68 68
2nd thread 164 135 - 138

Changes in Energy
Magnetic -3.031 -3.069 -1.495 -2.317

(1.74%) (1.75%) (0.8%) (1.3%)
Internal +2.813 +2.864 +1.401 +2.154
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Fig. 2: Initial (black) and final at t = 300τA (red dot-dashed) profiles of Bz(x, 0, 0) (left column) and By(x, 0, 0) (right column) for
Case 1 (top row), Case 2 (second row), Case 3 (third row) and Case 4 (bottom row).

Case 1: Two unstable equilibrium threads are located at
(x, y) = (2, 0) and (x, y) = (−2, 0). Since the threads both have
a radius of r = 1, the outer edges of the threads are a distance
2 units from each other. Both fields have a twist parameter of

λ = 1.8. The axial current of the two threads is shown as a func-
tion of x in Figure 1. Only the right-hand thread is given an ini-
tial helical perturbation to the velocity. At the mid-plane z = 0,
this perturbation is in the x direction and is shown in Figure 1.
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Fig. 3: Projected magnetic field vectors, shown by arrows, in the midplane (z = 0) for Cases 3 and 4 at t = 300. The size of arrows
are scaled by factors 4 and 5 for Cases 3 and 4 respectively.

Note how the perturbation is centred on the axis of the right-hand
thread and is zero outside this thread.

Case 2: This is the same as Case 1, except that the threads
are centred at (x, y) = (0, 0) and (x, y) = (−2, 0). Hence, the
outer edges of the threads touch each other at (−1, 0).

Case 3: The axes of the two threads are at the same locations
as in Case 1 but the left-hand thread has a reduced twist param-
eter of λ = 1.4. This value of the twist parameter means that this
thread would be stable if on its own (Bareford et al. 2011).

Case 4: This is the same as Case 3 but with the threads cen-
tred at (x, y) = (0, 0) and (x, y) = (−2, 0).

We select B0 = 1.0 (see Equations 8 and 9) as the axial field
strength on the axis of the unstable thread. The value of λ of this
thread is taken as λ = λ0 = 1.8, to ensure it is kink unstable. As
mentioned above, since that the background magnetic field (at
r > 1) must be the same everywhere, the field strength for the
stable threads with λ = 1.4 and so the axial field strength in these
threads is given by B0 =

√

(1 − 1.82/7)/(1 − 1.42/7) = 0.864.

3.1. Initial and final states

Figure 2 shows the initial (t = 0) and final (t = 300τA) hori-
zontal profiles of Bz(x, 0, 0) and By(x, 0, 0) as functions of x for
all four cases. For Case 1, both threads are unstable and evolve
to essentially the same final state, with an almost uniform ax-
ial field component, Bz and a significantly reduced twist in the
field lines, as shown by the reduced values of By. Note how the
final diameter of each unstable thread is about 1.5 times the orig-
inal value. However, the actual temporal evolution is needed to
determine whether the left-hand thread is actually driven unsta-
ble by the kink instability in the right-hand thread or occurs due
to numerical truncation errors. Since the energy release occurs
before a time of 200τA, we can state that the left hand thread
is driven by disturbances generated by the right hand one. Note
that By(x, 0, 0) is clearly zero between the two threads. Case 2
is similar, with both threads relaxing towards a more potential
state. In this case, however, it appears from the By profile that
the two threads have combined into a single larger thread. By is
positive for x > −1 and negative for x < −1. The twist is about a
common axis.

Case 3 shows just the unstable right-hand thread has relaxed,
while the stable left-hand thread remains unchanged from its ini-
tial state. However, Case 4 is different. Both the Bz and By pro-
files of the left-hand thread show clear evidence of both relax-

ation and combining to one single magnetic structure at the end
of the simulation. A stable thread is destabilised by an unsta-
ble one. This is our first building block for the developing an
avalanche model in the MHD framework.

Summarising, when the two magnetic threads are sufficiently
close together, the instability in the right-hand thread triggers the
relaxation of the left-hand thread. In addition, the two threads of
Case 2 and Case 4 have evolved into a single-loop like system
by the end of the simulations. This is indicated clearly from the
magnetic field vectors projected onto the mid-plane (z = 0) (Fig-
ure 3). Case 3 shows the left-hand thread remains the same as
its initial state while the right-hand thread has spread out over
a larger area. Case 4 shows that the two threads have combined
with the axis of the new loop located near x = −1.0 and y = −0.2,
almost halfway between the two initial axes.

3.2. The time evolution of energy

Figures 4 and 5 show the volume integrated magnetic, internal
and kinetic energies as functions of time for Cases 1 to 4. In
each case, the rapid reduction in magnetic energy starts during
the development of the kink instability and the onset of magnetic
reconnection. We discuss the evolution of each form of energy
in turn.

3.2.1. The time evolution of magnetic, internal and kinetic
energies

Figure 4a (black solid curve) shows the change of total magnetic
energy over the volume in Case 1. It stays at its initial value until
t = 65, after which there is a release of magnetic energy. The
loss of magnetic energy becomes significantly slower between
t = 125 and t = 165. This continued, but now slower, decrease
in magnetic energy, is an indication that the magnetic field is re-
laxing towards a minimum state, as discussed by Taylor (1974,
1986). This behaviour repeats once again from t = 165 onwards,
as the instability of the second thread is triggered. The total mag-
netic energy has dropped by about 3.03 by the end of simulation.

The red dashed curve in the same plot shows the magnetic
energy evolution of Case 2. It follows the same initial evolu-
tion as Case 1. However, the second phase of magnetic energy
release occurs slightly earlier, at time t = 135, as the threads
are now placed right next to each other. The closer the threads
are together the sooner the second instability is triggered. The
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Fig. 4: Top row shows the total magnetic energy (ME) minus the initial value as a function of time for (a) Case 1 (black solid
curve) and Case 2 (red dashed curve), (b) Case 3 (black solid curve) and Case 4 (red dashed curve). The total magnetic energy in
the volume at time t = 0 is 175.52 for Case 1 and Case 2 and 174.52 for Case 3 and Case 4. The bottom row shows the temporal
evolution of the total internal energy (INT) for (c) Case 1 (black solid curve) and Case 2 (red dashed curve), (d) Case 3 (black solid
curve) and Case 4 (red dashed curve).

time difference can be interpreted as a combination of the time
for a fast wave to travel and that the amplitude of the wave will
be smaller (by about a factor of 2). Hence, the instability needs
longer to reach the same amplitude.

By the end of the simulation in Case 2, the magnetic energy
has decreased by 3.07. When magnetic energy is released, the in-
ternal energy shows a similar size of increase at the same times.
Hence, the majority of the released magnetic energy goes into a
rise in the internal energy of the plasma. Note that the overall en-
ergy released in Cases 1 and 2 is almost the same. If the threads
are unstable, then they will relax to their lowest energy state,
regardless of the specific dynamical evolution. It is only a ques-
tion of when the second thread is destabilised. However, Case 1
releases slightly less energy, indicative of the incomplete relax-
ation (the energy of two weakly twisted threads being slightly
higher than a single tube).

For Case 3, we now assume that the left-hand thread is stable
with λ = 1.4. The two threads are placed the same distance apart
as in Case 1. As shown by the black solid curve in Figure 4b,
there is no loss of magnetic energy until the kink instability be-
gins to dominate (at t = 65). It then begins to decrease, as in Case
1, but this time there is no second energy release. The magnetic
energy release becomes much gentler from t = 130 onwards as

the thread continues to relax towards its minimum energy state.
The overall magnetic energy has decreased by just over 1.5 by
the end of simulation, which is, about 49% of the result in Case
1. As one might expect, only the unstable magnetic thread has
released its stored energy.

The interesting result is that more magnetic energy is re-
leased if these threads are moved closer together, as in Case 4.
The red dashed curves in Figures 4b and 4d show the evolution
of the energies. At time around t = 138, the magnetic energy be-
gins to decrease again, similar to Case 2. Hence, the disturbance
of the first thread, due to the kink instability, has resulted in the
release of magnetic energy in the nearby stable thread. The total
energy released is 2.3, approximately 0.7 less than in Cases 1 and
2. However, the initial magnetic energy for Cases 3 and 4 is ap-
proximately 1 unit smaller than Cases 1 and 2, due to the weaker
twist and smaller axial field strength in the left-hand thread.

The magnitude of the total kinetic energy is significantly
smaller than the magnitude of the total internal energy. Hence,
most of the magnetic energy released is appearing as heat and
not motion. However, the small changes in the kinetic energy
are easier to detect and rapid increases in kinetic energy are clear
indicators of dynamical events. In all four cases, the kinetic en-
ergy only begins to rise rapidly at about t = 65 (see Figure 5)
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Fig. 5: Temporal evolution of the total kinetic energy for (a) Case 1 (black solid curve) and Case 2 (red dashed curve) and (b) Case
3 (black solid curve) and Case 4 (red dashed curve).

as the unstable right-hand thread is excited. It then peaks twice,
reaching a maximum of 0.136 around t = 115, followed by a
slow decay. Without the second thread, this slow decay would
continue as the magnetic field relaxes. For Case 1, the kinetic
energy begin to rise again around t = 165, as the second thread
is driven unstable. Case 2, however, shows a much earlier rapid
rise at time t = 132, followed by a fast decay around t = 150.
By the end of the simulations, there is more kinetic energy left
in Case 1, suggesting that this configuration still has to reach its
final Taylor relaxed state.

When the left-hand thread has a stable twist profile, the ki-
netic energy behaves initially as expected, in response to the un-
stable right-hand thread. The black curve in Figure 5b peaks only
twice, followed by a gentle decay without any further increase.
Clearly only the energy in the unstable thread has been released.
However, in Case 4, the threads are placed next to each other and
the kinetic energy shows a dramatic increase as the second stable
thread is destabilised by the disturbances of the unstable thread.

3.2.2. The time evolution of the energy in each thread

We calculate the temporal evolution of the volume integrated en-
ergies in the left-hand (x < −1) and right-hand (x > −1) sections
of the plasma volume separately. In Case 1, the right-hand side is
excited by an initial perturbation, while the left-hand side is only
destabilised by the instability in the right-hand side. In Figure 6,
the red curves show the energy profiles of the right-hand side
volume, the blue curves the left-hand side volume and the black
curves the sum of the two curves. In Figure 6a the black curve
shows the two stage release of magnetic energy discussed above.
The red dashed curve shows that the right-hand side actually
loses more magnetic energy than the total value, between t = 65
and t = 180. Since the majority of this released magnetic en-
ergy goes into internal energy, there is an increase in the pressure
in the right-hand volume. This creates an expansion that pushes
the plasma into the left-hand volume, compressing the magnetic
field and increasing the magnetic energy there, as shown in the
blue triple dotted-dashed curve. The increase in magnetic energy
in the left-hand volume reaches a maximum value at the time the
energy released in the right-hand volume is at its smallest value.
However, once the kink instability is triggered in the left-hand
volume the magnetic energy is again reduced. The comparable
behaviour for the kinetic energy for Case 1 is shown in Figure 6b.

Figure 6c shows the time evolution of the magnetic energy
for Case 4. Again we see the increase in magnetic energy in
the left-hand volume as the energy in the right-hand volume de-
creases. From t = 140 the magnetic energy in the left-hand side
starts to decrease. There remains some oscillations, that are not
resolved in the time storage of our data. However, the sum of
the red and blue curves is smooth, suggesting that this is sim-
ply an oscillatory transfer of magnetic energy between the two
regions. The kinetic energy curves in Figure 6d follow a similar
behaviour to Case 1.

3.3. Current and magnetic field line time evolution

We begin this section by considering the temporal evolution of
the magnitude of the current density in Cases 3 and 4 before
discussing the structure of the magnetic fields.

Figure 7 shows the current density magnitude. Due to the ini-
tial perturbation, a kink instability creates an initial current sheet
(red colour in contour plot) in the right-hand magnetic thread at
time t = 80, suggesting that magnetic reconnection is occurring,
and this is discussed below. The current within the right-hand
thread begins to fragment and many small scale current struc-
tures are seen in the right-hand thread at t = 140. This has been
mentioned by various authors (e.g. Hood et al, 2008) and is a
key part of the Taylor relaxation process. For Case 3, the second
thread is never destabilised, despite the strong disturbances of
the right-hand thread as it relaxes.

For Case 4, the left-hand stable thread is actually desta-
bilised around t = 130. The expansion of the right-hand thread
has caused it to strongly interact with the left-hand thread, as
shown at t = 140. The dominant current component is jz and,
in the outer portion of each thread this is negative. Hence, the
expansion of the thread means that the touching parts of the two
threads mixes the same sign of current. If the left-hand thread
had the opposite twist, so that the outer part of jz was positive,
then the interaction would be significantly reduced and the desta-
bilisation would not take place. The left-hand thread is strongly
disrupted by t = 150 and now relaxes towards its lowest energy
state and, by the final time at t = 300, there is a clear indica-
tion that the two threads have combined to form a single larger
thread, as also shown in Figure 3.

To investigate evidence for reconnection, we track the evo-
lution of the magnetic field lines for Cases 3 and 4. The field
lines around the centre of each thread are traced from one photo-
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Fig. 6: Temporal evolution of the volume integrated energy plots of (a) the change in magnetic energy and (b) the kinetic energy
for Case 1 and (c) the change in magnetic energy and (d) the kinetic energy for Case 4. The magnetic energy at time t = 0 is 175.52
for Case 1 and 174.52 for Case 4. The black curves show the energy profiles as in Figure 4, while the red curves show the energy
profiles on the left-hand side of the domain and the blue curves for the left-hand side.

spheric end, where the velocity is zero, to the other end as shown
in Figure 8 for Case 3. These are coloured red and yellow for the
left-hand thread and blue and green for the right-hand thread. If
there is no reconnection, then the red/yellow and blue/green field
lines will lie on top of each other. If there is reconnection, then
the ends of the field lines will not pass through the appropriate
footpoint.

At time t = 60, a helical structure can be seen on the right-
hand thread, as the kink instability develops. However, the field
lines in the right-hand thread are still lying on top of each other
and so there is no evidence of reconnection at this time. At time
t = 80, the field lines are seen to unwind or straighten, giving
evidence of reconnection in Figure 8b (top right). In particular,
the green field lines start from the thread axis at the far end of the
right-hand thread. However, these field lines completely encircle
the thread axis at the near end. The green and blue field lines do
not follow the same paths. For case 3, there is no reconnection
in the left-hand thread.

The evolution of the field lines for Case 4 is shown in Fig-
ure 9. The initial behaviour is exactly the same as Case 3 for
t = 60 and t = 80. However, once the second instability is trig-
gered (t = 160), the field lines of the left-hand thread also begin
to unwind. By the end of simulation at t = 300, what is clear
is that the various coloured field lines are now wrapping around

each other, forming one weakly twisted magnetic thread that has
a rotation of about 90◦ about a common axis. It will be interest-
ing to see if future simulations can determine (i) how far apart
the individual threads must be before this destabilising of a sta-
ble thread occurs and (ii) whether the threads merge to form one
single twisted structure.

3.4. Heating and temperature structure

In this section, we will study how the temperature, in a cut across
the mid-plane, behaves for each of the four cases as functions of
x on y = 0 and z = 0. For Case 1 (black solid curves) and Case
3 (red dashed curves) and at times t = 60 and t = 80, the largest
temperatures are where the current sheet is forming (Figure 10).
The two curves lie on top of each other. The peak dimensionless
temperature is 0.038 at t = 80 and the peak temperature is clearly
confined to the current sheet. For Case 1, a new instability devel-
ops within the left-hand thread and the temperature starts to rise
in the current sheet at x = −1.4. As the instability in develops,
the temperature within the left-hand side thread becomes com-
parable to one on the right. Note that the hot temperature in these
threads is now spread over a distance of about 3 in each thread,
namely 1.5 times their original diameters.
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Fig. 7: Contour plots of current density magnitude, j(x, y, 0), as functions of x and y at z = 0 at the times indicated. The figures on
the left and right are for Case 3 and Case 4 respectively. The colour scale for the current density goes from 0 (white) to 5 (purple).

The temperature profile for Cases 2 (black solid curves) and
4 (red dashed curves) are shown in Figure 11. The initial evo-
lution of the temperature curves follows the results of Figure10
for t = 60 and t = 80 and are not shown. At t = 130, a small
temperature peak begins to show up near x = −1.4 within the
left-hand side thread as the second current sheet begins to form.
The temperature rise is smaller for Case 4 than for Case 2. In
both cases, these threads are merged into one larger thread, from
x = −2.5 to x = 1.0 with hot plasma right across this region.

The maximum temperature in Figure 11b is significantly larger
for Case 2 than Case 4, since there is more free magnetic en-
ergy available to heat the plasma. What is surprising is that the
maximum temperature of Case 2 is actually higher than Case 1.
So, although both threads are unstable, the temperature is higher
when the two unstable threads are touching each other. This is
most likely due to the fact that the plasma volume being heated
is smaller when the two threads combine than when they are sep-
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arate. A smaller volume for the same energy released will result
in a hotter plasma.

It is only Case 3 that has a single magnetic thread heated.
In all the other cases, hot plasma is spread across the vol-
ume of both threads. Hence, since the plasma is optically thin,
these magnetic structures will appear brighter than Case 3, when
viewed from the side.

The heating in Case 4 is the most interesting, since it is the
only case where a single stable thread is destabilised by its unsta-
ble neighbour and able to release its free magnetic energy. The
the mid-plane temperature, at eight different times, is shown in
Figure 12. The stable thread is destabilised around t = 140 and
a clear sharp boundary in the temperature is seen on the left-
hand side of the heated plasma. This develops into a hot arc at
t = 150, that is similar is nature to the initial current sheet that
forms around t = 80. By the end of the simulation, a large area
has been heated.

The effectiveness of heating of coronal loops through the ex-
citation of reconnection events in multiple magnetic threads can
be assessed by the studying the resulting temperatures after the
magnetic field has relaxed. In our simulations, the dimension-
less temperature after heating is approximately in the range of
T = 0.005 ∼ 0.02. To convert these to actual coronal values,
we consider a typical magnetic field strength of B0 = 50 G and
a typical mass density of ρ0 = 1.67 × 10−13 kg m−3. The refer-
ence temperature is approximately 1.4 × 1010K. Therefore, the
dimensional temperature in our simulations is around T ∼ 7 to
28 × 107 K. These values are high compared to observed values.
Of course, we expect the actual values to be smaller with the in-
clusion of thermal conduction. This effect could reduce the max-
imum temperature in the system by about a factor of 10 (Botha
et al. 2011). Optically thin radiation may reduce this even more.
However, the aim of this work is not to reproduce exactly the
coronal values but to show that an avalanche can be initiated if
the magnetic threads are sufficiently close together.

4. Discussion and conclusions

We have run a series of numerical experiments to investigate
the heating of a coronal loop consisting of a number of smaller
magnetic threads. In our experiments, we consider two magnetic
threads and always have one thread that is unstable to the kink
instability and this thread is excited by an initial velocity pertur-
bation. The second thread is either stable or unstable and it is
placed either beside or a distance of 2 units away from the edge
of the unstable thread. This gives four different combinations for
the arrangement of the magnetic threads. Table 1 presents the
times at which there is a rapid decrease in magnetic energy in
the first thread and the second thread. This gives a reasonable
estimate of when the main heating is beginning in the plasma.
For all cases, the first thread begins to release its free energy at
the same time. For Case 2, we see that the start of the second en-
ergy release occurs sooner when the threads are closer together
than when they are further apart. For Cases 2 and 4, the energy is
released at almost the same time, even though the second mag-
netic thread in Case 4 is stable on its own.

A major result from these simulations is that an individual
stable magnetic thread can be destabilised by a neighbouring
unstable thread, if they are close enough together and have the
same sense of twist. This triggering provides the first step in
developing MHD avalanche models. The idea of an avalanche
mechanism for energy release in a magnetically complex corona
began with the work of Lu & Hamilton (1991) and Lu et al.
(1993). They defined a magnetic field over a three-dimensional

grid and imposed ‘rules’ at each point that determined whether
magnetic energy dissipation occurred as a function of the lo-
cal field stresses. Dissipation at one point could lead a neigh-
bouring point to become unstable, and so on, hence creating an
‘avalanche’. They found that the avalanche sizes scaled as E−1.4.
Subsequent work (Vlahos et al. 1995; Vassiliadis et al. 1998) en-
sured that Maxwell’s equations were satisfied within this generic
approach, and increasingly sophisticated models have been de-
veloped (Charbonneau et al. 2001). There are suggestions that
continuum energy relesase models can translate to discrete self-
organised critical models, such as those discussed in Bak (1996).
2D numerical MHD models, which are restricted to direct forc-
ing in the x − y plane (e.g. Dmitruk et al. (1998) and Geor-
goulis et al. (1998)) lead to energy distributions similar to that
discussed by Lu & Hamilton (1991). 3D MHD turbulent mod-
els of coronal heating have produced power law distributions of
‘events’, albeit over a limited range (Rappazzo et al. 2007), with
the actual cause of the event sizes being subsumed into the gen-
eral word ‘turbulence’.

So far, we have demonstrated that one magnetic thread can
initiate energy release in a second, nearby, stable thread. It needs
to be demonstrated that this merged flux tube can continue to
disrupt a new (third) thread in its neighbourhood. However, it
is difficult to run such a simulation involving many threads as
sufficient grid resolution is required to ensure that numerical
dissipation does not cause an individual thread to evolve in an
unphysical manner. Our investigations suggest that each thread
must have at least 80 grid points across their diameters. Remem-
bering that there may be potential fields between the threads and
there must be a gap at the sides to reduce the influence of the
side boundary conditions, we can realistically simulate two (at
high resolution) and possibly three magnetic threads (at lower
resolution) with our present computing resources. Initial results
for three threads (at lower resolution) suggest that one unstable
thread can destabilise only one other thread. However, there are
now many different configurations to be investigated. In partic-
ular, it is to be expected that the initial separation between the
threads, relative sense of twist and initial field strength will de-
termine whether these processes can release energy from many
flux tubes. Such a release could describe a small flare. This will
be discussed further in future publications.

In our simulations, each thread has the same basic form of
magnetic field, with two parameters, namely the field strength
on the thread axis and the twist parameter, λ. Both threads are
twisted in the same sense. If the twist in the second thread is
reversed (basically reversing the direction of the axial current),
for the case of touching threads, the stable thread does not desta-
bilise. So the sense of twist could be important in whether an
avalanche occurs or not. This is likely to be because in this case
the azimuthal field is in the same direction where the threads
come into contact, mitigating against reconnection.

When the two threads are destabilised, the final relaxed state
is effectively a single, large, weakly twisted loop. The length
scales of this weakly twisted field are now larger than before,
the diameter of the flux tube is about three and a half, whereas
the original diameters were each two. This is very similar to
the inverse cascade of magnetic helicity reported by Antiochos
(2013) and used by Mackay et al. (2014). We assume that if three
threads can relax to form a single flux tube, then the length scales
will increase again.

What is the internal structure of coronal loops? The previous
modelling of heating in kink unstable loops considers a single
twisted cylindrical loop. Do they really consist of a single large
cylindrical loop or are they made up of several (or many) smaller
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threads? The idea of multiple threads within a coronal loop has
been used by many 1D, single field line modellers (Cargill 1994;
Klimchuk et al. 2008; Bradshaw & Klimchuk 2011). For these
multi-thread loops, the coronal heating term is often specified as
a function of position and time and is not, normally, determined
in a self-consistent way, as in the 3D simulations. However, there
are many benefits to the multi-thread models, in that they can
reproduce the observed differential emission measures of coro-
nal loops (Reale 2014; Warren et al. 2011; Schmelz et al. 2013;
Cargill 2014).
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Fig. 8: Case 3: the field line plots at time: (a) t = 60 (top left), (b) t = 80 (top right), (c) t = 160 (bottom left) and (d) t = 300
(bottom right). The yellow and red field lines are drawn from (x, y, z) = (−2, 0, 10) and (x, y, z) = (−2, 0,−10) while the blue and
green field lines are drawn form (x, y, z) = (2, 0, 10) and (x, y, z) = (2, 0,−10).
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Fig. 9: Case 4: the field line plots at time: (a) t = 60 (top left), (b) t = 80 (top right), (c) t = 160 (bottom left) and (d) t = 300
(bottom right). The yellow and red field lines are drawn from (x, y, z) = (−2, 0, 10) and (x, y, z) = (−2, 0,−10) while the blue and
green field lines are drawn form (x, y, z) = (0, 0, 10) and (x, y, z) = (0, 0,−10).
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Fig. 10: Temperature plots, T (x, 0, 0) for Case 1 (black) and Case 3 (red) at times t = (a) 60, (b) 80, (c) 160 and (d) 300.

Fig. 11: Temperature plots, T (x, 0, 0) for Case 2 (black) and Case 4 (red) at times (a) t = 130 and (b) t = 300.
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Fig. 12: Temperature at the mid-plane, T (x, y, 0), for Case 4 at the times indicated.
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