1,048 research outputs found

    Markov processes follow from the principle of Maximum Caliber

    Full text link
    Markov models are widely used to describe processes of stochastic dynamics. Here, we show that Markov models are a natural consequence of the dynamical principle of Maximum Caliber. First, we show that when there are different possible dynamical trajectories in a time-homogeneous process, then the only type of process that maximizes the path entropy, for any given singlet statistics, is a sequence of identical, independently distributed (i.i.d.) random variables, which is the simplest Markov process. If the data is in the form of sequentially pairwise statistics, then maximizing the caliber dictates that the process is Markovian with a uniform initial distribution. Furthermore, if an initial non-uniform dynamical distribution is known, or multiple trajectories are conditioned on an initial state, then the Markov process is still the only one that maximizes the caliber. Second, given a model, MaxCal can be used to compute the parameters of that model. We show that this procedure is equivalent to the maximum-likelihood method of inference in the theory of statistics.Comment: 4 page

    Indirect Inference for Time Series Using the Empirical Characteristic Function and Control Variates

    Full text link
    We estimate the parameter of a stationary time series process by minimizing the integrated weighted mean squared error between the empirical and simulated characteristic function, when the true characteristic functions cannot be explicitly computed. Motivated by Indirect Inference, we use a Monte Carlo approximation of the characteristic function based on iid simulated blocks. As a classical variance reduction technique, we propose the use of control variates for reducing the variance of this Monte Carlo approximation. These two approximations yield two new estimators that are applicable to a large class of time series processes. We show consistency and asymptotic normality of the parameter estimators under strong mixing, moment conditions, and smoothness of the simulated blocks with respect to its parameter. In a simulation study we show the good performance of these new simulation based estimators, and the superiority of the control variates based estimator for Poisson driven time series of counts.Comment: 38 pages, 2 figure

    Forecasting and Granger Modelling with Non-linear Dynamical Dependencies

    Full text link
    Traditional linear methods for forecasting multivariate time series are not able to satisfactorily model the non-linear dependencies that may exist in non-Gaussian series. We build on the theory of learning vector-valued functions in the reproducing kernel Hilbert space and develop a method for learning prediction functions that accommodate such non-linearities. The method not only learns the predictive function but also the matrix-valued kernel underlying the function search space directly from the data. Our approach is based on learning multiple matrix-valued kernels, each of those composed of a set of input kernels and a set of output kernels learned in the cone of positive semi-definite matrices. In addition to superior predictive performance in the presence of strong non-linearities, our method also recovers the hidden dynamic relationships between the series and thus is a new alternative to existing graphical Granger techniques.Comment: Accepted for ECML-PKDD 201

    O ‘Darwinismo Social’ Perante a QuestĂŁo da AssistĂȘncia

    Get PDF
    Tendo como referĂȘncia o quadro de misĂ©ria/ pauperismo do sĂ©culo XIX, o propĂłsito crĂ­tico deste ensaio Ă© a influĂȘncia da teoria darwinista na questĂŁo social. ApĂłs um breve enquadramento dessas reflexĂ”es, no quadro da problemĂĄtica da pobreza, a ĂȘnfase Ă© colocada no pensamento de Herbert Spencer que advogava os aspectos positivos da pobreza enquanto instrumento de selecção dos menos capazes. O que estĂĄ em causa, para o autor deste artigo, Ă© demonstrar como esses mesmos argumentos spencerianos emergiram em defesa de um posicionamento crĂ­tico no quadro de qualquer tipo de intervenção assistencial. / In the context of the 19th century framework of misery/pauperism, the critical purpose of this article is the influence of the Darwinian theory on the social question. After a brief framing of those reflections, the emphasis is placed on the thought of Herbert Spencer about what he considered the positive aspects of poverty as a selection instrument of the less capable. What is at question, for the author of this article, is to demonstrate how the Spencerian thought on poverty defend, in fact, a critical position in the field of any kind of assistance intervention

    Statistical Consequences of Devroye Inequality for Processes. Applications to a Class of Non-Uniformly Hyperbolic Dynamical Systems

    Full text link
    In this paper, we apply Devroye inequality to study various statistical estimators and fluctuations of observables for processes. Most of these observables are suggested by dynamical systems. These applications concern the co-variance function, the integrated periodogram, the correlation dimension, the kernel density estimator, the speed of convergence of empirical measure, the shadowing property and the almost-sure central limit theorem. We proved in \cite{CCS} that Devroye inequality holds for a class of non-uniformly hyperbolic dynamical systems introduced in \cite{young}. In the second appendix we prove that, if the decay of correlations holds with a common rate for all pairs of functions, then it holds uniformly in the function spaces. In the last appendix we prove that for the subclass of one-dimensional systems studied in \cite{young} the density of the absolutely continuous invariant measure belongs to a Besov space.Comment: 33 pages; companion of the paper math.DS/0412166; corrected version; to appear in Nonlinearit

    A New Approach to Time Domain Classification of Broadband Noise in Gravitational Wave Data

    Get PDF
    Broadband noise in gravitational wave (GW) detectors, also known as triggers, can often be a deterrant to the efficiency with which astrophysical search pipelines detect sources. It is important to understand their instrumental or environmental origin so that they could be eliminated or accounted for in the data. Since the number of triggers is large, data mining approaches such as clustering and classification are useful tools for this task. Classification of triggers based on a handful of discrete properties has been done in the past. A rich information content is available in the waveform or 'shape' of the triggers that has had a rather restricted exploration so far. This paper presents a new way to classify triggers deriving information from both trigger waveforms as well as their discrete physical properties using a sequential combination of the Longest Common Sub-Sequence (LCSS) and LCSS coupled with Fast Time Series Evaluation (FTSE) for waveform classification and the multidimensional hierarchical classification (MHC) analysis for the grouping based on physical properties. A generalized k-means algorithm is used with the LCSS (and LCSS+FTSE) for clustering the triggers using a validity measure to determine the correct number of clusters in absence of any prior knowledge. The results have been demonstrated by simulations and by application to a segment of real LIGO data from the sixth science run.Comment: 16 pages, 16 figure

    Emission-aware Energy Storage Scheduling for a Greener Grid

    Full text link
    Reducing our reliance on carbon-intensive energy sources is vital for reducing the carbon footprint of the electric grid. Although the grid is seeing increasing deployments of clean, renewable sources of energy, a significant portion of the grid demand is still met using traditional carbon-intensive energy sources. In this paper, we study the problem of using energy storage deployed in the grid to reduce the grid's carbon emissions. While energy storage has previously been used for grid optimizations such as peak shaving and smoothing intermittent sources, our insight is to use distributed storage to enable utilities to reduce their reliance on their less efficient and most carbon-intensive power plants and thereby reduce their overall emission footprint. We formulate the problem of emission-aware scheduling of distributed energy storage as an optimization problem, and use a robust optimization approach that is well-suited for handling the uncertainty in load predictions, especially in the presence of intermittent renewables such as solar and wind. We evaluate our approach using a state of the art neural network load forecasting technique and real load traces from a distribution grid with 1,341 homes. Our results show a reduction of >0.5 million kg in annual carbon emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the ACM International Conference on Future Energy Systems (e-Energy 20) June 2020, Australi

    Random walks - a sequential approach

    Full text link
    In this paper sequential monitoring schemes to detect nonparametric drifts are studied for the random walk case. The procedure is based on a kernel smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson estimator and its as- sociated sequential partial sum process under non-standard sampling. The asymptotic behavior differs substantially from the stationary situation, if there is a unit root (random walk component). To obtain meaningful asymptotic results we consider local nonpara- metric alternatives for the drift component. It turns out that the rate of convergence at which the drift vanishes determines whether the asymptotic properties of the monitoring procedure are determined by a deterministic or random function. Further, we provide a theoretical result about the optimal kernel for a given alternative

    An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration

    Full text link
    While statisticians are well-accustomed to performing exploratory analysis in the modeling stage of an analysis, the notion of conducting preliminary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage) of an analysis is an area which we feel deserves much further attention. Towards this aim, this paper proposes a general-purpose algorithm for automatic density exploration. The proposed exploration algorithm combines and expands upon components from various adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at its heart. Additionally, the algorithm is run on interacting parallel chains -- a feature which both decreases computational cost as well as stabilizes the algorithm, improving its ability to explore the density. Performance is studied in several applications. Through a Bayesian variable selection example, the authors demonstrate the convergence gains obtained with interacting chains. The ability of the algorithm's adaptive proposal to induce mode-jumping is illustrated through a trimodal density and a Bayesian mixture modeling application. Lastly, through a 2D Ising model, the authors demonstrate the ability of the algorithm to overcome the high correlations encountered in spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as appendices
    • 

    corecore