1,048 research outputs found
Markov processes follow from the principle of Maximum Caliber
Markov models are widely used to describe processes of stochastic dynamics.
Here, we show that Markov models are a natural consequence of the dynamical
principle of Maximum Caliber. First, we show that when there are different
possible dynamical trajectories in a time-homogeneous process, then the only
type of process that maximizes the path entropy, for any given singlet
statistics, is a sequence of identical, independently distributed (i.i.d.)
random variables, which is the simplest Markov process. If the data is in the
form of sequentially pairwise statistics, then maximizing the caliber dictates
that the process is Markovian with a uniform initial distribution. Furthermore,
if an initial non-uniform dynamical distribution is known, or multiple
trajectories are conditioned on an initial state, then the Markov process is
still the only one that maximizes the caliber. Second, given a model, MaxCal
can be used to compute the parameters of that model. We show that this
procedure is equivalent to the maximum-likelihood method of inference in the
theory of statistics.Comment: 4 page
Indirect Inference for Time Series Using the Empirical Characteristic Function and Control Variates
We estimate the parameter of a stationary time series process by minimizing
the integrated weighted mean squared error between the empirical and simulated
characteristic function, when the true characteristic functions cannot be
explicitly computed. Motivated by Indirect Inference, we use a Monte Carlo
approximation of the characteristic function based on iid simulated blocks. As
a classical variance reduction technique, we propose the use of control
variates for reducing the variance of this Monte Carlo approximation. These two
approximations yield two new estimators that are applicable to a large class of
time series processes. We show consistency and asymptotic normality of the
parameter estimators under strong mixing, moment conditions, and smoothness of
the simulated blocks with respect to its parameter. In a simulation study we
show the good performance of these new simulation based estimators, and the
superiority of the control variates based estimator for Poisson driven time
series of counts.Comment: 38 pages, 2 figure
Forecasting and Granger Modelling with Non-linear Dynamical Dependencies
Traditional linear methods for forecasting multivariate time series are not
able to satisfactorily model the non-linear dependencies that may exist in
non-Gaussian series. We build on the theory of learning vector-valued functions
in the reproducing kernel Hilbert space and develop a method for learning
prediction functions that accommodate such non-linearities. The method not only
learns the predictive function but also the matrix-valued kernel underlying the
function search space directly from the data. Our approach is based on learning
multiple matrix-valued kernels, each of those composed of a set of input
kernels and a set of output kernels learned in the cone of positive
semi-definite matrices. In addition to superior predictive performance in the
presence of strong non-linearities, our method also recovers the hidden dynamic
relationships between the series and thus is a new alternative to existing
graphical Granger techniques.Comment: Accepted for ECML-PKDD 201
O âDarwinismo Socialâ Perante a QuestĂŁo da AssistĂȘncia
Tendo como referĂȘncia o quadro de misĂ©ria/ pauperismo do sĂ©culo XIX, o propĂłsito crĂtico deste ensaio Ă© a influĂȘncia da teoria darwinista na questĂŁo social. ApĂłs um breve enquadramento dessas reflexĂ”es, no quadro da problemĂĄtica da pobreza, a ĂȘnfase Ă© colocada no pensamento de Herbert Spencer que advogava os aspectos positivos da pobreza enquanto instrumento de selecção dos menos capazes. O que estĂĄ em causa, para o autor deste artigo, Ă© demonstrar como esses mesmos argumentos spencerianos emergiram em defesa de um posicionamento crĂtico no quadro de qualquer tipo de intervenção assistencial. / In the context of the 19th century framework of misery/pauperism, the critical purpose of this article is the influence of the Darwinian theory on the social question. After a brief framing of those reflections, the emphasis is placed on the thought of Herbert Spencer about what he considered the positive aspects of poverty as a selection instrument of the less capable. What is at question, for the author of this article, is to demonstrate how the Spencerian thought on poverty defend, in fact, a critical position in the field of any kind of assistance intervention
Statistical Consequences of Devroye Inequality for Processes. Applications to a Class of Non-Uniformly Hyperbolic Dynamical Systems
In this paper, we apply Devroye inequality to study various statistical
estimators and fluctuations of observables for processes. Most of these
observables are suggested by dynamical systems. These applications concern the
co-variance function, the integrated periodogram, the correlation dimension,
the kernel density estimator, the speed of convergence of empirical measure,
the shadowing property and the almost-sure central limit theorem. We proved in
\cite{CCS} that Devroye inequality holds for a class of non-uniformly
hyperbolic dynamical systems introduced in \cite{young}. In the second appendix
we prove that, if the decay of correlations holds with a common rate for all
pairs of functions, then it holds uniformly in the function spaces. In the last
appendix we prove that for the subclass of one-dimensional systems studied in
\cite{young} the density of the absolutely continuous invariant measure belongs
to a Besov space.Comment: 33 pages; companion of the paper math.DS/0412166; corrected version;
to appear in Nonlinearit
A New Approach to Time Domain Classification of Broadband Noise in Gravitational Wave Data
Broadband noise in gravitational wave (GW) detectors, also known as triggers,
can often be a deterrant to the efficiency with which astrophysical search
pipelines detect sources. It is important to understand their instrumental or
environmental origin so that they could be eliminated or accounted for in the
data. Since the number of triggers is large, data mining approaches such as
clustering and classification are useful tools for this task. Classification of
triggers based on a handful of discrete properties has been done in the past. A
rich information content is available in the waveform or 'shape' of the
triggers that has had a rather restricted exploration so far. This paper
presents a new way to classify triggers deriving information from both trigger
waveforms as well as their discrete physical properties using a sequential
combination of the Longest Common Sub-Sequence (LCSS) and LCSS coupled with
Fast Time Series Evaluation (FTSE) for waveform classification and the
multidimensional hierarchical classification (MHC) analysis for the grouping
based on physical properties. A generalized k-means algorithm is used with the
LCSS (and LCSS+FTSE) for clustering the triggers using a validity measure to
determine the correct number of clusters in absence of any prior knowledge. The
results have been demonstrated by simulations and by application to a segment
of real LIGO data from the sixth science run.Comment: 16 pages, 16 figure
Emission-aware Energy Storage Scheduling for a Greener Grid
Reducing our reliance on carbon-intensive energy sources is vital for
reducing the carbon footprint of the electric grid. Although the grid is seeing
increasing deployments of clean, renewable sources of energy, a significant
portion of the grid demand is still met using traditional carbon-intensive
energy sources. In this paper, we study the problem of using energy storage
deployed in the grid to reduce the grid's carbon emissions. While energy
storage has previously been used for grid optimizations such as peak shaving
and smoothing intermittent sources, our insight is to use distributed storage
to enable utilities to reduce their reliance on their less efficient and most
carbon-intensive power plants and thereby reduce their overall emission
footprint. We formulate the problem of emission-aware scheduling of distributed
energy storage as an optimization problem, and use a robust optimization
approach that is well-suited for handling the uncertainty in load predictions,
especially in the presence of intermittent renewables such as solar and wind.
We evaluate our approach using a state of the art neural network load
forecasting technique and real load traces from a distribution grid with 1,341
homes. Our results show a reduction of >0.5 million kg in annual carbon
emissions -- equivalent to a drop of 23.3% in our electric grid emissions.Comment: 11 pages, 7 figure, This paper will appear in the Proceedings of the
ACM International Conference on Future Energy Systems (e-Energy 20) June
2020, Australi
Random walks - a sequential approach
In this paper sequential monitoring schemes to detect nonparametric drifts
are studied for the random walk case. The procedure is based on a kernel
smoother. As a by-product we obtain the asymptotics of the Nadaraya-Watson
estimator and its as- sociated sequential partial sum process under
non-standard sampling. The asymptotic behavior differs substantially from the
stationary situation, if there is a unit root (random walk component). To
obtain meaningful asymptotic results we consider local nonpara- metric
alternatives for the drift component. It turns out that the rate of convergence
at which the drift vanishes determines whether the asymptotic properties of the
monitoring procedure are determined by a deterministic or random function.
Further, we provide a theoretical result about the optimal kernel for a given
alternative
An Adaptive Interacting Wang-Landau Algorithm for Automatic Density Exploration
While statisticians are well-accustomed to performing exploratory analysis in
the modeling stage of an analysis, the notion of conducting preliminary
general-purpose exploratory analysis in the Monte Carlo stage (or more
generally, the model-fitting stage) of an analysis is an area which we feel
deserves much further attention. Towards this aim, this paper proposes a
general-purpose algorithm for automatic density exploration. The proposed
exploration algorithm combines and expands upon components from various
adaptive Markov chain Monte Carlo methods, with the Wang-Landau algorithm at
its heart. Additionally, the algorithm is run on interacting parallel chains --
a feature which both decreases computational cost as well as stabilizes the
algorithm, improving its ability to explore the density. Performance is studied
in several applications. Through a Bayesian variable selection example, the
authors demonstrate the convergence gains obtained with interacting chains. The
ability of the algorithm's adaptive proposal to induce mode-jumping is
illustrated through a trimodal density and a Bayesian mixture modeling
application. Lastly, through a 2D Ising model, the authors demonstrate the
ability of the algorithm to overcome the high correlations encountered in
spatial models.Comment: 33 pages, 20 figures (the supplementary materials are included as
appendices
- âŠ