868 research outputs found

    Quantum immanants, double Young-Capelli bitableaux and Schur shifted symmetric functions

    Get PDF
    We propose a new method for a unified study of some of the main features of the theory of the center ζ(n)\boldsymbol{\zeta}(n) of the enveloping algebra U(gl(n)) and of the algebra Λ∗(n)\Lambda^*(n) of shifted symmetric polynomials, that allows the whole theory to be developed, in a transparent and concise way, from the representation-theoretic point of view, that is entirely in the center of U(gl(n)). Our methodological innovation is the systematic use of the superalgebraic method of virtual variables for gl(n), which is, in turn, an extension of Capelli's method of ``variabili ausiliarie''. The passage n→∞n \rightarrow \infty for the algebras ζ(n)\boldsymbol{\zeta}(n) and Λ∗(n)\Lambda^*(n) is here obtained both as direct and inverse limit in the category of filtered algebras. The present approach leads to proofs that are almost direct consequences of the definitions and constructions: they often reduce to a few lines computation

    Discrete Mathematics

    Full text link
    The purpose of the present work is to provide short and supple teaching notes for a 3030 hours introductory course on elementary \textit{Enumerative Algebraic Combinatorics}. We fully adopt the \textit{Rota way} (see, e.g. \cite{KY}). The themes are organized into a suitable sequence that allows us to derive any result from the preceding ones by elementary processes. Definitions of \textit{combinatorial coefficients} are just by their \textit{combinatorial meaning}. The derivation techniques of formulae/results are founded upon constructions and two general and elementary principles/methods: - The \textit{bad element} method (for \textit{recursive} formulae). As the reader should recognize, the bad element method might be regarded as a combinatorial companion of the idea of \textit{conditional probability}. - The \textit{overcounting} principle (for \textit{close form} formulae). Therefore, \textit{no computation} is required in \textit{proofs}: \textit{computation formulae are byproducts of combinatorial constructions}. We tried to provide a self-contained presentation: the only prerequisite is standard high school mathematics. We limited ourselves to the \textit{combinatorial point of view}: we invite the reader to draw the (obvious) \textit{probabilistic interpretations}

    An Algebra of Pieces of Space -- Hermann Grassmann to Gian Carlo Rota

    Full text link
    We sketch the outlines of Gian Carlo Rota's interaction with the ideas that Hermann Grassmann developed in his Ausdehnungslehre of 1844 and 1862, as adapted and explained by Giuseppe Peano in 1888. This leads us past what Rota variously called 'Grassmann-Cayley algebra', or 'Peano spaces', to the Whitney algebra of a matroid, and finally to a resolution of the question "What, really, was Grassmann's regressive product?". This final question is the subject of ongoing joint work with Andrea Brini, Francesco Regonati, and William Schmitt. The present paper was presented at the conference "The Digital Footprint of Gian-Carlo Rota: Marbles, Boxes and Philosophy" in Milano on 17 Feb 2009. It will appear in proceedings of that conference, to be published by Springer Verlag.Comment: 28 page

    Blind protein structure prediction using accelerated free-energy simulations.

    Get PDF
    We report a key proof of principle of a new acceleration method [Modeling Employing Limited Data (MELD)] for predicting protein structures by molecular dynamics simulation. It shows that such Boltzmann-satisfying techniques are now sufficiently fast and accurate to predict native protein structures in a limited test within the Critical Assessment of Structure Prediction (CASP) community-wide blind competition

    Calcium dynamics and circadian rhythms in suprachiasmatic nucleus neurons

    Get PDF
    The hypothalamic suprachiasmatic nucleus (SCN) has a pivotal role in the mammalian circadian clock. SCN neurons generate circadian rhythms in action potential firing frequencies and neurotransmitter release, and the core oscillation is thought to be driven by "clock gene" transcription-translation feedback loops. Cytosolic Ca2+ mobilization followed by stimulation of various receptors has been shown to reset the gene transcription cycles in SCN neurons, whereas contribution of steady-state cytosolic Ca2+ levels to the rhythm generation is unclear. Recently, circadian rhythms in cytosolic Ca2+ levels have been demonstrated in cultured SCN neurons. The circadian Ca2+ rhythms are driven by the release of Ca2+ from ryanodine-sensitive internal stores and resistant to the blockade of action potentials. These results raise the possibility that gene translation/transcription loops may interact with autonomous Ca2+ oscillations in the production of circadian rhythms in SCN neurons

    How Water's Properties Are Encoded in Its Molecular Structure and Energies.

    Get PDF
    How are water's material properties encoded within the structure of the water molecule? This is pertinent to understanding Earth's living systems, its materials, its geochemistry and geophysics, and a broad spectrum of its industrial chemistry. Water has distinctive liquid and solid properties: It is highly cohesive. It has volumetric anomalies-water's solid (ice) floats on its liquid; pressure can melt the solid rather than freezing the liquid; heating can shrink the liquid. It has more solid phases than other materials. Its supercooled liquid has divergent thermodynamic response functions. Its glassy state is neither fragile nor strong. Its component ions-hydroxide and protons-diffuse much faster than other ions. Aqueous solvation of ions or oils entails large entropies and heat capacities. We review how these properties are encoded within water's molecular structure and energies, as understood from theories, simulations, and experiments. Like simpler liquids, water molecules are nearly spherical and interact with each other through van der Waals forces. Unlike simpler liquids, water's orientation-dependent hydrogen bonding leads to open tetrahedral cage-like structuring that contributes to its remarkable volumetric and thermal properties

    Il controllo delle zanzare malarigene dai pipistrellai alle bat-box

    Get PDF
    The control of the malarial mosquitoes using Bat-Bo

    Five-dimensional gauge theories and the local B-model

    Get PDF
    We propose an effective framework for computing the prepotential of the topological B-model on a class of local Calabi–Yau geometries related to the circle compactification of five-dimensional N=1 super Yang–Mills theory with simple gauge group. In the simply laced case, we construct Picard–Fuchs operators from the Dubrovin connection on the Frobenius manifolds associated with the extended affine Weyl groups of type ADE. In general, we propose a purely algebraic construction of Picard–Fuchs ideals from a canonical subring of the space of regular functions on the ramification locus of the Seiberg–Witten curve, encompassing non-simply laced cases as well. We offer several precision tests of our proposal for simply laced cases by comparing with the gauge theory prepotentials obtained from the K-theoretic blow-up equations, finding perfect agreement. Whenever there is more than one candidate Seiberg-Witten curve for non-simply laced gauge groups in the literature, we employ our framework to verify which one agrees with the K-theoretic blow-up equations
    • 

    corecore