805 research outputs found

    Interface tactile pour la saisie guidée de connaissances

    Get PDF
    International audienceIn recent years, artificial intelligence tools have democratized and are increasingly used by people who are not experts in the field. These artificial intelligence tools, like rule-based or constraint-based systems require the input of human expertise to replicate the desired reasoning. Despite the explosion of new devices and new input paradigms, such as tablets and other touch interfaces, it seems that the usability of these tools have not taken advantage of these recent advances. In this article, we illustrate our concept with the rule edition in a fuzzy expert system. The special feature of fuzzy logic is that these rules look closer to natural language than classical logic. We present our work that involves the use of new touch interfaces to edit a fuzzy rule base with one finger. We end this section by the evaluation of the interface with a user panel.Au cours de ces dernières années, les outils d'intelligence artificielle se sont démocratisés et sont de plus en plus sou-vent utilisés par des personnes qui ne sont pas expertes du domaine. Parmi ces outils d'intelligence artificielle, les systèmes à base de règles ou de contraintes nécessitent la saisie de l'expertise humaine afin de reproduire le comporte-ment souhaité. Malgré l'explosion des nouveaux périphé-riques et de nouveaux paradigmes de saisie, comme les tablettes et autres interfaces tactiles, l'ergonomie de ces outils semble ne pas avoir profité de toutes ces avancées récentes. Dans cet article, nous prenons l'exemple d'un système expert flou pour lequel il faut rédiger des règles. La particu-larité de la logique floue est que ces règles sont construites d'une manière plus proche du langage naturel qu'en lo-gique classique. Nous présentons notre travail qui consiste en l'exploitation des nouvelles interfaces tactiles afin de rédiger une base de règles floues avec un seul doigt. Nous terminons cet article par l'évaluation de l'interface auprès d'un panel d'utilisateurs

    Normal Stress Distribution of Rough Surfaces in Contact

    Full text link
    We study numerically the stress distribution on the interface between two thick elastic media bounded by interfaces that include spatially correlated asperities. The interface roughness is described using the self-affine topography that is observed over a very wide range of scales from fractures to faults. We analyse the correlation properties of the normal stress distribution when the rough surfaces have been brought into full contact. The self affinity of the rough surfaces is described by a Hurst exponent H. We find that the normal stress field is also self affine, but with a Hurst exponent H-1. Fluctations of the normal stress are shown to be important, especially at local scales with anti-persistent correlations.Comment: 11 pages LaTeX, 4 Postscript figures, submitted to Geophysical Research Letter

    Numerical analysis of seismic wave amplification in Nice (France) and comparisons with experiments

    Get PDF
    The analysis of site effects is very important since the amplification of seismic motion in some specific areas can be very strong. In this paper, the site considered is located in the centre of Nice on the French Riviera. Site effects are investigated considering a numerical approach (Boundary Element Method) and are compared to experimental results (weak motion and microtremors). The investigation of seismic site effects through numerical approaches is interesting because it shows the dependency of the amplification level on such parameters as wave velocity in surface soil layers, velocity contrast with deep layers, seismic wave type, incidence and damping. In this specific area of Nice, a one-dimensional (1D) analytical analysis of amplification does not give a satisfactory estimation of the maximum reached levels. A boundary element model is then proposed considering different wave types (SH, P, SV) as the seismic loading. The alluvial basin is successively assumed as an isotropic linear elastic medium and an isotropic linear viscoelastic solid (standard solid). The thickness of the surface layer, its mechanical properties, its general shape as well as the seismic wave type involved have a great influence on the maximum amplification and the frequency for which it occurs. For real earthquakes, the numerical results are in very good agreement with experimental measurements for each motion component. Two-dimensional basin effects are found to be very strong and are well reproduced numerically

    Measuring Relations Between Concepts In Conceptual Spaces

    Full text link
    The highly influential framework of conceptual spaces provides a geometric way of representing knowledge. Instances are represented by points in a high-dimensional space and concepts are represented by regions in this space. Our recent mathematical formalization of this framework is capable of representing correlations between different domains in a geometric way. In this paper, we extend our formalization by providing quantitative mathematical definitions for the notions of concept size, subsethood, implication, similarity, and betweenness. This considerably increases the representational power of our formalization by introducing measurable ways of describing relations between concepts.Comment: Accepted at SGAI 2017 (http://www.bcs-sgai.org/ai2017/). The final publication is available at Springer via https://doi.org/10.1007/978-3-319-71078-5_7. arXiv admin note: substantial text overlap with arXiv:1707.05165, arXiv:1706.0636

    Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    Full text link
    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the Boundary Element Method. Various absorbing layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the spurious wave reflections especially in some difficult cases such as shallow numerical models or grazing incidences. Finally, strong earthquakes involve nonlinear effects in surficial soil layers. To model strong ground motion, it is thus necessary to consider the nonlinear dynamic behaviour of soils and simultaneously investigate seismic wave propagation in complex 2D/3D geological structures! Recent advances in numerical formulations and constitutive models in such complex situations are presented and discussed in this paper. A crucial issue is the availability of the field/laboratory data to feed and validate such models.Comment: of International Journal Geomechanics (2010) 1-1

    ClbP is a prototype of a peptidase subgroup involved in biosynthesis of nonribosomal peptides

    Get PDF
    The pks genomic island of Escherichia coli encodes polyketide (PK) and nonribosomal peptide (NRP) synthases that allow assembly of a putative hybrid PK-NRP compound named colibactin that induces DNA double-strand breaks in eukaryotic cells. The pks-encoded machinery harbors an atypical essential protein, ClbP. ClbP crystal structure and mutagenesis experiments revealed a serine-active site and original structural features compatible with peptidase activity, which was detected by biochemical assays. Ten ClbP homologs were identified in silico in NRP genomic islands of closely and distantly related bacterial species. All tested ClbP homologs were able to complement a clbP-deficient E. coli mutant. ClbP is therefore a prototype of a new subfamily of extracytoplasmic peptidases probably involved in the maturation of NRP compounds. Such peptidases will be powerful tools for the manipulation of NRP biosynthetic pathways
    corecore