364 research outputs found

    Symplectic capacity and short periodic billiard trajectory

    Get PDF
    We prove that a bounded domain Ω\Omega in Rn\R^n with smooth boundary has a periodic billiard trajectory with at most n+1n+1 bounce times and of length less than Cnr(Ω)C_n r(\Omega), where CnC_n is a positive constant which depends only on nn, and r(Ω)r(\Omega) is the supremum of radius of balls in Ω\Omega. This result improves the result by C.Viterbo, which asserts that Ω\Omega has a periodic billiard trajectory of length less than C'_n \vol(\Omega)^{1/n}. To prove this result, we study symplectic capacity of Liouville domains, which is defined via symplectic homology.Comment: 32 pages, final version with minor modifications. Published online in Mathematische Zeitschrif

    Low Energy Solutions for the Semiclassical Limit of Schrodinger–Maxwell Systems

    Get PDF
    We show that the number of positive solutions of Schrodinger– Maxwell system on a smooth bounded domain depends on the topological properties of the domain. In particular we consider the Lusternik– Schnirelmann category and the PoincarĂ© polynomial of the domain

    Infinitesimals without Logic

    Full text link
    We introduce the ring of Fermat reals, an extension of the real field containing nilpotent infinitesimals. The construction takes inspiration from Smooth Infinitesimal Analysis (SIA), but provides a powerful theory of actual infinitesimals without any need of a background in mathematical logic. In particular, on the contrary with respect to SIA, which admits models only in intuitionistic logic, the theory of Fermat reals is consistent with classical logic. We face the problem to decide if the product of powers of nilpotent infinitesimals is zero or not, the identity principle for polynomials, the definition and properties of the total order relation. The construction is highly constructive, and every Fermat real admits a clear and order preserving geometrical representation. Using nilpotent infinitesimals, every smooth functions becomes a polynomial because in Taylor's formulas the rest is now zero. Finally, we present several applications to informal classical calculations used in Physics: now all these calculations become rigorous and, at the same time, formally equal to the informal ones. In particular, an interesting rigorous deduction of the wave equation is given, that clarifies how to formalize the approximations tied with Hook's law using this language of nilpotent infinitesimals.Comment: The first part of the preprint is taken directly form arXiv:0907.1872 The second part is new and contains a list of example

    On the Schrodinger-Maxwell equations under the effect of a general nonlinear term

    Get PDF
    In this paper we prove the existence of a nontrivial solution to the nonlinear Schrodinger-Maxwell equations in R3,\R^3, assuming on the nonlinearity the general hypotheses introduced by Berestycki & Lions.Comment: 18 page

    On the Dynamics of solitons in the nonlinear Schroedinger equation

    Full text link
    We study the behavior of the soliton solutions of the equation i((\partial{\psi})/(\partialt))=-(1/(2m)){\Delta}{\psi}+(1/2)W_{{\epsilon}}'({\psi})+V(x){\psi} where W_{{\epsilon}}' is a suitable nonlinear term which is singular for {\epsilon}=0. We use the "strong" nonlinearity to obtain results on existence, shape, stability and dynamics of the soliton. The main result of this paper (Theorem 1) shows that for {\epsilon}\to0 the orbit of our soliton approaches the orbit of a classical particle in a potential V(x).Comment: 29 page

    Non-radial sign-changing solutions for the Schroedinger-Poisson problem in the semiclassical limit

    Get PDF
    We study the existence of nonradial sign-changing solutions to the Schroedinger-Poisson system in dimension N>=3. We construct nonradial sign-changing multi-peak solutions whose peaks are displaced in suitable symmetric configurations and collapse to the same point. The proof is based on the Lyapunov-Schmidt reduction
    • 

    corecore