We study the behavior of the soliton solutions of the equation
i((\partial{\psi})/(\partialt))=-(1/(2m)){\Delta}{\psi}+(1/2)W_{{\epsilon}}'({\psi})+V(x){\psi}
where W_{{\epsilon}}' is a suitable nonlinear term which is singular for
{\epsilon}=0. We use the "strong" nonlinearity to obtain results on existence,
shape, stability and dynamics of the soliton. The main result of this paper
(Theorem 1) shows that for {\epsilon}\to0 the orbit of our soliton approaches
the orbit of a classical particle in a potential V(x).Comment: 29 page