research

Symplectic capacity and short periodic billiard trajectory

Abstract

We prove that a bounded domain Ω\Omega in Rn\R^n with smooth boundary has a periodic billiard trajectory with at most n+1n+1 bounce times and of length less than Cnr(Ω)C_n r(\Omega), where CnC_n is a positive constant which depends only on nn, and r(Ω)r(\Omega) is the supremum of radius of balls in Ω\Omega. This result improves the result by C.Viterbo, which asserts that Ω\Omega has a periodic billiard trajectory of length less than C'_n \vol(\Omega)^{1/n}. To prove this result, we study symplectic capacity of Liouville domains, which is defined via symplectic homology.Comment: 32 pages, final version with minor modifications. Published online in Mathematische Zeitschrif

    Similar works