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LOW ENERGY SOLUTIONS FOR THE SEMICLASSICAL LIMIT

OF SCHROEDINGER MAXWELL SYSTEMS

MARCO GHIMENTI AND ANNA MARIA MICHELETTI

Abstract. We show that the number of solutions of Schroedinger Maxwell
system on a smooth bounded domain Ω ⊂ R3. depends on the topological
properties of the domain. In particular we consider the Lusternik-Schnirelmann
category and the Poincaré polynomial of the domain.

Dedicated to our friend Bernhard

1. Introduction

Given real numbers q > 0, ω > 0 we consider the following Schroedinger Maxwell
system on a smooth bounded domain Ω ⊂ R3.

(1)







−ε2∆u+ u+ ωuv = |u|p−2u in Ω
−∆v = qu2 in Ω
u, v = 0 on ∂Ω

This paper deals with the semiclassical limit of the system (1), i.e. it is concerned
with the problem of finding solutions of (1) when the parameter ε is sufficiently
small. This problem has some relevance for the understanding of a wide class of
quantum phenomena. We are interested in the relation between the number of
solutions of (1) and the topology of the bounded set Ω. In particular we consider
the Lusternik Schnirelmann category catΩ of Ω in itself and its Poincaré polynomial
Pt(Ω).

Our main results are the following.

Theorem 1. Let 4 < p < 6. For ε small enough there exist at least cat(Ω) positive
solutions of (1).

Theorem 2. Let 4 < p < 6. Assume that for ε small enough all the solutions
of problem (1) are non- degenerate. Then there are at least 2P1(Ω) − 1 positive
solutions.

Schroedinger Maxwell systems recently received considerable attention from the
mathematical community. In the pioneering paper [9] Benci and Fortunato studied
system (1) when ε = 1 and without nonlinearity. Regarding the system in a semi-
classical regime Ruiz [18] and D’Aprile-Wei [11] showed the existence of a family of
radially symmetric solutions respectively for Ω = R3 or a ball. D’Aprile-Wei [12]
also proved the existence of clustered solutions in the case of a bounded domain Ω
in R3.
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Recently, Siciliano [19] relates the number of solution with the topology of the
set Ω when ε = 1, and the nonlinearity is a pure power with exponent p close
to the critical exponent 6. Moreover, in the case ε = 1, many authors proved
results of existence and non existence of solution of (1) in presence of a pure power
nonlinearity |u|p−2u, 2 < p < 6 or more general nonlinearities [1, 2, 3, 4, 10, 14, 15,
17, 20].

In a forthcoming paper [13], we aim to use our approach to give an estimate
on the number of low energy solutions for Klein Gordon Maxwell systems on a
Riemannian manifold in terms of the topology of the manifold and some information
on the profile of the low energy solutions.

In the following we always assume 4 < p < 6.

2. Notations and definitions

In the following we use the following notations.

• B(x, r) is the ball in R3 centered in x with radius r.
• The function U(x) is the unique positive spherically symmetric function in
R3 such that

−∆U + U = Up−1 in R3

we remark that U and its first derivative decay exponentially at infinity.
• Given ε > 0 we define Uε(x) = U

(

x
ε

)

.
• We denote by supp ϕ the support of the function ϕ.
• We define

m∞ = inf
´

R3
|∇v|2+v2dx=|v|p

Lp(R3)

1

2

ˆ

R3

|∇v|2 + v2dx−
1

p
|v|pLp(R3)

• We also use the following notation for the different norms for u ∈ H1
g (M):

‖u‖2ε =
1

ε3

ˆ

M

ε2|∇u|2 + u2dx |u|pε,p =
1

ε3

ˆ

Ω

|u|pdx

‖u‖2H1
0
=

ˆ

Ω

|∇u|2dx |u|pp =

ˆ

Ω

|u|pdx

and we denote by Hε the Hilbert space H1
0 (Ω) endowed with the ‖·‖ε norm.

Definition 3. Let X a topological space and consider a closed subset A ⊂ X . We
say that A has category k relative to X (catM A = k) if A is covered by k closed
sets Aj , j = 1, . . . , k, which are contractible in X , and k is the minimum integer
with this property. We simply denote catX = catX X .

Remark 4. Let X1 andX2 be topological spaces. If g1 : X1 → X2 and g2 : X2 → X1

are continuous operators such that g2 ◦ g1 is homotopic to the identity on X1, then
catX1 ≤ catX2 .

Definition 5. Let X be any topological space and let Hk(X) denotes its k-th
homology group with coefficients in Q. The Poincaré polynomial Pt(X) of X is
defined as the following power series in t

Pt(X) :=
∑

k≥0

(dimHk(X)) tk

Actually, if X is a compact space, we have that dimHk(X) < ∞ and this series
is finite; in this case, Pt(X) is a polynomial and not a formal series.



LOW ENERGY SOLUTIONS FOR SCHROEDINGER MAXWELL SYSTEMS 3

Remark 6. Let X and Y be topological spaces. If f : X → Y and g : Y → X
are continuous operators such that g ◦ f is homotopic to the identity on X , then
Pt(Y ) = Pt(X) + Z(t) where Z(t) is a polynomial with non-negative coefficients.

These topological tools are classical and can be found, e.g., in [16] and in [5].

3. Preliminary results

Using an idea in a paper of Benci and Fortunato [9] we define the map ψ :
H1

0 (Ω) → H1
0 (Ω) defined by the equation

(2) −∆ψ(u) = qu2 in Ω

Lemma 7. The map ψ : H1
0 (Ω) → H1

0 (Ω) is of class C2 with derivatives

ψ′(u)[ϕ] = i∗(2quϕ)(3)

ψ′′(u)[ϕ1, ϕ2] = i∗(2qϕ1ϕ2)(4)

where the operator i∗ε : Lp′

, | · |ε,p′ → Hε is the adjoint operator of the immersion
operator iε : Hε → Lp, | · |ε,p.

Proof. The proof is standard. �

Lemma 8. The map T : H1
0 (Ω) → R given by

T (u) =

ˆ

Ω

u2ψ(u)dx

is a C2 map and its first derivative is

T ′(u)[ϕ] = 4

ˆ

Ω

ϕuψ(u)dx.

Proof. The regularity is standard. The first derivative is

T ′(u)[ϕ] = 2

ˆ

uϕψ(u) +

ˆ

u2ψ′(u)[ϕ].

By (3) and (2) we have

2q

ˆ

uϕψ(u) = −

ˆ

∆(ψ′(u)[ϕ])ψ(u) = −

ˆ

ψ′(u)[ϕ]∆ψ(u) =

=

ˆ

ψ′(u)[ϕ]qu2

and the claim follows. �

At this point we consider the following functional Iε ∈ C2(H1
0 (Ω),R).

(5) Iε(u) =
1

2
‖u‖2ε +

ω

4
Gε(u)−

1

p
|u+|pε,p

where

Gε(u) =
1

ε3

ˆ

Ω

u2ψ(u)dx =
1

ε3
T (u).

By Lemma 8 we have

I ′ε(u)[ϕ] =
1

ε3

ˆ

Ω

ε2∇u∇ϕ+ uϕ+ ωuψ(u)ϕ− (u+)p−1ϕ

I ′ε(u)[u] = ‖u‖2ε + ωGε(u)− |u+|pε,p
then if u is a critical points of the functional Iε the pair of positive functions
(u, ψ(u)) is a solution of (1).
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4. Nehari Manifold

We define the following Nehari set

Nε =
{

u ∈ H1
0 (Ω)r 0 : Nε(u) := I ′ε(u)[u] = 0

}

In this section we give an explicit proof of the main properties of the Nehari mani-
fold, although standard, for the sake of completeness

Lemma 9. Nε is a C2 manifold and infNε
‖u‖ε > 0.

Proof. If u ∈ Nε, using that Nε(u) = 0, and p > 4 we have

N ′
ε(u)[u] = 2‖u‖2ε + 4ωGε(u)− p|u+|ε,p = (2 − p)‖u‖ε + (4− p)ωGε(u) < 0

so Nε is a C2 manifold.
We prove the second claim by contradiction. Take a sequence {un}n ∈ Nε with

‖un‖ε → 0 while n→ +∞. Thus, using that Nε(u) = 0,

‖un‖
2
ε + ωGε(un) = |u+n |

p
p,ε ≤ C‖un‖

p
ε,

so

1 < 1 +
ωGε(u)

‖un‖ε
≤ C‖un‖

p−2
ε → 0

and this is a contradiction. �

Remark 10. If u ∈ Nε, then

Iε(u) =

(

1

2
−

1

p

)

‖u‖2ε + ω

(

1

4
−

1

p

)

Gε(u)

=

(

1

2
−

1

p

)

|u+|pp,ε −
ω

4
Gε(u)

Lemma 11. It holds Palais-Smale condition for the functional Iε on Nε.

Proof. We start proving PS condition for Iε. Let {un}n ∈ H1
0 (Ω) such that

Iε(un) → c |I ′ε(un)[ϕ]| ≤ σn‖ϕ‖ε where σn → 0

We prove that ‖un‖ε is bounded. Suppose ‖un‖ε → ∞. Then, by PS hypothesis

pIε(un)− I ′ε(un)[un]

‖un‖ε
=

(p

2
− 1

)

‖un‖ε +
(p

4
− 1

) Gε(un)

‖un‖ε
→ 0

and this is a contradiction because p > 4.
At this point, up to subsequence un → u weakly in H1

0 (Ω) and strongly in Lt(Ω)
for each 2 ≤ t < 6. Since un is a PS sequence

un + ωi∗ε(ψ(un)un)− i∗ε
(

(u+n )
p−1

)

→ 0 in H1
0 (Ω)

we have only to prove that i∗ε(ψ(un)un) → i∗ε(ψ(u)u) in H1
0 (Ω), then we have to

prove that

ψ(un)un → ψ(u)u in Lt′

We have |ψ(un)un − ψ(u)u|ε,t′ ≤ |ψ(u)(un − u)|ε,t′ + |(ψ(un)− ψ(u))un|ε,t′ . We
get

ˆ

Ω

|ψ(un)− ψ(u)|
t

t−1 |un|
t

t−1 ≤

(
ˆ

Ω

|ψ(un)− ψ(u)|t
)

1
t−1

(
ˆ

Ω

|un|
t

t−2

)

t−2
t−1

→ 0,

thus we can conclude easily.
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Now we prove PS condition for the constrained functional. Let {un}n ∈ Nε such
that

Iε(un) → c
|I ′ε(un)[ϕ]− λnN

′(un)[ϕ]| ≤ σn‖ϕ‖ε with σn → 0

In particular I ′ε(un)
[

un

‖un‖ε

]

− λnN
′(un)

[

un

‖un‖ε

]

→ 0. Then

λn

{

(p− 2) ‖un‖ε + (p− 4)ω
Gε(un)

‖un‖ε

}

→ 0

thus λn → 0 because p > 4. Since N ′(un) = un − i∗ε(4ωψ(un)un)− pi∗ε(|u
+
n |

p−1) is
bounded we obtain that {un}n is a PS sequence for the free functional Iε, and we
get the claim �

Lemma 12. For all w ∈ H1
0 (Ω) such that |w+|ε,p = 1 there exists a unique positive

number tε = tε(w) such that tε(w)w ∈ Nε.

Proof. We define, for t > 0

H(t) = Iε(tw) =
1

2
t2‖w‖2ε +

t4

4
ωGε(w)−

tp

p
.

Thus

H ′(t) = t
(

‖w‖2ε + t2ωGε(w)− tp−2
)

(6)

H ′′(t) = ‖w‖2ε + 3t2ωGε(w) − (p− 1)tp−2(7)

By (6) there exists tε > 0 such that H ′(tε). Moreover, by (6), (7) and because
p > 4 we that H ′′(tε) < 0, so tε is unique. �

5. Main ingredient of the proof

We sketch the proof of Theorem 1. First of all, since the functional Iε ∈ C2

is bounded below and satisfies PS condition on the complete C2 manifold Nε, we
have, by well known results, that Iε has at least cat Idε critical points in the sublevel

Idε =
{

u ∈ H1 : Iε(u) ≤ d
}

.

We prove that, for ε and δ small enough, it holds

catΩ ≤ cat
(

Nε ∩ I
m∞+δ
ε

)

where

m∞ := inf
N∞

1

2

ˆ

R3

|∇v|2 + v2dx −
1

p

ˆ

R3

|v|pdx

N∞ =

{

v ∈ H1(R3)r {0} :

ˆ

R3

|∇v|2 + v2dx =

ˆ

R3

|v|pdx

}

.

To get the inequality catΩ ≤ cat
(

Nε ∩ Im∞+δ
ε

)

we build two continuous operators

Φε : Ω− → Nε ∩ I
m∞+δ
ε

β : Nε ∩ I
m∞+δ
ε → Ω+.

where

Ω− = {x ∈ Ω : d(x, ∂Ω) < r}

Ω+ =
{

x ∈ R3 : d(x, ∂Ω) < r
}

with r small enough so that cat(Ω−) = cat(Ω+) = cat(Ω).
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Following an idea in [7], we build these operators Φε and β such that β ◦ Φε :
Ω− → Ω+ is homotopic to the immersion i : Ω− → Ω+. By the properties of
Lusternik Schinerlmann category we have

catΩ ≤ cat
(

Nε ∩ I
m∞+δ
ε

)

which ends the proof of Theorem 1.
Concerning Theorem 2, we can re-state classical results contained in [5, 8] in the

following form.

Theorem 13. Let Iε be the functional (5) on H1(Ω) and let Kε be the set of its
critical points. If all its critical points are non-degenerate then

(8)
∑

u∈Kε

tµ(u) = tPt(Ω) + t2(Pt(Ω)− 1) + t(1 + t)Q(t)

where Q(t) is a polynomial with non-negative integer coefficients and µ(u) is the
Morse index of the critical point u.

By Remark 6 and by means of the maps Φε and β we have that

(9) Pt(Nε ∩ I
m∞+δ
ε ) = Pt(Ω) + Z(t)

where Z(t) is a polynomial with non-negative coefficients. Provided that infεmε =:
α > 0, because lim

ε→0
mε = m∞ (see 20) , we have the following relations [5, 8]

(10) Pt(I
m∞+δ
ε , Iα/2ε ) = tPt(Nε ∩ I

m∞+δ
ε )

(11) Pt(H
1
0 (Ω), I

m∞+δ
ε )) = t(Pt(I

m∞+δ
ε , Iα/2ε )− t)

(12)
∑

u∈Kε

tµ(u) = Pt(H
1
0 (Ω), I

m∞+δ
ε )) + Pt(I

m∞+δ
ε , Iα/2ε ) + (1 + t)Q̃(t)

where Q̃(t) is a polynomial with non-negative integer coefficients. Hence, by (9),
(10), (11), (12) we obtain (8). At this point, evaluating equation (8) for t = 1 we
obtain the claim of Theorem 2

6. The map Φε

For every ξ ∈ Ω− we define the function

Wξ,ε(x) = Uε(x− ξ)χ(|x − ξ|)

where χ : R+ → R+ where χ ≡ 1 for t ∈ [0, r/2), χ ≡ 0 for t > r and |χ′(t)| ≤ 2/r.
We can define a map

Φε : Ω− → Nε

Φε(ξ) = tε(Wξ,ε)Wξ,ε

Remark 14. We have that the following limits hold uniformly with respect to ξ ∈ Ω

‖Wε,ξ‖ε → ‖U‖H1(R3)

|Wε,ξ|ε,t → ‖U‖Lt(R3) for all 2 ≤ t ≤ 6

Lemma 15. There exists ε̄ > 0 and a constant c > 0 such that

Gε(Wε,ξ) =
1

ε3

ˆ

Ω

qW 2
ε,ξ(x)ψ(Wε,ξ)dx < cε2
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Proof. It holds

‖ψ(Wε,ξ)‖
2
H1

0 (Ω) =

ˆ

Ω

qW 2
ε,ξ(x)ψ(Wε,ξ)dx ≤ q‖ψ(Wε,ξ)‖L6(Ω)

(
ˆ

Ω

W
12/5
ε,ξ dx

)5/6

≤ c‖ψ(Wε,ξ)‖H1
0 (Ω)

(

1

ε3

ˆ

Ω

W
12/5
ε,ξ dx

)5/6

ε5/2

By Remark 14 we have that ‖ψ(Wε,ξ)‖H1
0 (Ω) ≤ ε5/2 and the claim follows by ap-

plying again Cauchy Schwartz inequality. �

Proposition 16. For all ε > 0 the map Φε is continuous. Moreover for any δ > 0
there exists ε0 = ε0(δ) such that, if ε < ε0 then Iε (Φε(ξ)) < m∞ + δ.

Proof. It is easy to see that Φε is continuous because tε(w) depends continously on
w ∈ H1

0 .
At this point we prove that tε(Wε,ξ) → 1 uniformly with respect to ξ ∈ Ω. In

fact, by Lemma 12 tε(Wε,ξ) is the unique solution of

‖Wε,ξ‖
2
ε + t2ωGε(Wε,ξ)− tp−2|Wε,ξ|

p
ε,p = 0.

By Remark 14 and Lemma 15 we have the claim.
Now, we have

Iε (tε(Wε,ξ)Wε,ξ) =

(

1

2
−

1

p

)

‖Wε,ξ‖
2
εt

2
ε + ω

(

1

4
−

1

p

)

t4εGε(Wε,ξ)

Again, by Remark 14 and Lemma 15 we have

Iε (tε(Wε,ξ)Wε,ξ) →

(

1

2
−

1

p

)

‖U‖2H1(R3) = m∞

that concludes the proof. �

Remark 17. We set

mε = inf
Nε

Iε.

By Proposition 16 we have that

(13) lim sup
ε→0

mε ≤ m∞.

7. The map β

For any u ∈ Nε we can define a point β(u) ∈ R3 by

β(u) =

´

Ω
x|u+|pdx
´

Ω |u+|pdx
.

The function β is well defined in Nε because, if u ∈ Nε, then u+ 6= 0.
We have to prove that, if u ∈ Nε ∩ Im∞+δ

ε then β(u) ∈ Ω+.
Let us consider partitions of Ω. For a given ε > 0 we say that a finite partition

Pε =
{

P ε
j

}

j∈Λε
of Ω is a “good” partition if: for any j ∈ Λε the set P ε

j is closed;

P ε
i ∩ P ε

j ⊂ ∂P ε
i ∩ ∂P ε

j for any i 6= j; there exist r1(ε), r2(ε) > 0 such that there
are points qεj ∈ P ε

j for which B(qεj , ε) ⊂ P ε
j ⊂ B(qεj , r2(ε)) ⊂ Bg(q

ε
j , r1(ε)), with

r1(ε) ≥ r2(ε) ≥ Cε for some positive constant C; lastly, there exists a finite number
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ν ∈ N such that every x ∈ Ω is contained in at most ν balls B(qεj , r1(ε)), where ν
does not depends on ε.

Lemma 18. There exists a constant γ > 0 such that, for any δ > 0 and for any
ε < ε0(δ) as in Proposition 16, given any “good” partition Pε =

{

P ε
j

}

j
of the

domain Ω and for any function u ∈ Nε ∩ Im∞+δ
ε there exists, for an index j̄ a set

P ε
j̄

such that

1

ε3

ˆ

P ε
j̄

|u+|pdx ≥ γ.

Proof. Taking in account that I ′(u)[u] = 0 we have

‖u‖2ε = |u+|pε,p −
1

ε3

ˆ

Ω

ωu2ψ(u) ≤ |u+|pε,p =
∑

j

1

ε3

ˆ

Pj

|u+|p

=
∑

j

|u+j |
p
ε,p =

∑

j

|u+j |
p−2
ε,p |u+j |

2
ε,p ≤ max

j

{

|u+j |
p−2
ε,p

}

∑

j

|u+j |
2
ε,p

where u+j is the restriction of the function u+ on the set Pj .

At this point, arguing as in [6, Lemma 5.3], we prove that there exists a constant
C > 0 such that

∑

j

|u+j |
2
ε,p ≤ Cν‖u+‖2ε,

thus

max
j

{

|u+j |
p−2
ε,p

}

≥
1

Cν
that conludes the proof. �

Proposition 19. For any η ∈ (0, 1) there exists δ0 < m∞ such that for any δ ∈
(0, δ0) and any ε ∈ (0, ε0(δ)) as in Proposition 16, for any function u ∈ Nε∩Im∞+δ

ε

we can find a point q = q(u) ∈ Ω such that

1

ε3

ˆ

B(q,r/2)

(u+)p > (1− η)
2p

p− 2
m∞.

Proof. First, we prove the proposition for u ∈ Nε ∩ Imε+2δ
ε .

By contradiction, we assume that there exists η ∈ (0, 1) such that we can find
two sequences of vanishing real number δk and εk and a sequence of functions {uk}k
such that uk ∈ Nεk ,
(14)

mεk ≤ Iεk(uk) =

(

1

2
−

1

p

)

‖uk‖
2
εk + ω

(

1

4
−

1

p

)

Gεk(uk) ≤ mεk + 2δk ≤ m∞ + 3δk

for k large enough (see Remark 17), and, for any q ∈ Ω,

1

ε3k

ˆ

B(q,r/2)

(u+k )
p ≤ (1− η)

2p

p− 2
m∞.

By Ekeland principle and by definition of Nεk we can assume

(15)
∣

∣I ′εk(uk)[ϕ]
∣

∣ ≤ σk‖ϕ‖εk where σk → 0.

By Lemma 18 there exists a set P εk
k ∈ Pεk such that

1

ε3k

ˆ

P
εk
k

|u+k |
pdx ≥ γ.
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We choose a point qk ∈ P εk
k and we define, for z ∈ Ωεk := 1

εk
(Ω− qk)

wk(z) = uk(εkz + qk) = uk(x).

We have that wk ∈ H1
0 (Ωεk) ⊂ H1(R3). By equation (14) we have

‖wk‖
2
H1(R3) = ‖uk‖

2
εk ≤ C.

So wk → w weakly in H1(R3) and strongly in Lt
loc

(R3).

We set ψ(uk)(x) := ψk(x) = ψk(εkz+ qk) := ψ̃k(z) where x ∈ Ω and z ∈ Ωεk . It
is easy to verify that

−∆zψ̃k(z) = ε2kqw
2
k(z).

With abuse of language we set

ψ̃k(z) = ψ(εkwk).

Thus

Iεk(uk) =
1

2
‖uk‖

2
εk −

1

p
|u+k |

p
εk,p +

ω

4

1

ε3k

ˆ

Ω

qu2kψ(uk) =

=
1

2
‖wk‖

2
H1(R3) −

1

p
‖w+

k ‖
p
Lp(R3) +

ω

4

ˆ

Ωεk

qw2
kψ(εkwk) =(16)

=
1

2
‖wk‖

2
H1(R3) −

1

p
‖w+

k ‖
p
Lp(R3) + ε2k

ω

4

ˆ

R3

qw2
kψ(wk) := Eεk(wk)

By definition of Eεk : H1(R3) → R, we get Eεk(wk) → m∞.
Given any ϕ ∈ C∞

0 (R3) we set ϕ(x) = ϕ(εkz + qk) := ϕ̃k(z). For k large
enough we have that suppϕ̃k ⊂ Ω and, by (15), that E′

εk(wk)[ϕ] = I ′εk(uk)[ϕ̃k] → 0.
Moreover, by definiton of Eεk and by Lemma 8 we have

E′
εk(wk)[ϕ] = 〈wk, ϕ〉H1(R3) −

ˆ

R3

|w+
k |

p−1ϕ+ ωε2k

ˆ

R3

qwkψ(wk)ϕ+

→ 〈w,ϕ〉H1(R3) −

ˆ

R3

|w+|p−1ϕ.

Thus w is a weak solution of

−∆w + w = (w+)p−1 on R3.

By Lemma 18 and by the choice of qk we have that w 6= 0, so w > 0.
Arguing as in (16), and using that uk ∈ Nεk we have

Iεk(uk) =

(

1

2
−

1

p

)

‖uk‖
2
εk

+ ω

(

1

4
−

1

p

)

1

ε3k

ˆ

Ω

qu2kψ(uk)(17)

=

(

1

2
−

1

p

)

‖wk‖
2
H1(R3) + ε2kω

(

1

4
−

1

p

)
ˆ

R3

qw2
kψ(wk) → m∞

and

Iεk (uk) =

(

1

2
−

1

p

)

|u+k |
p
p,εk

−
ω

4

1

ε3k

ˆ

Ω

qu2kψ(uk)(18)

=

(

1

2
−

1

p

)

|w+
k |

p
p − ε2k

ω

4

ˆ

R3

qw2
kψ(wk) → m∞.

So, by (17) we have that ‖w‖2H1(R3) =
2p
p−2m∞ and that

(

1
2 − 1

p

)

‖wk‖2H1(R3) → m∞

and we conclude that wk → w strongly in H1(R3).
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Given T > 0, by the definiton of wk we get, for k large enough

|w+
k |

p
Lp(B(0,T )) =

1

ε3k

ˆ

B(qk,εkT )

|u+k |
pdx ≤

1

ε3k

ˆ

B(qk,r/2)

|u+k |
pdx

≤ (1− η)
2p

p− 2
m∞.(19)

Then we have the contradiction. In fact, by (18) we have
(

1
2 − 1

p

)

|w+
k |

p
p → m∞ and

this contradicts (19). At this point we have proved the claim for u ∈ Nε ∩ Imε+2δ
ε .

Now, by the thesis for u ∈ Nε ∩ Imε+2δ
ε and by (18) we have

Iεk(uk) =

(

1

2
−

1

p

)

|u+k |
p
p,εk +O(ε2) ≥ (1 − η)m∞ +O(ε2)

and, passing to the limit,

lim inf
k→∞

mεk ≥ m∞.

This, combined by (13) gives us that

(20) lim
ε→0

mε = m∞.

Hence, when ε, δ are small enough, Nε ∩ Im∞+δ
ε ⊂ Nε ∩ Imε+2δ

ε and the general
claim follows. �

Proposition 20. There exists δ0 ∈ (0,m∞) such that for any δ ∈ (0, δ0) and any
ε ∈ (0, ε(δ0) (see Proposition 16), for every function u ∈ Nε ∩ Im∞+δ

ε it holds
β(u) ∈ Ω+. Moreover the composition

β ◦ Φε : Ω
− → Ω+

is s homotopic to the immersion i : Ω− → Ω+

Proof. By Proposition 19, for any function u ∈ Nε ∩ Im∞+δ
ε , for any η ∈ (0, 1) and

for ε, δ small enough, we can find a point q = q(u) ∈ Ω such that

1

ε3

ˆ

B(q,r/2)

(u+)p > (1− η)
2p

p− 2
m∞.

Moreover, since u ∈ Nε ∩ Im∞+δ
ε we have

Iε(u) =

(

p− 2

2p

)

|u+|pp,ε −
ω

4

1

ε3

ˆ

Ω

qu2ψ(u) ≤ m∞ + δ.

Now, arguing as in Lemma 15 we have that

‖ψ(u)‖2H1(Ω) = q

ˆ

Ω

ψ(u)u2 ≤ C‖ψ(u)‖H1(Ω)

(
ˆ

Ω

u12/5
)5/6

,

so ‖ψ(u)‖H1(Ω) ≤
(´

Ω u
12/5

)5/6
, then

1

ε3

ˆ

ψ(u)u2 ≤
1

ε3
‖ψ‖H1(Ω)

(
ˆ

Ω

u12/5
)5/6

≤ C
1

ε3

(
ˆ

Ω

u12/5
)5/3

≤ Cε2|u|412/5,ε ≤ Cε2‖u‖4ε ≤ Cε2

because ‖u‖ε is bounded since u ∈ Nε ∩ I
m∞+δ
ε .
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Hence, provided we choose ε(δ0) small enough, we have
(

p− 2

2p

)

|u+|pp,ε ≤ m∞ + 2δ0.

So,
1
ε3

´

B(q,r/2)(u
+)p

|u+|pp,ε
>

1− η

1 + 2δ0/m∞

Finally,

|β(u)− q| ≤

∣

∣

1
ε3

´

Ω
(x− q)(u+)p

∣

∣

|u+|pp,ε

≤

∣

∣

∣

1
ε3

´

B(q,r/2)(x− q)(u+)p
∣

∣

∣

|u+|pp,ε
+

∣

∣

∣

1
ε3

´

ΩrB(q,r/2)(x− q)(u+)p
∣

∣

∣

|u+|pp,ε

≤
r

2
+ 2diam(Ω)

(

1−
1− η

1 + 2δ0/m∞

)

,

so, choosing η, δ0 and ε(δ0) small enough we proved the first claim. The second
claim is standard. �
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