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SYMPLECTIC CAPACITY AND SHORT PERIODIC BILLIARD
TRAJECTORY

KEI IRIE

Abstract. We prove that a bounded domain Ω in Rn with smooth boundary has a
periodic billiard trajectory with at most n + 1 bounce times and of length less than
Cnr(Ω), where Cn is a positive constant which depends only on n, and r(Ω) is the
supremum of radius of balls in Ω. This result improves the result by C.Viterbo, which
asserts that Ω has a periodic billiard trajectory of length less than C ′

nvol(Ω)
1/n. To

prove this result, we study symplectic capacity of Liouville domains, which is defined via
symplectic homology.

1. Introduction

Let Ω be a bounded domain in Rn with smooth boundary. A periodic billiard trajectory
on Ω is a continuous map γ : R/τZ → Ω̄ such that there exists a finite set B ⊂ R/τZ
and satisfies the following conditions:

• γ is smooth on (R/τZ) \ B and satisfies γ̈ = 0.
• For each t0 ∈ B, γ(t0) ∈ ∂Ω, the left and right derivatives γ̇(t±0 ) := lim

t→t±0

γ̇(t) exist,

and satisfy the law of reflection (ν denotes the outward normal vector on ∂Ω):⟨
γ̇(t+0 ), ν(γ(t0))

⟩
= −

⟨
γ̇(t−0 ), ν(γ(t0))

⟩
̸= 0,

γ̇(t+0 )−
⟨
γ̇(t+0 ), ν(γ(t0))

⟩
· ν(γ(t0)) = γ̇(t−0 )−

⟨
γ̇(t−0 ), ν(γ(t0))

⟩
· ν(γ(t0)).

Elements of B are called bounce times.

Before stating the main theorem, we introduce some notations. For x ∈ Rn and r ≥ 0,
B(x, r) :=

{
y ∈ Rn

∣∣ |x− y| ≤ r
}
. For Ω ⊂ Rn,

r(Ω) := sup
{
r ≥ 0

∣∣ there exists x ∈ Rn such that B(x, r) ⊂ Ω
}
.

The main theorem of this paper is the following:

Theorem 1.1. Let Ω be a bounded domain in Rn with smooth boundary. Then, there
exists a periodic billiard trajectory γ on Ω with at most n + 1 bounce times and which
satisfies the following length estimate:

|γ| ≤ Cnr(Ω),

where Cn is a positive constant which depends only on n.
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Remark 1.2. The existence of a periodic billiard trajectory with at most n + 1 bounce
times is due to [2]. They also consider arbitrary metrics on Rn.

In [8], it is proved (theorem 4.1) that there exists a periodic billiard trajectory γ on Ω
(with the flat metric) which satisfies a length estimate |γ| ≤ C ′

nvol(Ω)
1/n, where C ′

n is a
positive constant which depends only on n. Notice that this result follows from theorem
1.1 and an obvious inequality r(Ω) ≤ ω−1/n

n vol(Ω)1/n, where ωn denotes the volume of the
n -dimensional unit ball.

In [1], it is proved (theorem 1.2, the case of a constant potential) that there exists a
periodic billiard trajectory γ on Ω (with the flat metric) with at most n+1 bounce times
and which satisfies a length estimate |γ| ≤ C ′′diamΩ, where C ′′ is a constant which does
not depend on n, and

diamΩ := inf
{
|v|
∣∣ (v + Ω) ∩ Ω = ∅

}
.

Notice that our main theorem also implies this result for each fixed n, though we can not
prove the independence of C ′′ on n by this argument.

Finally we remark that one can easily construct (Ωk)k, a sequence of bounded domains
in Rn, such that lim

k→∞
vol(Ωk) = lim

k→∞
diam(Ωk) = ∞ and r(Ωk) ≤ 1 for any k.

To prove theorem 1.1, we use symplectic capacity defined via symplectic homology,
which was introduced in [7]. In the present paper, symplectic capacity is defined for
Liouville domains (compact exact symplectic manifolds with convex boundaries), and it
is denoted by capS. The definition is given at the beginning of section 3.

Using symplectic capacity capS, we introduce the notion of capacity for Riemannian
manifolds (without boundaries), which is denoted by capR. Roughly speaking, it is defined
by capR(N) := capS(DT

∗N), where DT ∗N :=
{
(q, p) ∈ T ∗N

∣∣ |p| ≤ 1
}
. But when N

is non-compact, the right hand side does not make sence since DT ∗N is not a Liouville
domain (since it is not compact). Hence we have to approximate DT ∗N by compact
domains. See definition 4.3 for the precise definition.

We prove that capR satisfies following properties:

(A) Let Ω be a non-empty open set in Rn. Then, capR(Ω) ≤ Cnr(Ω), where Ω is
equipped with the flat Riemannian metric on Rn.

(B) If Ω is a bounded domain in Rn with smooth boundary, there exists a periodic
billiard trajectory on Ω with at most n + 1 bounce times and of length equals to
capR(Ω).

Our main theorem 1.1 follows at once from (A) and (B).

We explain the structure of this paper. In section 2, we recall the notion of symplectic
homology. We use the version introduced in [7].

In section 3, we define capS, and prove its properties. The most important result in this
section is theorem 3.6, which asserts that when π : Y → X is a covering map between
Liouville domains, then capS(Y ) ≤ capS(X). Though its proof is not very difficult, it
seems to the author that this result contains a novel idea.
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In section 4, we define capR, and prove its properties. The main result in this section is
theorem 4.13, which includes the property (A). Theorem 3.6 is used to prove that Rn \Zn
with the flat metric has a finite capacity (theorem 4.12). Theorem 4.13 is proved by
theorem 4.12 and elementary geometric arguments.

In section 5, we prove the property (B) (theorem 5.1). The arguments in this section
heavily rely on the techniques developed in the recent paper [1].

In the appendix, we prove theorem 2.12, which asserts that truncated symplectic ho-
mology of a Liouville domain (X,λ) depends only on dλ. It seems to the author that
theorem 2.12 is well-known to experts. But we give a proof of the result since the author
is unable to find its proof in the literature.

2. Symplectic homology

2.1. Liouville domains. First, we recall the notion of Liouville domains. A Liouville
domain is a pair (X,λ) where X is a compact manifold with boundary and λ is a 1-form
on X, with the following conditions:

(1) (X, dλ) is a symplectic manifold.
(2) Z ∈ X (X) defined by iZdλ = λ points strictly outwards on ∂X.

(2) implies that (∂X, λ) is a contact manifold. Let R be the Reeb vector field on (∂X, λ)
(recall that R is characterized by iRdλ = 0, λ(R) = 1).

In the rest of this paper, (X,λ) stands for a Liouville domain, and n stands for dimX/2,
unless otherwise stated.

P(∂X, λ) denotes the set of periodic Reeb orbits on (∂X, λ), and P0(∂X, λ) denotes
the set of elements of P(∂X, λ) which is contractible in X. For each x ∈ P(∂X, λ), its
period is denoted by τ(x), and

τ(∂X, λ) :=
{
τ(x)

∣∣ x ∈ P(∂X, λ)
}
.

It is well-known that τ(∂X, λ) is a closed null set in [0,∞). Define δ(∂X, λ) :=
min τ(∂X, λ). It is clear that δ(∂X, λ) > 0.

There exists an unique (up to homotopy) almost complex structure on TX, which is
compatible with dλ. In the rest of this paper, we only treat the case c1(TX) = 0.

Let (X,λ) be a Liouville domain. We define Φ: ∂X × (0, 1] → X by

Φ(z, 1) = z, ∂rΦ(z, r) = r−1Z
(
Φ(z, r)

)
.

It is easy to check that Φ∗λ = rπ∗λ, where π : ∂X× (0, 1] → ∂X is the projection. Define

X̂ and λ̂ ∈ Ω1(X̂) by

X̂ := X ∪Φ ∂X × (0,∞), λ̂ :=

{
λ (on X)

rπ∗λ (on ∂X × (0,∞))
.

We call (X̂, λ̂) the completion of (X,λ).
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By definition, there exists a natural embedding I : ∂X×(0,∞) → X̂. We often identify
∂X × (0,∞) with its image via I. For r ∈ (0,∞), X(r) denotes the bounded domain in

X̂ with boundary ∂X × {r}, i.e.

X(r) :=

{
X ∪ ∂X × [1, r] (r ≥ 1)

X \ ∂X × (r, 1] (r < 1)
.

Definition 2.1. Two Liouville domains (X,λ), (X ′, λ′) are called equivalent if and only
if there exists a diffeomorphism φ : X ′ → X such that λ′ = φ∗λ. (X,λ), (X ′, λ′) are
called isotopic if there exists a smooth family of Liouville domains (X,λt)0≤t≤1, such that
λ0 = λ and (X,λ1) is equivalent to (X ′, λ′).

2.2. Periodic orbits of Hamiltonian flows. For H ∈ C∞(X̂), we define its Hamil-

tonian vector field XH by iXH
dλ̂ = −dH. For H = (Ht)t∈R/τZ, a family of Hamiltonians

on X̂ parametrized by R/τZ, let us denote by Pτ (H) the set of x : R/τZ → X̂ which is
contractible and satisfies ∂tx = XHt(x). P1(H) is often abbreviated by P(H).

For x ∈ Pτ (H), we define its Conley-Zehnder index. For later purposes, it is necessary
to define the Conley-Zenhder index for degenerate periodic orbits. Hence we have to
define the index for degenerate symplectic paths. We use the definiton given in [5].

First we introduce some notations. Take a coordinate (q1, p1, . . . , qn, pn) on R2n, and
define

λn :=
1

2

∑
1≤j≤n

pj ∧ dqj − qj ∧ dpj,

ωn := dλn,

Sp(2n) :=
{
V ∈ GL(2n,R)

∣∣ V ∗ωn = ωn
}
.

In the present paper, GL(2n,R) acts on R2n from right, i.e. we denote the action of
GL(2n,R) on R2n by

(x1, . . . , x2n) · (Vij)1≤i,j≤2n :=

( ∑
1≤j≤2n

xjV1j, . . . ,
∑

1≤j≤2n

xjV2n,j

)
.

For τ > 0, let us denote

Pτ (2n) :=
{
γ ∈ C0

(
[0, τ ], Sp(2n)

) ∣∣ γ(0) = 12n
}
.

We define the index i : Pτ (2n) → Z by several axioms. To spell out the axioms, we
introduce more notations.

• For γ0, γ1 ∈ Pτ (2n), γ0 ∼ γ1 if and only if there exists δ : [0, 1]× [0, τ ] → Sp(2n)
such that δ(i, ·) = γi(·) (i = 0, 1), δ(s, 0) = 12n, and rk(δ(s, 1) − 12n) is constant
on s.

• For γi ∈ Pτ (2ni) (i = 0, 1), define γ0 ⋄ γ1 ∈ Pτ (2n0 + 2n1) by γ0 ⋄ γ1(t) :=(
γ0(t) 0
0 γ1(t)

)
.
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• For γ0, γ1 ∈ C0
(
[0, τ ], Sp(2n)

)
such that γ0(τ) = γ1(0), define γ1∗γ0 ∈ C0

(
[0, τ ], Sp(2n)

)
by γ1 ∗ γ0(t) =

{
γ0(2t) (t ≤ τ/2)

γ1(2t− τ) (t ≥ τ/2)
.

• For τ > 0 and θ ∈ R, define φτ,θ ∈ Pτ (2) by φτ,θ(t) :=

(
cos(tθ/τ) − sin(tθ/τ)
sin(tθ/τ) cos(tθ/τ)

)
.

The index i : Pτ (2n) → Z is defined by the following axioms:

Theorem 2.2 ([5], theorem 6.2.7). For τ > 0, there exists an unique map i :
∪
n≥1

Pτ (2n) →

Z which satisfies the following five axioms:

(1) For γ0, γ1 ∈ Pτ (2n), γ0 ∼ γ1 =⇒ i(γ0) = i(γ1).
(2) For γi ∈ Pτ (2ni) (i = 0, 1), i(γ0 ⋄ γ1) = i(γ0) + i(γ1).

(3) For any γ ∈ Pτ (2) satisfying γ(τ) =

(
1 a
0 1

)
(a = 0,±1), there exists θ0 > 0 such

that i
(
[γ(τ)φτ,−θ] ∗ γ

)
= i(γ) for any θ ∈ (0, θ0].

(4) For any γ ∈ Pτ (2) satisfying γ(τ) =

(
1 a
0 1

)
(a = ±1), there exists θ0 > 0 such

that i
(
[γ(τ)φτ,θ] ∗ γ

)
= i(γ) + 1 for any θ ∈ (0, θ0].

(5) Define γ0 ∈ Pτ (2) by γ0(t) :=

(
1 + t/τ 0

0
(
1 + t/τ

)−1

)
. Then, i(γ0) = 0.

In [5], several equivalent definitions are given (definition 5.4.2, definition 6.1.10). In
particular, definition 6.1.10 in [5] implies the following useful lemma:

Lemma 2.3. Let us define the set of non-degenerate symplectic paths by

P∗
τ (2n) :=

{
γ ∈ Pτ (2n)

∣∣ rk(γ(τ)− 12n
)
= 2n

}
.

Then, for any γ ∈ Pτ (2n), i(γ) = sup
U∈N(γ)

inf{i(β)
∣∣ β ∈ U ∩ P∗

τ (2n)
}
, where N(γ)

denotes the set of all open neighborhoods of γ in Pτ (2n).

The following lemma follows at once from the above lemma.

Lemma 2.4. Assume that a sequence (γk)k in Pτ (2n) converges to γ in Pτ (2n). Then,
i(γ) ≤ lim inf

k→∞
i(γk).

Next we define the Conley-Zehnder index µCZ(x) for x ∈ Pτ (H). Let D2 :=
{
z ∈ C |

|z| ≤ 1
}
, and take arbitrary x̄ : D2 → X̂ such that x̄(e2πiθ) = x(τθ) (such x̄ exists since

x is contractible). Since D2 is contractible, x̄∗TX̂ is a trivial symplectic vector bundle.
Take the following trivialization of symplectic vector bundle:

F : (R2n, ωn)×D2 → x̄∗TX̂; (v, z) 7→
(
Fz(v), z

)
.

Define γ : R/τZ → Sp(2n) by

γ(t) := (Fe2πit/τ )−1 ◦ Φt ◦ F1.
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where (Φt)t is the Poincaré map generetaed by (XHt)t. Finally, we define µCZ(x) by

µCZ(x) := i(γ).

Since c1(TX) = 0, the above definition is independent of choices of x̄. An element
x ∈ Pτ (H) is called non-degenerate if and only if γ ∈ P∗

τ (2n).

2.3. Floer homology on Liouville domains. For r0 ≥ 1, let H (X,λ : r0) be the set of

H = (Ht)t∈R/Z, a family of Hamiltonians on X̂ parametrized by R/Z, with the following
property:

There exist a > 0, b ∈ R such that Ht(z, r) = ar + b for any (z, r) ∈
∂X × [r0,∞) and t ∈ R/Z. (we denote a, b by aH , bH .)

We denote H (X,λ) :=
∪
r0≥1

H (X,λ : r0).

H ∈ H (X,λ) is called admissible if all elements of P(H) are non-degenerate, and
aH /∈ τ(∂X, λ). Had(X,λ) denotes the set of all admissible H ∈ H (X,λ). Note that
when H is admissible, then ♯P(H) <∞.

For H ∈ Had(X,λ), we define its Floer homology HF∗(H). For each k ∈ Z, let Pk(H)
denote the set of x ∈ P(H) with µCZ(x) = k, and let Ck(H) denote the free Z2-module
over Pk(H).

To define the Floer homology, we need to equip X̂ with almost complex structures. For
r0 ≥ 1, let J (X,λ : r0) be the set of J = (Jt)t∈R/Z, a family of almost complex structures

on X̂ parametrized by R/Z, such that following properties hold for any t ∈ R/Z (R and
ξ denote the Reeb vector field and the contact distribution on (∂X, λ)):

• Jt is compatible with dλ̂.
• Jt

(
∂r(z, r)

)
= r−1R(z, r) for (z, r) ∈ ∂X × [r0,∞).

• There exists jt, an almost complex structure on ξ such that Jt|ξ(z,r) = jt for
(z, r) ∈ ∂X × [r0,∞).

We denote J (X,λ) :=
∪
r0≥1

J (X,λ : r0).

Remark 2.5. Recall that an almost complex structure J on X̂ is compatible with dλ̂ if
and only if the bilinear form on TX̂

⟨v, w⟩J := dλ̂(v, Jw)
(
v, w ∈ TX̂)

is a Riemannian metric. Let us denote ⟨v, v⟩1/2J by |v|J .

Let H ∈ Had(X,λ), J ∈ J (X,λ). For x−, x+ ∈ P(H), we consider the Floer equation

for u : R× R/Z → X̂, namely:

∂su− Jt
(
∂tu−XHt(u)

)
= 0, u(s) → x± (s→ ±∞).
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In the second formula, u(s) denotes the map R/Z → X̂; t 7→ u(s, t). Let us denote the

moduli space of solutions of the above Floer equations by M̂
(
x−, x+ : H, J

)
. M̂

(
x−, x+ :

H, J
)
admits a natural R action:

s0 · u(s, t) := u(s− s0, t).

M
(
x−, x+ : H, J

)
denotes the quotient of M̂

(
x−, x+ : H, J

)
by the above R action.

For generic J , M
(
x−, x+ : H, J

)
is a smooth manifold with dimension µCZ(x−) −

µCZ(x+)− 1. For such J , we define the differential ∂H,J : Ck(H) → Ck−1(H) by

∂H,J [x−] :=
∑

x+∈Pk−1(H)

♯M
(
x−, x+ : H, J

)
· [x+]

(
x− ∈ Pk(H)

)
.

Then,
(
C∗(H), ∂H,J) becomes a chain complex. It follows from the following C0 bound

for Floer trajectories (this is a special case of lemma 2.7, which is stated later):

Lemma 2.6. There exists a compact set B ⊂ X̂ such that for any x−, x+ ∈ P(H) and

u ∈ M̂ (x−, x+ : H, J), u(R× R/Z) ⊂ B.

It can be shown that the homology group of the complex
(
C∗(H), ∂H,J

)
is independent

of choices of J , and we denote it by HF∗(H), or HF∗
(
H : (X,λ)

)
, when we need to specify

the Liouville domain.

Let H−, H+ ∈ Had(X,λ) and assume that aH− ≤ aH+ . Then, there exists a canonical
morphism HF∗(H−) → HF∗(H+). This is constructed as follows: take r0 ≥ 1 and (Hs)s∈R,
a family of elements in H (X,λ : r0) and (Js)s∈R, a family of elements in J (X,λ : r0)
which satisfy the following conditions:

• There exists s0 > 0 such that Hs =

{
H− (s ≤ −s0)
H+ (s ≥ s0)

, Js =

{
J−s0 (s ≤ −s0)
Js0 (s ≥ s0)

.

• ∂saHs ≥ 0.

For x− ∈ P(H−) and x+ ∈ P(H+), consider the Floer equation for u : R× R/Z → X̂:

∂su− Js,t
(
∂tu−XHs,t(u)

)
= 0, u(s) → x± (s→ ±∞),

where Hs,t := (Hs)t, Js,t := (Js)t.

We denote the moduli space of solutions of the above Floer equation by M̂
(
x−, x+ :

(Hs, Js)s
)
. For generic (Js)s, M̂

(
x−, x+ : (Hs, Js)s

)
is a smooth manifold of dimension

µCZ(x−)− µCZ(x+). Taking such (Js)s, we define a morphism φ : Ck(H−) → Ck(H+) by

φ[x−] =
∑

x+∈Pk(H+)

♯M̂
(
x−, x+ : (Hs, Js)s

)
· [x+]

(
x− ∈ Pk(H−)

)
.

Then, φ is a chain map from
(
C∗(H−), ∂H−,J−

)
to
(
C∗(H+), ∂H+,J+

)
. It follows from the

following C0 bound for Floer trajectories (it follows from lemma 1.5 in [6]):

Lemma 2.7. There exists a compact set B ⊂ X̂ such that for any x− ∈ P(H−), x+ ∈
P(H+) and u ∈ M̂

(
x−, x+ : (Hs, Js)s

)
, u(R× R/Z) ⊂ B.

7



Therefore, φ defines a morphism φ∗ : HF∗(H−) → HF∗(H+). This morphism does not
depend on choice of (Hs, Js)s.

To sum up, we have constructed the canonical morphism HF∗(H−) → HF∗(H+) for
H−, H+ ∈ Had(X,λ) such that aH− ≤ aH+ . This morphism is called monotone morphism.

We also study truncated version of the Floer homology. For any x : R/Z → X̂, let

AH(x) :=

∫
R/Z

x∗λ̂−H
(
x(t)

)
dt.

For any interval I ⊂ [−∞,∞], let CI
k(H) be the free Z2-module generated over{

x ∈ Pk(H)
∣∣ AH(x) ∈ I

}
.

For x−, x+ ∈ P(H) and u ∈ M̂ (x−, x+ : H, J), by straightforward calculations we get

−∂s
(
AH

(
u(s)

))
=

∫
R/Z

∣∣∂su(s, t)∣∣2Jtdt.
In particular, if AH(x) < AH(y), then M̂ (x, y : H, J) = ∅. Hence for any interval

I ⊂ [−∞,∞],
(
CI

∗ (H), ∂H,J
)
is a chain complex. Then, we denote H∗

(
CI

∗ (H), ∂H,J
)

(which does not depend on J) by HFI∗(H).

For −∞ ≤ a < b < c ≤ ∞, there exists a short exact sequence

0 → C [a,b)
∗ (H) → C [a,c)

∗ (H) → C [b,c)
∗ (H) → 0.

Hence we get a long exact sequence

(1) · · · → HF[a,b)
∗ (H) → HF[a,c)

∗ (H) → HF[b,c)
∗ (H) → HF

[a,b)
∗−1 (H) → · · · .

2.4. Symplectic homology. Let (X,λ) be a Liouville domain. In this subsection, we
define symplectic homology SHI

∗(X,λ) for any interval I ⊂ R.

First, we define H rest(X,λ) ⊂ H (X,λ) by

H rest(X,λ) :=
{
H ∈ H (X,λ : 1)

∣∣ Ht|X < 0 for any t ∈ R/Z
}
.

For H−, H+ ∈ H rest(X,λ), we denote H− ≤ H+ if and only if (H−)t ≤ (H+)t for any
t ∈ R/Z.

Let H−, H+ ∈ H rest
ad (X,λ) := Had(X,λ) ∩ H rest(X,λ). When H− ≤ H+, we can

construct a morphism HFI∗(H−) → HFI∗(H+) for any interval I ⊂ R. This is constructed
as follows. First, take (Hs)s∈R, a family of elements of H rest(X,λ) and (Js)s∈R, a family
of elements of J (X,λ : 1) which satisfy the following properties:

• There exists s0 > 0 such that Hs =

{
H− (s ≤ −s0)
H+ (s ≥ s0)

, Js =

{
J−s0 (s ≤ −s0)
Js0 (s ≥ s0)

.

• ∂sHs,t(x) ≥ 0 for any (s, t) ∈ R× R/Z and x ∈ X̂.
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For x− ∈ P(H−), x+ ∈ P(H+) and u ∈ M̂
(
x−, x+ : (Hs, Js)s

)
,

−∂s
(
AHs(u(s))

)
=

∫
R/Z

|∂su|2Js,t + ∂sHs,t(u)dt ≥ 0.

Hence if AH−(x−) < AH+(x+), then M̂
(
x−, x+ : (Hs, Js)s

)
= ∅.

Therefore the morphism φ :
(
CI

∗ (H−), ∂H−,J−

)
→
(
CI

∗ (H+), ∂H+,J+

)
defined by

φ[x−] =
∑

x+∈Pk(H+)

♯M̂
(
x−, x+ : (Hs, Js)s

)
· [x+]

(
x− ∈ Pk(H−)

)
is a chain map. Hence we get a morphism HFI∗(H−) → HFI∗(H+). This morphism does
not depend on choices of (Hs, Js)s. Then, we define SHI

∗(X,λ) by

SHI
∗(X,λ) := lim−→

H∈H rest
ad (X,λ)

HFI∗(H).

For −∞ ≤ a < b < c ≤ ∞, by taking limit of (1), we get a long exact sequence

(2) · · · → SH[a,b)
∗ (X,λ) → SH[a,c)

∗ (X,λ) → SH[b,c)
∗ (X,λ) → SH

[a,b)
∗−1 (X,λ) → · · · .

For a ∈ (−∞,∞], SH(−∞,a)
∗ (X,λ) is often denoted by SH<a

∗ (X,λ). SH<∞
∗ (X,λ) is often

abbreviated by SH∗(X,λ). The following lemma will be useful in later:

Lemma 2.8. For any H ∈ Had(X,λ), there exists a canonical isomorphism SH<aH
∗ (X,λ) →

HF∗(H). When H−, H+ ∈ Had(X,λ) satisfy aH− ≤ aH+, the following diagram commutes:

SH
<aH−
∗ (X,λ)

∼= //

��

HF∗(H−)

��

SH
<aH+
∗ (X,λ) ∼=

// HF∗(H+)

.

Proof. It is not hard to check that the following natural morphisms are all isomorphic:

lim−→
G∈H rest

ad
aG≤aH

HF<aH∗ (G) → lim−→
G∈H rest

ad

HF<aH∗ (G) = SH<aH
∗ (X,λ),

lim−→
G∈H rest

ad
aG≤aH

HF<aH∗ (G) → lim−→
G∈H rest

ad
aG≤aH

HF∗(G),

lim−→
G∈H rest

ad
aG≤aH

HF∗(G) → lim−→
G∈Had
aG≤aH

HF∗(G),

lim−→
G∈Had
aG≤aH

HF∗(G) → HF∗(H).

By composing the above isomorphisms and their inverses, we get an isomorphism SH<aH
∗ (X,λ) →

HF∗(H). This proves the first assertion. The second assertion follows from the above con-
struction. □
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We recall three well-known results on symplectic homology. All these results were
established in [7]. The first result is the following:

Theorem 2.9. For any 0 < δ ≤ δ(∂X, λ), there exists a canonical isomorphism SH<δ
∗ (X,λ) →

H∗+n(X, ∂X).

The second result is the following:

Theorem 2.10. If (X,λ) and (Y, λ′) are isotopic as Liouville domains, then SH∗(X,λ) ∼=
SH∗(Y, λ

′).

As a corollary of the above theorem, we can conclude that SH∗(X,λ) depends only on
dλ. Assume that (X,λ), (X,λ′) are Liouville domains, and dλ = dλ′. Then,

(
X, tλ+(1−

t)λ′)0≤t≤1 is a family of Liouville domains, and theorem 2.10 implies that SH∗(X,λ) ∼=
SH∗(X,λ

′). Hence we often denote SH∗(X,λ) by SH∗(X, dλ).

The third result is the following:

Theorem 2.11. For positive integer n and r > 0, let

B2n(r) :=
{
(q, p) ∈ R2n

∣∣ |q|2 + |p|2 ≤ r2
}
.

Then,
(
B2n(r), λn

)
is a Liouville domain, and SH∗

(
B2n(r), λn

)
= 0.

For proofs, see proposition 1.4 in [7] for theorem 2.9, theorem 1.7 in [7] for theorem
2.10, and section 4, example 1 in [7] for theorem 2.11.

Note that theorem 2.10 does not hold for truncated symplectic homology. However,
the following result holds:

Theorem 2.12. Let (X,λ), (X,λ′) be Liouville domains, and assume that dλ = dλ′.
Then, for any a ∈ (0,∞], there exists a canonical isomorphism ψ<a : SH<a

∗ (X,λ) →
SH<a

∗ (X,λ′). Moreover, for any 0 < a ≤ b ≤ ∞,

SH<a
∗ (X,λ)

ψ<a

//

��

SH<a
∗ (X,λ′)

��

SH<b
∗ (X,λ)

ψ<b

// SH<b
∗ (X,λ′)

commutes.

Theorem 2.12 is proved in the appendix.

3. Symplectic capacity via symplectic homology

Definition 3.1. Let (X,λ) be a Liouville domain. capS(X,λ) is defined by

capS(X,λ) := inf
{
a ∈ (0,∞]

∣∣ SH<δ(∂X,λ)
n (X,λ) → SH<a

n (X,λ) vanishes
}
.

Remark 3.2. The above capacity is introduced by C.Viterbo in [7], section 5.3.

Lemma 3.3. Let (X,λ) be a Liouville domain.
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(1) capS(X, aλ) = a · capS(X,λ) for any a ∈ (0,∞).
(2) SH∗(X,λ) = 0 =⇒ capS(X,λ) <∞.
(3) capS(X,λ) depends only on dλ.

Proof. (1) and (2) are immediate from the definition. (3) follows from theorem 2.12. □

The goal of this section is to prove the following three properties of capS.

Theorem 3.4. Let (X,λ) be a Liouville domain, and Xin be a submanifold of X of
codimension 0. If (Xin, λ) is a Liouville domain, then capS(Xin, λ) ≤ capS(X,λ).

Theorem 3.5. Let (X,λ) be a Liouville domain. If capS(X,λ) < ∞, there exists x ∈
P0(∂X, λ) such that τ(x) = capS(X,λ), µCZ(x) ≤ n+ 1.

Theorem 3.6. Let π : Y → X be a covering map such that deg π < ∞. If (X,λ) is a
Liouville domain, then (Y, π∗λ) is a Liouville domain, and capS(Y, π

∗λ) ≤ capS(X,λ).

Remark 3.7. Conley-Zehnder index for elements in P0(∂X, λ), which appears on the
statement of theorem 3.5 have not been defined. It is defined at the beginning of section
3.3.

It seems to the author that various variants of results semilar to theorems 3.4, 3.5 are
known or expected to hold by experts. We give its proof below for the sake of completeness
since the author is unable to find their proofs in the literature. On the other hand, theorem
3.6 is new, though its proof is not very difficult. Theorem 3.6 plays a crucial role in the
proof of theorem 4.13, which is the main result in section 4.

3.1. Proof of theorem 3.4. First we prove the following lemma.

Lemma 3.8. Let (X,λ) and Xin be as in theorem 3.4, and ε ∈ (0, 1). Let H−, H+ ∈
Had(X,λ), (Hs)s∈R be a family of elements of H (X,λ), (Js)s∈R be a family of elements
of J (X,λ). Assume that they satisfy the following conditions:

(i) There exists s0 > 0 such that Hs =

{
H− (s ≤ −s0)
H+ (s ≥ s0)

.

(ii) ∂sHs,t(x) ≥ 0 for any (s, t) ∈ R× R/Z and x ∈ X̂.
(iii) There exists a ∈ C∞(R) such that Hs,t(z, r) = a(s)(r − ε) for (z, r) ∈ ∂Xin ×

[ε2/3, ε1/3].
(iv) dr ◦ Js,t = −λ on ∂Xin × [ε2/3, ε1/3].

Assume x− ∈ P(H−) and x+ ∈ P(H+) satisfy x−(R/Z), x+(R/Z) ⊂ Xin(ε
1/3). Then,

for any u ∈ M̂
(
x−, x+ : (Hs, Js)s

)
, u(R× R/Z) ⊂ Xin(ε

1/3).

Proof. First notice that x−(R/Z), x+(R/Z) are contained inXin(ε
2/3), since (H±)t(z, r) =

a(±s0)(r − ε) for (z, r) ∈ ∂Xin × [ε2/3, ε1/3] and a(±s0) /∈ τ(∂Xin, λ) (this follows from

(i), (iii) and H± ∈ Had(X,λ)). We will prove that for any u ∈ M̂
(
x−, x+ : (Hs, Js)s

)
,

u(R × R/Z) ⊂ Xin(ε
1/3). If this is not true, for any r0 ∈ (ε2/3, ε1/3), Dr0 := R × R/Z \

u−1
(
intXin(r0)

)
is non-empty. Note that Dr0 is compact since x±(R/Z) ⊂ Xin(ε

2/3). For
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generic r0, u is transverse to ∂Xin × {r0}, hence we may assume that Dr0 is a compact
surface with boundary.

It is easy to verify that ∂su is not constantly 0 on Dr0 . Hence∫
Dr0

|∂su|2Js,t dsdt > 0.

Since u satisfies the Floer equation ∂su− Js,t
(
∂tu−XHs,t(u)

)
= 0,∫

Dr0

|∂su|2Js,t + ∂sHs,t(u) dsdt =

∫
Dr0

dλ̂(∂tu, ∂su) + dHs,t(∂su) + ∂sHs,t(u) dsdt

=

∫
∂Dr0

−u∗λ+Hs,t(u) dt.

Since u(∂Dr0) ⊂ ∂Xin × {r0}, we get by (iii)

(s, t) ∈ ∂Dr0 =⇒ Hs,t

(
u(s, t)

)
= a(s)(r0 − ε), λ

(
XHs,t(u(s, t))

)
= a(s)r0.

Therefore ∫
∂Dr0

−u∗λ+Hs,t(u) dt =

∫
∂Dr0

λ(XHs,t ⊗ dt− du)− ε

∫
∂Dr0

a(s) dt.

On the other hand, the Floer equation is equivalent to

Js,t ◦ (XHs,t ⊗ dt− du) = −(XHs,t ⊗ dt− du) ◦ j,
where j is the complex structure on R× R/Z, defined by j(∂s) = ∂t. Therefore by (iv),∫
∂Dr0

λ(XHs,t⊗dt−du) =
∫
∂Dr0

λ
(
Js,t◦(XHs,t⊗dt−du)◦j

)
=

∫
∂Dr0

dr(XHs,t⊗dt−du)◦j.

dr(XHs,t) = 0 on ∂Xin × {r0}. Moreover, if V is a vector tangent to ∂Dr0 , and positive

with respect to the boundary orientation, then jV points inwards, hence dr
(
du(jV )

)
≥ 0.

Therefore, ∫
∂Dr0

λ(XHs,t ⊗ dt− du) ≤ 0.

Finally, ∫
Dr0

|∂su|2Js,t + ∂sHs,t(u) dsdt ≤ −ε
∫
∂Dr0

a(s) dt = −ε
∫
Dr0

∂sa(s) dsdt.

Since ∂sHs,t ≥ 0 and ∂sa ≥ 0 by (ii), this implies∫
Dr0

|∂su|2Js,tdsdt ≤ 0.

This is a contradiction. □

We prove theorem 3.4.

Proof. We prove that, if a satisfies a > capS(X,λ) and a /∈ τ(∂X, λ) ∪ τ(∂Xin, λ), then
a > capS(Xin, λ). This implies capS(X,λ) ≥ capS(Xin, λ), since τ(∂X, λ) and τ(∂Xin, λ)
are null sets. In the rest of this proof, we assume that X and Xin are connected. General
case follows at once from this particular case.
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Take ε > 0 so that
[
a(1−ε), a

]
is disjoint from τ(∂X, λ) and τ(∂Xin, λ). For any c > 0,

define Hc : X̂in → R and Kc : X̂ → R as follows:

Hc(x) =

{
0

(
x ∈ Xin(ε)

)
c(r − ε)

(
x = (z, r) ∈ ∂Xin × [ε,∞)

) ,
Kc(x) =


Hc(x) (x ∈ Xin)

c(1− ε) (x ∈ X \Xin)

c(r − ε)
(
x = (z, r) ∈ ∂X × [1,∞)

)
.

Take δ > 0 so small that δ < min
{
δ(∂X, λ), δ(∂Xin, λ)

}
. Then, perturbing Ka, Kδ and

Ha, Hδ respectively, we can take K ′
a, K

′
δ ∈ Had(X,λ) and H ′

a, H
′
δ ∈ Had(Xin, λ) which

satisfy the following properties:

(i) For c ∈ {δ, a}, the following holds:
(a) (H ′

c)t = Hc on ∂Xin × [ε2/3,∞) for any t ∈ R/Z.
(b) (K ′

c)t = Kc on ∂X × [2,∞) for any t ∈ R/Z.
(c) (K ′

c)t = (H ′
c)t on Xin(ε

1/3) for any t ∈ R/Z.
(d) For x ∈ P(K ′

c), AK′
c
(x) > 0 if and only if x(R/Z) ⊂ Xin(ε

1/3).
(ii) (K ′

δ)t ≤ (K ′
a)t and (H ′

δ)t ≤ (H ′
a)t for any t ∈ R/Z.

(iii) H ′
δ and K

′
δ are time independent. i.e. There exist h ∈ C∞(X̂in) and k ∈ C∞(X̂)

such that (H ′
δ)t = h, (K ′

δ)t = k. Moreover, P(H ′
δ) = Crit(h), P(K ′

δ) = Crit(k)
and if p ∈ Crit(k) satisfies ind p = 0, then p ∈ Xin.

Let c ∈ {δ, a}. Then, by (i)-(c) and (i)-(d), if x ∈ P(K ′
c) satisfies AK′

c
(x) > 0, x can

be identified with a solution of ∂tx = X(H′
c)t(x). We define ψc : C

>0
∗ (K ′

c) → C∗(H
′
c) by

ψc[x] =

{
[x] (x is contractible in Xin)

0 (otherwise)
.

’if’ part of (i)-(d) implies that ψc is an epimorphism.

Let J = (Jt)t∈R/Z be a family of almost complex structures on Xin, such that each Jt is

compatible with dλ and satisfies dr ◦ Jt = −λ on Xin × [ε2/3, ε1/3].

By (i)-(a) and (i)-(c), (K ′
c)t(z, r) = c(r − ε) for (z, r) ∈ Xin × [ε2/3, ε1/3]. Therefore, by

lemma 3.8, if we extend J to JX ∈ J (X,λ) and JXin ∈ J (Xin, λ), ψc defines a chain
map from

(
C>0

∗ (K ′
c), ∂K′

c,J
X

)
to
(
C∗(H

′
c), ∂H′

c,J
Xin

)
.

It induces a morphism

HF∗(K
′
c) → HF>0

∗ (K ′
c) → HF∗(H

′
c).

We will denote this morphism also by ψc.
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It follows from lemma 3.8 and (ii) that

(3) HF∗(K
′
δ)

ψδ //

��

HF∗(H
′
δ)

��
HF∗(K

′
a) ψa

// HF∗(H
′
a)

commutes, where vertical morphisms are monotone morphisms.

We complete the proof. We have to show that if SH<δ
n (X,λ) → SH<a

n (X,λ) vanishes,
then SH<δ

n (Xin, λ) → SH<a
n (Xin, λ) vanishes.

By (i)-(b), aK′
c
= aH′

c
= c for c ∈ {δ, a}. Hence by lemma 2.8, it is enough to prove

that if HFn(K
′
δ) → HFn(K

′
a) vanishes, then HFn(H

′
δ) → HFn(H

′
a) vanishes.

By (iii), Ck(H
′
δ) = Ck(K

′
δ) = 0 for k ≥ n + 1, and Cn(K

′
δ) is identified with Cn(H

′
δ).

Hence ψδ : HFn(K
′
δ) → HFn(H

′
δ) is injective, therefore isomorphic (recall that we have

assumed X and Xin to be connected). Then, (3) implies that if HFn(K
′
δ) → HFn(K

′
a)

vanishes, then HFn(H
′
δ) → HFn(H

′
a) vanishes. □

3.2. Proof of theorem 3.5. First we define the Conley-Zehnder index for elements of
P0(∂X, λ). We assume that n ≥ 2. Let x ∈ P0(∂X, λ). Then, there exists x̄ : D2 → X
such that x̄(e2πiθ) = x(τθ). Take a trivialization of x̄∗TX as symplectic vector bundle,

F : (R2n, ωn)×D2 → x̄∗TX; (v, z) 7→
(
Fz(v), z

)
,

such that for any θ ∈ R/Z, the following holds:

(4)


Fe2πiθ(0, . . . , 0, 0, 1) = ∂r

(
x(τθ)

)
,

Fe2πiθ(0, . . . , 0, 1, 0) = R
(
x(τθ)

)
,

Fe2πiθ

(
R2n−2 × (0, 0)

)
= ξ
(
x(τθ)

)
.

Note that such trivialization exists only if n ≥ 2.

Define a symplectic path γ ∈ Pτ (2n− 2) by

γ(t) :=
(
Fe2πit/τ |R2n−2×(0,0)

)−1 ◦ Φt|ξ ◦ F1|R2n−2×(0,0),

where (Φt)t is the Poincaré map of the flow generated by R on ∂X. Then, define

µCZ(x) := i(γ).

x is called nondegenerate if and only if γ ∈ P∗
τ (2n − 2). The following lemma will be

useful in later (note that it also implies that the above definition is consistent, i.e. it does
not depend on choices of x̄).

Lemma 3.9. Let H ∈ C∞(X̂) such that ∂X = H−1(0) and ∂rH > 0 on ∂X. Then, there
exists 1 : 1 correspondence between elements of P0(∂X, λ) and periodic orbits of XH on
∂X, which are contractible in X. For x ∈ P0(∂X, λ), denote the corresponding periodic
orbit of XH by xH . When n ≥ 2,

µCZ(x) = sup
H
µCZ(xH),

where H runs over all Hamiltonians satisfying the conditions as above.
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Proof. The first assertion is obvious. We prove the second assertion. Let x ∈ P0(∂X, λ),
and xH be the corresponding periodic orbit of XH with period τ . Take x̄ : D2 → X such
that x̄(e2πiθ) = xH(τθ), and take a trivialization of x̄∗TX as symplectic vector bundle
F : D2 × (R2n, ωn) → x̄∗TX, which satisfies (4).

Define Γ ∈ Pτ (2n) by

Γ(t) := (Fe2πit/τ )−1 ◦ Φt ◦ F1

where (Φt)t is the Poincaré map of the flow generated by XH . Then, Γ(t) can be written
in the form

Γ(t) =

γ(t) 0 0
0 1 0
0 a(t) 1

 .

Denote the symplectic path t 7→
(

1 0
a(t) 1

)
by α. Then, by theorem 2.2-(2), i(Γ) =

i(α) + i(γ). By definition, i(γ) = µCZ(x). On the other hand, it is easy to verify that

i(α) =

{
−1

(
a(1) ≤ 0

)
0

(
a(1) > 0

) .
This proves the second assertion. □

By lemma 3.9, it is possible to define the Conley-Zehnder index for x ∈ P0(∂X, λ) in
another way, i.e.

µCZ(x) := sup
H
µCZ(xH),

where H runs over all elements in C∞(X̂) such that ∂X = H−1(0) and ∂rH > 0 on ∂X.
Note that this definition makes sense even when n = 1.

Corollary 3.10. Let H ∈ C∞(X̂) such that ∂X = H−1(0) and ∂rH > 0 on ∂X. Assume
that there exist 0 < r0 < 1 and h : [r0,∞) → R such that H(z, r) = h(r) and ∂2rh(1) > 0.
Then, for any x ∈ P0(∂X, λ), µCZ(xH) = µCZ(x).

Proof. First consider the case n ≥ 2. We use notations in the proof of lemma 3.9. Then,
if H satisfies the condition as the above statement, a(1) > 0. Hence µCZ(xH) = µCZ(x).
The case n = 1 is proved by similar arguments. □

In the rest of this subsection, we prove theorem 3.5. First we consider cases in which
all elements of P0(∂X, λ) are non-degenerate.

Lemma 3.11. Let (X,λ) be as in theorem 3.5. Assume that all elements in P0(∂X, λ)
are non-degenerate. Then, there exists x ∈ P0(∂X, λ) such that τ(x) = capS(X,λ) and
µCZ(x) ∈ {n, n+ 1}.

Proof. We claim that for any ε > 0, there exists xε ∈ P0(∂X, λ) such that
∣∣capS(X,λ)−

τ(xε)
∣∣ < ε and µCZ(xε) ∈ {n, n+1}. Since all elements in P0(∂X, λ) are non-degenerate,

τ(∂X, λ) ∩ (0, T ) is a finite set for any T > 0. Therefore, for sufficiently small ε > 0,
τ(xε) = capS(X,λ).
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We prove the above claim. It is enough to show the claim for sufficiently small ε > 0.
In particular, we may assume that ε/2 < capS(X,λ). The proof consists of 3 steps.

Step 1. First, take (Gi)i, a sequence of time-independent Hamiltonians on X̂ which
satisfies the following properties:

• (Gi)i is a cofinal sequence in H rest(X,λ), i.e. for any G ∈ H rest(X,λ), Gt ≤ Gi

for any t ∈ R/Z when i is sufficiently large.
• Gi|X(1/2) is sufficiently small in C2 norm.

• There exists gi : [1/2,∞) → R such that Gi(z, r) = gi(r) on ∂X × [1/2,∞) and
∂2rg

i > 0 on (1/2, 1).

Then, P(Gi) consists of constant maps to Crit(Gi) and S1-family of degenerate pe-
riodic orbits. There exists a 1:1 correspondence between S1-family of periodic orbits
and elements of P0(∂X, λ) with periods less than aGi . Let x ∈ P0(∂X, λ) such that
τ(x) < aGi , and let γx be an element of a S1-family of periodic orbits which corresponds
to x. Then, it follows from corollary 3.10 and ∂2rg

i > 0 on (1/2, 1) that µCZ(γx) = µCZ(x).
Moreover, by replacing Gi if necessary, we may assume that

∣∣AGi(γx)− τ(x)
∣∣ < ε/2.

Step 2. Perturbing each (Gi)i, we can construct (H i)i, a sequence in H rest
ad (X,λ) with

the following properties:

(i) (H i)i is a cofinal sequence in H rest
ad (X,λ). i.e. for any H ∈ H rest

ad (X,λ), Ht ≤ H i
t

for any t ∈ R/Z for sufficiently large i.
(ii) H i|X(1/2) is time-independent, i.e. there exists hi ∈ C∞(X(1/2)

)
such thatH i

t |X(1/2) =

hi for any t ∈ R/Z.
(iii) For each x ∈ P0(∂X, λ) such that τ(x) < aHi , there exists x± ∈ P(H i) such that

µCZ(x
±) = µCZ(x) + (1± 1)/2,

∣∣AHi(x±)− τ(x)
∣∣ < ε/2.

(iv) P(H i) consists of constant maps to Crit(hi) and
{
x±
∣∣ x ∈ P0(∂X, λ), τ(x) <

aHi

}
.

Precise arguments on perturbations are carried out as in [4], proposition 2.2.

Step 3. Abbreviate capS(X,λ) by c. By definition of capS, SH
<c−ε/2
n (X,λ) → SH<c+ε/2

n (X,λ)

is not injective. Then SH
[c−ε/2,c+ε/2)
n+1 (X,λ) ̸= 0, for the long exact sequence

· · · → SH
[c−ε/2,c+ε/2)
n+1 (X,λ) → SH<c−ε/2

n (X,λ) → SH<c+ε/2
n (X,λ) → · · · .

Therofore, by (i), HF
[c−ε/2,c+ε/2)
n+1 (H i) ̸= 0 for sufficiently large i. This implies that there

exists xi ∈ P(H i) such that AHi(xi) ∈ [c − ε/2, c + ε/2) and µCZ(xi) = n + 1. Since
(H i)i is cofinal in Hrest(X,λ), we may assume that inf hi > ε/2 − c. Hence xi is not a
constant map to Crit(hi), and by (iv), there exists x ∈ P0(∂X, λ) such that xi = x+ or
xi = x−. By (iii), τ(x) ∈ [c − ε, c + ε) and µCZ(x) ∈ {n, n + 1}. Hence we have proved
the claim. □

We prove theorem 3.5.
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Proof. Let (X̂, λ̂) be the completion of (X,λ). For any positive smooth function f on

∂X, let Σf be the hypersurface in X̂ defined by
{
(z, f(z))

∣∣ z ∈ ∂X
}
, and Df be the

bounded domain in X̂ with boundary Σf . Then (Df , λ̂) is a Liouville domain.

If | log f |C0(∂X) ≤ c, X(e−c) ⊂ Df ⊂ X(ec). Hence by theorem 3.4,

e−c ≤ capS(Df , λ̂)

capS(X,λ)
≤ ec.

In particular, if | log f |C0(∂X) is sufficiently small, then capS(Df , λ̂) is sufficiently close to
capS(X,λ).

Let (fm)m be a sequence of C∞(∂X), such that all periodic Reeb orbits on (Σfm , λ̂) are
non-degenerate, and | log fm|C2(∂X) → 0 as m → ∞. By lemma 3.11, for each integer m

there exists xm ∈ P0(Σfm , λ̂) such that τ(xm) = capS(Dfm , λ̂) and µCZ(xm) ∈ {n, n+1}.
Since | log fm|C2(∂X) → 0, fmλ converges to λ in C2. Hence, setting Rm to be the Reeb

vector field on (∂X, fmλ), Rm converges to R in C1. On the other hand, τ(xm) converges
to capS(X,λ) > 0. Hence, up to a subsequence, (xm)m converges to x∞ ∈ P0(∂X, λ)
such that τ(x∞) = capS(X,λ). Moreover,

µCZ(x∞) ≤ lim inf
m→∞

µCZ(xm) ≤ n+ 1,

where the first inequality follows from lemma 2.4. □

Theorem 3.5, together with lemma 3.9 implies the following corollary:

Corollary 3.12. Let (X,λ) be a Liouville domain, and capS(X,λ) < ∞. Then, for any
H ∈ C∞(X) such that ∂X = H−1(0) and ∂rH > 0 on ∂X, there exists x : R/τZ → ∂X

such that ∂tx = XH(x),

∫
R/τZ

x∗λ = capS(X,λ) and µCZ(x) ≤ n+ 1.

3.3. Proof of theorem 3.6. We prove the first assertion. Since deg π < ∞, Y is com-
pact. Define Z ∈ X (X) by iZdλ = λ. Then, iπ∗Zdπ

∗λ = π∗λ, and π∗Z points out-
wards on ∂Y . Hence (Y, π∗λ) is a Liouville domain. Now we prove the second assertion:

capS(Y, π
∗λ) ≤ capS(X,λ). Define π̂ : Ŷ → X̂ by

π̂(y) =

{
π(y) (y ∈ Y )(
π(z), r

) (
y = (z, r) ∈ ∂Y × [1,∞)

)
.

Then, π̂ : Ŷ → X̂ is a covering map and deg π̂ = deg π.

For H ∈ H (X,λ), denote H ◦ π̂ by H̄. Since P(H) and P(H̄) consist of contractible
solutions, P(H̄) → P(H) : y 7→ π̂ ◦ y is deg(π) : 1. We denote this map also by π̂.

Denote the Poincaré map generated byXH (resp. XH̄) by
(
ΦH
t

)
t
(resp.

(
ΦH̄
t

)
t
). Clearly,

dπ̂ ◦ dΦH̄
1 = dΦH

1 ◦ dπ̂. Hence y ∈ P(H̄) is non-degenerate if and only if π̂(y) ∈ P(H) is
non-degenerate. Moreover, since τ(∂Y, π∗λ) ⊂ τ(∂X, λ) and aH̄ = aH , if aH /∈ τ(∂X, λ)
then aH̄ /∈ τ(∂Y, π∗λ). Therefore, if H ∈ Had(X,λ) then H̄ ∈ Had(Y, π

∗λ).

Let H ∈ Had(X,λ) and J = (Jt)t∈R/Z ∈ J (X,λ). Recall that J is said to satisfy
the transversality condition with respect to H if and only if for any x, x′ ∈ P(H) and
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u ∈ M̂
(
x, x′ : H, J

)
,

Du : L
1,p(u∗TX̂) → Lp(u∗TX̂); ξ 7→ ∇sξ − Jt∇tξt −

(
∇ξJt · ∂tu+∇ξ(∇Ht)

)
is onto (p is an arbitrary real number satisfying p > 2). Let JH(X,λ) be the set of
elements of J (X,λ) which satisfy the transversality condition with respect to H.

Define J̄ ∈ J (Y, π∗λ) by J̄t := π̂∗Jt. Then, for any x ∈ P(H) and y ∈ P(H̄), the
following map is bijective:⊔

y′∈π̂−1(x)

M̂
(
y′, y : H̄, J̄

)
→ M̂

(
x, π̂(y) : H, J

)
; u 7→ π̂ ◦ u.

Clearly, dπ̂ ◦ Du = Dπ◦u ◦ dπ̂ for any u. Hence, J ∈ JH(X,λ) if and only if J̄ ∈
JH̄(Y, π

∗λ).

Let H ∈ Had(X,λ) and J ∈ JH(X,λ). Then, we claim that

ψH :
(
C∗(H), ∂H,J

)
→
(
C∗(H̄), ∂H̄,J̄

)
; [x] 7→

∑
y∈π̂−1(x)

[y]

is a chain map. Let k be an integer and x ∈ Pk(H). Then, by definition

ψH
(
∂H,J [x]

)
= ψH

( ∑
x′∈Pk−1(H)

♯M
(
x, x′ : H, J

)
· [x′]

)
=

∑
y′∈Pk−1(H̄)

♯M
(
x, π̂(y′) : H, J

)
· [y′],

∂H̄,J̄
(
ψH [x]

)
=

∑
y∈π̂−1(x)

∂H̄,J̄ [y] =
∑

y′∈Pk−1(H̄)

( ∑
y∈π̂−1(x)

♯M
(
y, y′ : H̄, J̄

))
· [y′].

Hence it is enough to prove that

♯M
(
x, π̂(y′) : H, J

)
=

∑
y∈π̂−1(x)

♯M
(
y, y′ : H̄, J̄

)
for any x ∈ Pk(H), y′ ∈ Pk−1(H̄). But it is clear since⊔

y∈π̂−1(x)

M
(
y, y′ : H̄, J̄

)
→ M

(
x, π̂(y′) : H, J

)
; [u] 7→ [π̂ ◦ u]

is a bijection. Therefore we have proved that ψH is a chain map. Hence we can define a
morphism

HF∗(H : X,λ) → HF∗(H̄ : Y, π∗λ).

We denote this morphism also by ψH . Let H,H
′ ∈ Had(X,λ). If aH ≤ aH′ ,

(5) HF∗(H)
ψH //

��

HF∗
(
H̄
)

��

HF∗(H
′)

ψH′
// HF∗

(
H̄ ′
)

commutes, where vertical morphisms are monotone morphisms.
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To prove capS(Y, π
∗λ) ≤ capS(X,λ), it is enough to show that if a /∈ τ(∂X, λ) satisfies

a > capS(X,λ), then a > capS(Y, π
∗λ). a > capS(X,λ) implies that SH<δ

n (X,λ) →
SH<a

n (X,λ) vanishes for any 0 < δ < δ(∂X, λ). Take H± ∈ Had(X,λ) such that aH− = δ,
aH+ = a. Then, by lemma 2.8, HFn(H−) → HFn(H+) vanishes.

In the rest of this proof, we assume that X and Y are connected (general case follows
at once from this case). Take H− so that it satisfies following conditions:

• H− is time independent.
• H−(z, r) = δr + const for (z, r) ∈ ∂X × [1,∞).
• H−|X is sufficiently small in C2.

Then, P(H−) and P(H̄−) consist only of constant maps to Crit(H−), Crit(H̄−). In
particular, Ck(H̄−) = Ck(H−) = 0 for k ≥ n + 1. Hence ψH− : HFn(H−) → HFn(H̄−) is
injective, therefore isomorphism (since X and Y are connected).

Hence, the commutative diagram (5) implies that HFn(H̄−) → HFn(H̄+) vanishes.
Again by lemma 2.8, SH<δ

n (Y, π∗λ) → SH<a
n (Y, π∗λ) vanishes. Hence a > capS(Y, π

∗λ).
This completes the proof of theorem 3.6. □

4. Capacity of Riemannian manifolds

In this section, we introduce the notion of capacity for Riemannian manifolds without
boundaries, which is denoted by capR. The main result in this section is theorem 4.13,
which includes property (A) which we have stated in the introduction. In 4.1, we give the
definition of capR, and prove its basic properties. In particular, proposition 4.6, which
is an easy consequence of theorem 3.6, is important. In 4.2, we prove that when N is a
compact connected Riemannian manifold with non-empty boundary, then capR(intN) <
∞ (theorem 4.7). In 4.3, first we prove that Rn \ Zn with the flat metric has a finite
capacity (theorem 4.12). This is proved by combining proposition 4.6 and theorem 4.7.
Theorem 4.13 is obtained by theorem 4.12 and elementary geometric arguments.

4.1. The definition and basic properties. First we introduce some notations. Let N
be a n-dimensional Riemannian manifold. Let us denote the natural projection T ∗N →
N ; (q, p) 7→ q by πN . We define λN ∈ Ω1(T ∗N) by

λN(v) := p
(
dπN(v)

) (
q ∈ N, p ∈ T ∗

qN, v ∈ T(q,p)(T
∗N)

)
.

Then, ωN := dλN is a symplectic form on T ∗N . Define νN ∈ X (T ∗N) by iνNωN = λN .

For V ∈ C∞(N), define HV ∈ C∞(T ∗N) by

HV (q, p) = V (q) + |p|2/2,
and denote {HV ≤ 0} ⊂ T ∗N by DV .

V (N) denotes the set of V ∈ C∞(N) such that 0 is a regular value of V , and {V ≤
0} ⊂ N is compact.

For ξ ∈ X (N), define Fξ ∈ C∞(T ∗N) and ξ̃ ∈ X (T ∗N) by Fξ(q, p) := p(ξq) and

ξ̃ := XFξ
. Then, Lξ̃ωN = 0 and ξ̃(q,0) = ξq.
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Lemma 4.1. Let N be a Riemannian manifold without boundary. Then, for any V ∈
V (N), there exists λ ∈ Ω1(T ∗N) such that dλ = ωN and (DV , λ) is a Liouville domain.
If V, V ′ ∈ V (N) satisfy V > V ′, then capS(DV , ωN) ≤ capS(DV ′ , ωN).

Remark 4.2. For any Liouville domain (X,λ), cap(X,λ) depends only on dλ (lemma
3.3, (3)). Hence formulas capS(DV , ωN) and capS(DV ′ , ωN) make sense.

Proof. We prove the first assertion. Take ξ ∈ X (N) such that dV (ξ) > 0 on {V = 0}.
For δ > 0, define Zδ ∈ X (T ∗N) by Zδ := νN + δξ̃. Then, LZδ

ωN = ωN for any δ.
Moreover, dHV (Zδ) > 0 on H−1

V (0) for sufficiently small δ > 0. Hence λδ := iZδ
ωN

satisfies dλδ = ωN and (DV , λδ) is a Liouville domain for sufficiently small δ > 0.

We prove the second assertion. If V > V ′, {V = 0} ∩ {V ′ = 0} = ∅. Hence there exists
ξ ∈ X (N) such that dV (ξ) > 0 on {V = 0} and dV ′(ξ) > 0 on {V ′ = 0}. Then, for
sufficiently small δ > 0, (DV , λδ) and (DV ′ , λδ) are both Liouville domains. On the other
hand, DV ⊂ DV ′ . Hence by theorem 3.4, capS(DV , ωN) ≤ capS(DV ′ , ωN). □

We define the notion of capacity for Riemannian manifolds without boundary.

Definition 4.3. Let N be a Riemannian manifold without boundary. Then, capacity of
N is defined by

capR(N) := sup
{
capS(DV , ωN)

∣∣ V ∈ V (N), V > −1/2
}
.

Remark 4.4. As is clear from the above definition, when N is a compact Riemannian
manifold without boundary capR(N) = capS(DT

∗N,ωN), where DT ∗N := {(q, p) ∈
T ∗N | |p| ≤ 1}.

In the following, we sometimes denote N by (N, g), where g is the Riemannian metric
on N . We also sometimes denote HV and DV by HV,g, DV,g.

Lemma 4.5. Let (N, g) be a Riemannian manifold without boundary.

(1) For any open set Ω ⊂ N , capR(Ω, g) ≤ capR(N, g).
(2) capR(N, g) = sup

{
capR(Ω, g)

∣∣ Ω ⊂ N is a open set such that Ω̄ is compact
}
.

(3) Let a be a positive number. Then capR(N, ag) = a ·capR(N, g), where ag is defined
by (ag)(v) := a · g(v) (v ∈ TN).

(4) Let g′ be a Riemannian metric on N , and assume that g ≤ g′ (which means that
g(v) ≤ g′(v) for any v ∈ TN). Then capR(N, g) ≤ capR(N, g

′).

Proof. (1) and (2) are clear from the definition. (3) follows from DV,ag =
{
(q, ap)

∣∣
(q, p) ∈ DV,g

}
. (4) follows from g ≤ g′ =⇒ DV,g ⊂ DV,g′ . □

Proposition 4.6. Let (N, g) be a Riemannian manifold without boundary, and π :M →
N be a covering map such that deg π <∞. Then, capR(M,π∗g) ≤ capR(N, g).

Proof. For any V ∈ V (M) such that V > −1/2, there exists W ∈ V (N) such that
W > −1/2 and V > W ◦ π. Hence

capS(DV , ωM) ≤ capS(DW◦π, ωM) ≤ capS(DW , ωN) ≤ capR(N, g).
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The first inequality follows from lemma 4.1, the second inequality follows from theorem
3.6, and the last inequality is clear from the definition of capR. Therefore capR(M,π∗g) ≤
capR(N, g). □

4.2. Capacity of interiors of compact Riemannian manifolds with boundaries.
The goal of this subsection is to prove the following theorem:

Theorem 4.7. Let N be a compact connected Riemannian manifold with non-empty
boundary. Then, capR(intN) <∞.

At first, notice the following consequence of theorem 2.10:

Lemma 4.8. Let N be a Riemannian manifold without boundary, and V ∈ V (N). Then,
SH∗(DV , ωN) depends only on diffeomorphism type of {V ≤ 0}.

We prove the following lemma:

Lemma 4.9. Let N be a Riemannian manifold without boundary, and V ∈ V (N). As-
sume that {V ≤ 0} is connected and {V = 0} ≠ ∅. Then, SH∗(DV , ωN) = 0. In particular,
capS(DV , ωN) <∞.

Proof. First note that the second assertion follows from the first assertion by lemma
3.3-(2). We prove the first assertion. By lemma 4.8, for any W ∈ V (N) such that
{W ≤ 0} = {V ≤ 0}, SH∗(DV , ωN) ∼= SH∗(DW , ωN). Since {V ≤ 0} is a compact
connected manifold with non-empty boundary, we can take W so that it is a Morse
function and {P1, . . . , Pm} := Crit(W ) ∩ {W ≤ 0} satisfies the following:

• minW =W (P1) < W (P2) < · · · < W (Pm) < 0.
• indPj ≤ n− 1 for all 1 ≤ j ≤ m.
• indPj = 0 if and only if j = 1.

To complete the proof, we extend the definition of symplectic homology. Let (X,λ) be
a Liouville domain and H be a Hamiltonian on its completion. Then, let HFall

∗ (H) be
the homology of

(
Call

∗ (H), ∂
)
, where Call

∗ (H) is a Z2-graded free Z2 module generated by

all (not only contractible) periodic orbits of XH . We define SHall
∗ (X,λ) := lim−→

H

HFall
∗ (H).

Obviously, SHall
∗ (X,λ) = 0 =⇒ SH∗(X,λ) = 0.

In the following, we prove that SHall
∗ (DW , ωN) = 0. For a ∈ R, abbreviate {HW ≤ a} ⊂

T ∗N by D≤a. Then, for any a ∈
(
W (P1),W (P2)

)
,

SH∗(D≤a, ωN) ∼= SH∗
(
B2n(1), ωn

)
= 0.

The first isomorphism follows from lemma 4.8, and the second equality follows from
theorem 2.11. Since D≤a is simply connected, SHall

∗ (D≤a, ωN) = 0.

Hence it is enough to show that for any j ∈ {2, . . . ,m}, a ∈
(
W (Pj−1),W (Pj)

)
and

b ∈
(
W (Pj),W (Pj+1)

)
, the isomorphism SHall

∗ (D≤a, ωN) ∼= SHall
∗ (D≤b, ωN) holds. By

lemma 4.8, it is enough to show that there exists ε > 0 such that SHall
∗ (D≤W (Pj)−ε, ωN)

∼=
SHall

∗ (D≤W (Pj)+ε, ωN).
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Let j ∈ {2, . . . ,m} and set k := indPj. Take a local coordinate (q1, . . . , qn) around Pj
such that Pj corresponds to (0, . . . , 0) and

W (q1, . . . , qn) = W (Pj)−
∑
1≤i≤k

q2i +
∑

k+1≤i≤n

q2i .

Take ε > 0 sufficiently small, and let

Σε :=
{
(q1, . . . , qk, 0, . . . , 0) ∈ N

∣∣ q21 + · · ·+ q2k = ε
}
.

For δ > 0, let Zδ := νN + δ∇̃W , and λδ := iZδ
ωN . Then, (D≤W (Pj)±ε, λδ) are Liouville do-

mains for sufficiently small δ > 0, and Σε is an isotropic submanifold of (∂D≤W (Pj)−ε, λδ).
Moreover, (D≤W (Pj)+ε, λδ) is isotopic as Liouville domain (see definition 2.1) to the Liou-
ville domain obtained by attaching k-handle to (D≤W (Pj)−ε, λδ) along Σε in the sense of
[9]. Hence by theorem 1.11 (1) in [3],

SHall
∗ (D≤W (Pj)−ε, ωN)

∼= SHall
∗ (D≤W (Pj)+ε, ωN).

This completes the proof. □

Remark 4.10. The above proof shows that (DW , ωN) carries a structure of so called
”subcritical Weinstein domain”.

Finally, we prove theorem 4.7.

Proof. For any Riemannian metrics g and g′ on N , there exists a > 0 such that g ≤ ag′

since N is compact. Then, capR(intN, g) ≤ a · capR(intN, g′). Therefore it is enough to
show that there exists a Riemannian metric g on N such that capR(intN, g) <∞.

Take a Riemannian manifold (N ′, g′) without boundary, and an embedding i : N ↪→ N ′.
We show that capR(intN, i

∗g′) <∞.

Since N is a compact connected manifold with non-empty boundary, there exists V ∈
V (N ′) such that V ◦ i < −1/2 and {V ≤ 0} is connected, {V = 0} ̸= ∅. For any W ∈
V (intN) such that W > −1/2, capS(DW , ωN) ≤ capS(DV , ωN ′). Hence capR(intN) ≤
capS(DV , ωN ′). On the other hand, capS(DV , ωN ′) < ∞ by lemma 4.9. This completes
the proof. □

The following corollary of theorem 4.7 plays an important role in the next subsection.

Corollary 4.11. Let N be a compact connected Riemannian manifold (possibly with
boundary), and x ∈ intN . Then, capR

(
intN \ {x}

)
<∞.

Proof. Let n := dimN . When n = 1, the assertion is easily confirmed. Hence in the
following, we consider the case n ≥ 2. It is enough to show that there exists a Riemannian
metric g on N such that capR

(
intN \ {x}, g

)
<∞.

Let U be a coordinate neighborhood containing x, and (q1, . . . , qn) be a local coodinate
on U , such that x corresponds to (0, . . . , 0). We may assume that B(x, 1) ⊂ U and

dg =
∑

1≤j≤n

dq2j on U .
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Set S := ∂B(x, 1) ⊂ U , and gS := g|S. Take arbitrary smooth function µ : [0, 1] → R>0

such that µ ≡ 1/2 on [0, 1/3] and µ(r) = r on [2/3, 1], and µ(r) ≥ r. Consider a cylinder
C = S × [0, 1] equipped with a metric h defined by∣∣v + a∂r(z, r)

∣∣
h
:=
(
|v(z)|2gSµ(r)

2 + a2
)1/2

(v ∈ TS, a ∈ R).
Then,

I :
(
S × (2/3, 1], h

)
→
(
B(x, 1) \B(x, 2/3), g

)
; (z, r) 7→ zr

is an isometry.

Let (Ñ , g̃) be a Riemannian manifold which is obtained by pasting
(
N \ B(x, 2/3), g

)
with (C, h) via I. Then, Ñ is a compact manifold with non-empty boundary (since
S × {0} ⊂ ∂Ñ), and connected (since N is connected and n ≥ 2). Hence theorem 4.7
implies that capR(intÑ , g̃) <∞.

Define a diffeomorphism J : intÑ → intN \ {x} by

J(y) :=


y

(
y ∈ N \B(x, 2/3)

)
rz

(
y = (z, r) ∈ C = S × (0, 1]

) .
Then, since µ(r) ≥ r, J∗g ≤ g̃. Hence

capR
(
intN \ {x}, g

)
= capR(intÑ , J

∗g) ≤ capR(intÑ , g̃) <∞.

□

4.3. Capacity of domains in Rn.

Theorem 4.12. Let gn denote the flat metric on Rn. Then, capR
(
Rn \ Zn, gn) <∞.

Proof. When n = 1, capR(R\Z, g1) = capR
(
(0, 1), g1

)
<∞. In the following, we assume

that n ≥ 2.

By lemma 4.5-(2), it is enough to show that, for any bounded open set Ω in Rn \ Zn,
capR(Ω) is bounded from above by some constant which depends only on n.

Let Ω be a bounded open set in Rn \ Zn. Then, for sufficiently large integer l, Ω ⊂
(−l, l)n. Hence Ω can be considered as an open set in (Rn \ Zn)/2lZn.

Consider the natural covering map of degree (2l)n: (Rn \ Zn)/2lZn → (Rn \ Zn)/Zn.
Then

capR(Ω) ≤ capR
(
(Rn \ Zn)/2lZn

)
≤ capR

(
(Rn \ Zn)/Zn

)
.

The first inequality follows from lemma 4.5-(1), and the second inequality follows from
proposition 4.6. On the other hand, (Rn \ Zn)/Zn is Rn/Zn minus a point. Hence, by
corollary 4.11, capR

(
(Rn \ Zn)/Zn

)
<∞. This completes the proof. □

Theorem 4.13. For each integer n, there exists c0(n), c1(n) > 0 such that for any non-
empty open set Ω in Rn,

c0(n) ≤
capR(Ω, gn)

r(Ω)
≤ c1(n).
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Proof. If r < r(Ω), then there exists x ∈ Rn such that B(x, r) ⊂ Ω. Hence, by lemma
4.5-(1) and (3),

capR(Ω) ≥ capR
(
B(x, r)

)
= r · capR

(
B(x, 1)

)
.

Hence capR
(
Bn(1)

)
≤ capR(Ω)

r(Ω)
for any Ω ̸= ∅.

Next we bound
capR(Ω)

r(Ω)
from above. Take an arbitrary positive number r so that

r > r(Ω). Then, for any x ∈ Rn, B(x, r) \ Ω ̸= ∅. For any j = (j1, . . . , jn) ∈ Zn, take
an arbitrary point pj on B

(
4rj, r

)
\ Ω, where 4rj = (4rj1, . . . , 4rjn). Then, capR(Ω) ≤

capR
(
Rn \ {pj}j∈Zn

)
.

Take sufficiently large αn > 0 so that for any x ∈ Bn(1), there exists a diffeomorphism
φ on Bn(2) with compact support such that φ(x) = (0, . . . , 0), and gn ≤ αn · φ∗gn.
Then, since B(4ri, 2r) ∩ B(4rj, 2r) = ∅ when i ̸= j, there exists a diffeomorphism ψ :
Rn \ {pj}j∈Zn → Rn \ 4rZn such that gn ≤ αn · ψ∗gn. Then,

capR
(
Rn \ {pj}j∈Zn , gn

)
≤ αn · capR

(
Rn \ {pj}j∈Zn , ψ∗gn

)
= αn · capR(Rn \ 4rZn, gn) = 4αnr · capR(Rn \ Zn, gn).

To sum up,

r > r(Ω) =⇒ capR(Ω) ≤ 4αnr · capR(Rn \ Zn).

Hence
capR(Ω)

r(Ω)
≤ 4αn · capR(Rn \ Zn) <∞. □

5. Short periodic billiard trajectory

The goal of this section is to prove the following theorem.

Theorem 5.1. Let Ω be a bounded domain in Rn with smooth boundary. Then, there
exists a periodic billiard trajectory on Ω with at most n+1 bounce times and length equal
to capR(Ω).

Theorem 5.1 is exactly the same as property (B) of capR which we have introduced in
the introduction. Hence, as we have explained in the introduction, it completes the proof
of our main theorem 1.1.

We start to prove theorem 5.1. The proof heavily relies on the arguments in [1]. First we
recall the settings in [1]. Fix d0 ∈ (0, 1/2) so small that dist∂Ω : q 7→ min

{
|q−q′|

∣∣ q′ ∈ ∂Ω
}

is smooth on {dist∂Ω ≤ 2d0}. Let k : [0,∞) → [0, 2d0] be a smooth function such that
0 ≤ k′ ≤ 1, k(x) = x if x ≤ d0 and k is constant on [2d0,∞). Then, we define a function
h ∈ C∞(Ω̄) by h(q) := k

(
dist∂Ω(q)

)
, and define U ∈ C∞(Ω) by U(q) := h−2(q). Then,

U is a positive function on Ω which grows like (dist∂Ω)
−2 near ∂Ω and is constant on the

region
{
dist∂Ω ≥ 2d0

}
.

For each ε > 0, consider the modified Lagrangian

Lε : TΩ → R; (q, v) 7→ |v|2/2− εU(q).
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For each energy value E ∈ R the free-time action functional L E
ε : L1,2(R/Z,Ω)×R>0 → R

is given by

L E
ε (Γ, τ) := τ

∫ 1

0

[
Lε
(
Γ(t), τ−1∂tΓ(t)

)
+ E

]
dt.

For (Γ, τ) ∈ L1,2(R/Z,Ω) × R>0, let γ be the corresponding τ -periodic curve, i.e. γ :
R/τZ → Ω; t 7→ Γ(t/τ). Then, straightforward calculations show that (Γ, τ) is a critical
point of L E

ε if and only if γ satisfies

∂2t γ +∇(εU)(γ) = 0

with energy

Eε(γ) := |∂tγ|2/2 + εU(γ) = E.

When (Γ, τ) is a critical point of L E
ε , µMorse (Γ : L E

ε |L1,2(R/Z)×{τ}) denotes the number of

negative eigenvalues of the Hessian of L E
ε |L1,2(R/Z)×{τ} at (Γ, τ).

For ε > 0, define Hε : T ∗Ω → R by Hε(q, p) := εU(q) + |p|2/2, and Dε := {Hε ≤
1/2
}
⊂ T ∗Ω.

Lemma 5.2. For any ε > 0, there exists (Γε, τε), a critical point of L 1/2
ε , which satisfies

the following properties:

(1)

∫
R/τεZ

|∂tγε|2dt = capS(Dε, ωΩ).

(2) µMorse (Γε;L
1/2
ε |L1,2(R/Z)×{τε}) ≤ n+ 1.

Proof. Take arbitrary λ ∈ Ω1(T ∗Ω) such that dλ = ωΩ and (Dε, λ) is a Liouville domain.
By corollary 3.12, there exists xε : R/τεZ → H−1

ε (1/2), which is a periodic orbit of XHε

and satisfies ∫
R/τεZ

x∗ελ = capS(Dε, ωΩ), µCZ(xε) ≤ n+ 1.

Define γε : R/τεZ → Ω and Γε : R/Z → Ω by γε := πΩ ◦ xε, Γε(t) := γε(τεt). Then, it is
obvious that (Γε, τε) is a critical point of L 1/2

ε . Moreover,∫
R/τεZ

|∂tγε|2dt =
∫
R/τεZ

x∗ελΩ =

∫
R/τεZ

x∗ελ = capS(Dε, ωΩ).

In the second equality, we use that xε is contractible in T ∗Ω and dλ = dλΩ.

Finally,

µMorse (Γε;L
1/2
ε |L1,2(R/Z)×{τε}) = µCZ(xε).

This identity follows from theorem 7.3.1 in [5]. (2) follows immdiately from this identity
and µCZ(xε) ≤ n+ 1. □

Lemma 5.3. For each ε > 0, take (Γε, τε), a critical point of L 1/2
ε which satisfies prop-

erties in lemma 5.2. Then,

0 < lim inf
ε→0

τε ≤ lim sup
ε→0

τε <∞.
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Proof. First we show that lim inf
ε→0

τε > 0. Assume that lim inf
ε→0

τε = 0, i.e. there exists a

sequence (εk)k such that εk, τεk → 0 as k → ∞. Then, there exists a sequence of integers
(Nk)k such that 1 < τεkNk < 2. Set Θk ∈ L1,2(R/Z,Ω) by Θk(t) := Γεk(Nkt). Then,

(Θk, τεkNk) is a critical point of L 1/2
εk

. By proposition 2.1 in [1], a certain subsequence of

(Θk)k converges in L1,2(R/Z, Ω̄). On the other hand, by lemma 5.2-(1),

|∂tΘk|2L2(R/Z) = N2
k

∫
R/Z

∣∣∂tΓεk(t)∣∣2dt = N2
k τεkcapS(Dεk , ωΩ).

Since capS(Dεk , ωΩ) → capR(Ω) as k → ∞ and Nkτεk > 1, the last term goes to ∞ as
k → ∞, contradicting that a certain subsequence of (Θk)k converges in L1,2(R/Z, Ω̄).

Next we show that lim sup
ε→0

τε < ∞. For each ε > 0, define xε : R/τεZ → T ∗Ω by

xε = (γε, ∂tγε). Then, xε is an integral curve of XHε on H−1
ε (1/2). On the other hand,

by proposition 3.2 in [1], when ε > 0 is sufficiently small, there exists λε ∈ Ω1(T ∗Ω) such
that dλε = ωΩ and the following inequality holds on H−1

ε (1/2):

λε(XHε) ≥
(1/2− 0)3

2
[
(1/2− 0)2 + 48(1/2− 0)2

] = 1

196
.

Notice that (Dε, λε) is a Liouville domain, since setting Zε ∈ X (T ∗Ω) by iZεωΩ = λε,
then dHε(Zε) = ωΩ(Zε, XHε) = λε(XHε) > 0 on H−1

ε (1/2).

Since ∫
R/τεZ

λε
(
XHε(xε(t))

)
dt =

∫
R/τεZ

x∗ελε = capS(Dε, ωΩ),

τε ≤ 196 · capS(Dε, ωΩ) ≤ 196 · capR(Ω) for sufficiently small ε > 0. This completes the
proof. □

Finally, we prove theorem 5.1.

Proof. For each ε > 0, take (Γε, τε), a critical point of L 1/2
ε which satisfies properties

in lemma 5.2. Then by lemma 5.3, we can apply proposition 2.1 in [1] to the sequence
(Γε, τε)ε>0. i.e. a certain subsequence of (Γε, τε)ε>0 converges to (Γ, τ) in L1,2(R/Z, Ω̄)×
R>0, and γ : R/τZ → Ω̄; t 7→ Γ(t/τ) is a periodic billiard trajectory on Ω, such that
E(γ) = lim

ε→0
Eε(γε) = 1/2.

Since µMorse (Γε;L
1/2
ε |L1,2(R/Z)×{τε}) ≤ n+1 for each ε > 0, proposition 2.2 in [1] implies

that Γ has at most n+ 1 bounce times.

Finally we prove that τ = capR(Ω). For each ε > 0, by lemma 5.2-(1),

capS(Dε, ωΩ) =

∫
R/τεZ

|∂tγε|2dt = τ−1
ε

∫
R/Z

|∂tΓε|2dt.

Since lim
ε→0

τε = τ and lim
ε→0

Γε → Γ in L1,2(R/Z, Ω̄), by taking limit of the above identity we

get

capR(Ω) = lim
ε→0

capS(Dε, ωΩ) = τ−1

∫
R/Z

|∂tΓ|2dt.
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On the other hand, since E(γ) = 1/2, |∂tγ| = 1 for almost every t ∈ R/τZ. Hence
|∂tΓ| = τ for almost every t ∈ R/Z. Therefore capR(Ω) = τ−1 · τ 2 = τ . □
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Appendix: proof of theorem 2.12

Assume that (X,λ), (X,λ′) are Liouville domains such that dλ = dλ′.

Take arbitrary smooth function ρ : R → [0, 1] such that for sufficiently large s0 > 0

ρ(s) =

{
0 (s ≤ −s0)
1 (s ≥ s0)

. Let λs :=
(
1 − ρ(s)

)
λ + ρ(s)λ′. Then, (X,λs)s∈R is a smooth

family of Liouville domains. Denote the completion of (X,λs) by (X̂s, λ̂s).

Our aim is to define a morphism from the Floer chain complex on (X,λ) to the Floer
chain complex on (X,λ′). To define a morphism, we study the Floer equation on a fiber
bundle over R, which is constructed as follows. First, consider trivial bundles

EX : X × R → R, E∂X :
(
∂X × (0,∞)

)
× R → R.

Define an embedding

I :
(
∂X × (0, 1]

)
× R → X × R;

(
(z, r), s

)
7→
(
Is(z, r), s

)
by (Zs denotes the vector field on X characterized by iZsdλs = λs):

Is(z, 1) = z (z ∈ ∂X),

∂rIs(z, r) = r−1Zs
(
Is(z, r)

) (
z ∈ ∂X, r ∈ (0, 1]

)
.

Let E := EX ∪I E∂X . E is a fiber bundle over R, and each fiber Es is identified with
X̂s. Note that there exist natural bundle maps over R:

j1 : EX → E,

j2 :
(
∂X × [1,∞)

)
× R → E.

To study the Floer equation on E, we equip E with a connection ∇, and denote the
horizontal lift of ∂s to E by W . We take ∇ so that W satisfies

• j∗1(W ) = (0, ∂s),
• j∗2(W ) = (0, ∂s) outside

(
∂X × [1, 2]

)
× [−s0, s0].

Let H− ∈ H rest
ad (X,λ), H+ ∈ H rest

ad (X,λ′) and (Hs)s∈R be a family of Hamiltonians
with the following properties:

• Hs ∈ H rest(X,λs) for any s ∈ R.
• ∂sHs,t(x) ≥ 0 for any (s, t) ∈ R× R/Z and x ∈ X.

• There exists s1 ≥ s0 such that Hs =

{
H− (s ≤ −s1)
H+ (s ≥ s1)

.
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• ∂saHs ≥ 0.

Let (Js)s be a family of (time-dependent) almost complex structures on Es = X̂s, such
that Js ∈ J (X,λs : 1) for any s, and

Js =

{
J−s0 (s ≤ −s0)
Js0 (s ≥ s0)

.

We denote J±s0 by J±.

Then, for x− ∈ P(H−), x+ ∈ P(H+), we study the following Floer equation for
u : R× R/Z → E:

• u(s, t) ∈ Es,
• ∇su− Js,t(∂tu−XHs,t ◦ u) = 0,
• u(s) → x± as s→ ±∞.

We denote the moduli space of solutions of the above Floer equation by M̂
(
x, y : (Hs, Js)s

)
.

In the following, we abbreviate aHs by a(s). The key step in the proof of theorem 2.12
is to prove the following lemma:

Lemma 5.4. There exist c0, c1 > 0, which depend only on (Js)s and ρ, such that: if
a satisfies ∂sa ≥ c0a + c1 on [−s0, s0], then for any x− ∈ P(H−), x+ ∈ P(H+) and

u ∈ M̂
(
x−, x+ : (Hs, Js)s

)
, u(R× R/Z) ⊂ j1(X × R).

Proof. Step 1. First note that for any x ∈ P(H−) ∪ P(H+), x(R/Z) ⊂ X. This is
because H± ∈ H rest

ad (X,λ). Our aim is to show that u(R×R/Z) is contained in j1(X×R).
If this is not true, for some r0 > 1

Dr0 := u−1
(
j2
(
∂X × [r0,∞)

)
× R

)
is a non-empty surface with boundary. Note that Dr0 must be compact, since both
x−(R/Z) and x+(R/Z) are contained in X. Define v : Dr0 → ∂X × [1,∞) by

u(s, t) = j2
(
v(s, t), s

)
,

and define z : Dr0 → ∂X and r : Dr0 → [1,∞) by v(s, t) =
(
z(s, t), r(s, t)

)
.

We will prove that there exist c0, c1 > 0, which depend only on (Js)s and ρ, such that
if a satisfies ∂sa ≥ c0a+ c1 on [−s0, s0], then ∆r ≥ 0. Since r ≡ r0 on ∂Dr0 , this implies
r ≤ r0 on Dr0 . On the other hand, by definition r > r0 on intDr0 , hence we get a
contradiction.

Step 2. We calculate ∆r(s, t) for (s, t) ∈ Dr0 . Recall that u satisfies the Floer equation

∇su− Js,t
(
∂tu−XHs,t(u)

)
= 0.

Since Hs,t(z, r) = a(s)r + b(s) on ∂X × [1,∞),

Js,tXHs,t = −∇s,tHs,t = −ar∂r.

∇s,tHs,t denotes the gradient of Hs,t with respect to ⟨ , ⟩Js,t .
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Moreover, by definition of W ,

∂su = ∇su+W (u).

Hence, the Floer equation can be written as:

(6) ∂su−W (u)− Js,t∂tu− ar∂r = 0.

It is convinient to define λ̂ ∈ Ω1(E) by

• λ̂|Es = λ̂s for any s ∈ R.
• λ̂(W ) ≡ 0.

Then, by applying dr and λ̂ to (6) respectively, we get

∂sr + λ̂(∂tu)− ar − dr
(
W (u)

)
= 0,

λ̂(∂su)− ∂tr = 0.

Then,

∆r = ∂t
(
λ̂(∂su)

)
− ∂s

(
λ̂(∂tu)

)
+ ∂s(ar) + ∂s

(
dr
(
W (u)

))
= dλ̂(∂tu, ∂su) + ∂s(ar) + ∂s

(
dr
(
W (u)

))
= |∇su|2Js,t + dλ̂(∂tu,W (u)) + ∂sa · r + a · dr(W (u)) + ∂s

(
dr(W (u))

)
.

In the following, we abbreviate | · |Js,t by | · |s,t.

Step 3. We prove that ∆r(s, t) ≥ 0 when s /∈ [−s0, s0]. Assume that s /∈ [−s0, s0].
Then, since j∗2W = (0, ∂s) on

(
∂X × [1,∞)

)
×
(
R \ [−s0, s0]

)
,

dr
(
W (u(s, t))

)
= 0.

Moreover, since ∂sλs = 0 for s /∈ [−s0, s0],

iW (u(s,t))dλ̂ = 0.

Hence

∆r(s, t) =
∣∣∇su(s, t)

∣∣2
s,t

+ ∂sa(s) · r(s, t) ≥ 0.

Step 4. Next we prove the following: there exist c2, c3 > 0 which depend only on
(Js)s and ρ, such that if a satisfies ∂sa ≥ c2a + c3 on [−s0, s0], then r(s, t) ≤ 2 for any
(s, t) ∈ R× R/Z.

Assume that r(s, t) > 2 for some (s, t) ∈ R × R/Z. Then, since j∗2W = (0, ∂s) on(
∂X × [2,∞)

)
× R,

dr
(
W (u(s, t))

)
= 0.

Hence

∆r(s, t) = |∇su|2s,t + dλ̂
(
∂tu,W (u)

)
+ ∂sa · r.

Since j∗2 λ̂ = rλs,

i∂s(j
∗
2dλ̂) = i∂s

(
dr ∧ λs + r(dλs + ds ∧ ∂sλs)

)
= r∂sλs.

Hence

−dλ̂
(
∂tu,W (u)

)
= i∂s(j

∗
2dλ̂)(∂tv) = r∂sλs(∂tv) = r∂sλs(∂tz).
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Therefore, there exists c4 > 0 which depends only on (Js)s and ρ such that∣∣dλ̂(∂tu,W (u)
)∣∣ = r ·

∣∣∂sλs(∂tz)∣∣ ≤ c4r
1/2|∂tu|s,t.

Moreover, since u satisfies the Floer equation ∇su− Js,t∂tu− ar∂r = 0,

|∂tu|s,t ≤ |∇su|s,t + |ar∂r|s,t = |∇su|s,t + ar1/2.

Therefore

∆r ≥ |∇su|2s,t + ∂sa · r − c4 · r1/2
(
|∇su|s,t + ar1/2

)
≥ |∇su|2s,t + ∂sa · r −

(
|∇su|2s,t + c24r

)
/2− c4ar

≥ (∂sa− c4a− c24/2)r.

Hence setting c2 := c4, c3 := c24/2, the following holds:

Assume ∂sa ≥ c2a+ c3 on [−s0, s0]. Then, ∆r(s, t) ≥ 0 if s ∈ [−s0, s0] and
r(s, t) > 2.

On the other hand, by Step 3, ∆r(s, t) ≥ 0 if s /∈ [−s0, s0]. Hence if ∂sa ≥ c2a + c3 on
[−s0, s0], ∆r(s, t) ≥ 0 on {r > 2} ⊂ R × R/Z. This implies that {r > 2} = ∅, by same
arguments as step 1.

Step 5. Finally we prove that there exist c0, c1 > 0, which depend only on (Js)s and
ρ, such that if a satisfies ∂sa ≥ c0a+ c1 on [−s0, s0], then ∆r ≥ 0.

It is convinient to equip E with a Riemannian metric ⟨ , ⟩t such that

• ⟨ , ⟩t|Es is equal to ⟨ , ⟩s,t.
• For any q ∈ Es, TqEs and Wq is orthogonal with respect to ⟨ , ⟩t.
• For any q ∈ E, |Wq|t = 1.

By step 4, r(s, t) ≤ 2 for any (s, t) ∈ R×R/Z. Therefore there exist c5, c6, c7 > 0 such
that ∣∣dλ̂(∂tu,W (u))

∣∣ ≤ c5|∂tu|t,∣∣dr(W (u))
∣∣ ≤ c6,∣∣∂s(dr(W (u))
)∣∣ ≤ c7|∂su|t

on [−s0, s0]× R/Z. On the other hand,

|∂tu|t ≤ |∇su|t + |ar∂r|t = |∇su|t + ar1/2 ≤ |∇su|t + a
√
2,

|∂su|t ≤ |W (u)|t + |∇su|t = 1 + |∇su|t.
Hence,

∆r ≥ |∇su|2t + ∂sa · r − c5
(
|∇su|t + a

√
2
)
− c6a− c7

(
1 + |∇su|

)
= |∇su|2t + ∂sa · r − (

√
2c5 + c6)a− (c5 + c7)|∇su|t − c7.

Therefore, setting c0 :=
√
2c5 + c6, c1 := c7 + (c5 + c7)

2/2, ∆r ≥ ∂sa − c0a − c1 (we use
∂sa ≥ 0 and r ≥ 1). Hence setting c0 and c1 as above, the following holds:

If ∂sa ≥ c0a+ c1 on [−s0, s0], then ∆r ≥ 0 on [−s0, s0]× R/Z.
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On the other hand, ∆r(s, t) ≥ 0 when s /∈ [−s0, s0], as we have proved in step 3. This
completes the proof of step 5. □
Corollary 5.5. Let c0, c1 > 0 satisfy the condition in lemma 5.4, and assume that ∂sa ≥
c0a + c1 on [−s0, s0]. Then, for any x− ∈ P(H−), x+ ∈ P(H+) and u ∈ M̂

(
x−, x+ :

(Hs, Js)s
)
,

∂sAHs

(
u(s) : X,λs

)
≤ 0.

In particular, if AH+(x+) > AH−(x−), then M̂
(
x−, x+ : (Hs, Js)s

)
= ∅.

Proof. By lemma 5.4, u(R× R/Z) ⊂ j1(X × R). Since j∗1W = (0, ∂s),

∂sAHs

(
u(s) : X,λs

)
=

∫
R/Z

u(s)∗∂sλs −
∫
R/Z

{
|∇su(s, t)|2 + ∂sHs,t

(
u(s, t)

)}
dt.

Since u(s) : R/Z → X is contractible, one can extend u(s) to u(s) : D2 → X so that

u(s)(e2πiθ) = u(s)(θ). Then,∫
R/Z

u(s)∗∂sλs =

∫
D2

u(s)
∗
∂s(dλ

s) = 0.

Hence

∂sAHs

(
u(s) : X,λs

)
= −

∫
R/Z

{
|∇su(s, t)|2 + ∂sHs,t

(
u(s, t)

)}
dt ≤ 0,

where the last inequality follows from ∂sHs,t ≥ 0 on X. □

Finally we prove theorem 2.12. Define a morphism ψ : C∗
(
H−, ∂H−,J−

)
→ C∗

(
H+, ∂H+,J+

)
by

ψ
(
[x−]

)
=

∑
x+∈Pk(H+)

♯M̂
(
x−, x+ : (Hs, Js)s

)
· [x+]

(
x− ∈ Pk(H−)

)
.

Then, by lemma 5.4, ψ is a chain map. Moreover, by corllary 5.5, ψ defines a chain map
ψ<a : C<a

∗
(
H−, ∂H−,J−

)
→ C<a

∗
(
H+, ∂H+,J+

)
for any a ∈ (0,∞]. This defines a morphism

HF<a∗ (H−) → HF<a∗ (H+), and we denote this morphism also by ψ<a. It is clear from the
construction that

HF<a∗ (H− : X,λ)
ψ<a

//

��

HF<a∗ (H+ : X,λ′)

��

HF<b∗ (H− : X,λ)
ψ<b

// HF<b∗ (H+ : X,λ′)

commutes for any a ≤ b.

By taking a limit, we get a morphism SH<a
∗ (X,λ) → SH<a

∗ (X,λ′) (still denoted by
ψ<a), and the following diagram commutes:

SH<a
∗ (X,λ)

ψ<a

//

��

SH<a
∗ (X,λ′)

��

SH<b
∗ (X,λ)

ψ<b

// SH<b
∗ (X,λ′)

.
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It is easy to check that ψ<a does not depend on choices of ρ and (Js)s, ψ
<a : SH<a(X,λ) →

SH<a(X,λ) is the identity, and the following diagram commutes:

SH<a
∗ (X,λ)

ψ<a ''PPPPPPPPPPPP

ψ<a

// SH<a
∗ (X,λ′)

ψ<avvnnnnnnnnnnnn

SH<a
∗ (X,λ′′)

Then, it follows that ψ<a is isomorphic. Hence this completes the proof of theorem 2.12.
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