78 research outputs found

    Going beyond audit and feedback: towards behaviour-based interventions to change physician laboratory test ordering behaviour

    Get PDF
    Studies indicate there are a variety of contributing factors affecting physician test ordering behaviour. Identifying these behaviours allows development of behaviour-based interventions. Methods Through a pilot study, the list of contributing factors in laboratory tests ordering, and the most ordered tests, were identified, and given to 50 medical students, interns, residents and paediatricians in questionnaire form. The results showed routine tests and peer or supervisor pressure as the most influential factors affecting physician ordering behaviour. An audit and feedback mechanism was selected as an appropriate intervention to improve physician ordering behaviour. The intervention was carried out at two intervals over a three-month period. Findings There was a large reduction in the number of laboratory tests ordered; from 908 before intervention to 389 and 361 after first and second intervention, respectively. There was a significant relationship between audit and feedback and the meaningful reduction of 7 out of 15 laboratory tests including complete blood count (p = 0.002), erythrocyte sedimentation rate (p = 0.01), C-reactive protein (p = 0.01), venous blood gas (p = 0.016), urine analysis (p = 0.005), blood culture (p = 0.045) and stool examination (p = 0.001). Conclusion The audit and feedback intervention, even in short duration, affects physician ordering behaviour. It should be designed in terms of behaviour-based intervention and diagnosis of the contributing factors in physicians’ behaviour. Further studies are required to substantiate the effectiveness of such behaviour-based intervention strategies in changing physician behaviour

    High-performance transistors for bioelectronics through tuning of channel thickness.

    Get PDF
    UNLABELLED: Despite recent interest in organic electrochemical transistors (OECTs), sparked by their straightforward fabrication and high performance, the fundamental mechanism behind their operation remains largely unexplored. OECTs use an electrolyte in direct contact with a polymer channel as part of their device structure. Hence, they offer facile integration with biological milieux and are currently used as amplifying transducers for bioelectronics. Ion exchange between electrolyte and channel is believed to take place in OECTs, although the extent of this process and its impact on device characteristics are still unknown. We show that the uptake of ions from an electrolyte into a film of poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfonate ( PEDOT: PSS) leads to a purely volumetric capacitance of 39 F/cm(3). This results in a dependence of the transconductance on channel thickness, a new degree of freedom that we exploit to demonstrate high-quality recordings of human brain rhythms. Our results bring to the forefront a transistor class in which performance can be tuned independently of device footprint and provide guidelines for the design of materials that will lead to state-of-the-art transistor performance

    Adolescent male with anorexia nervosa: a case report from Iraq

    Get PDF
    This is the first reported case of an adolescent male with anorexia nervosa in Iraq. This disorder is believed to be rare in males across cultures and uncommon for both genders in Arab countries. The patient met the DSM-IV diagnostic criteria for anorexia nervosa. He was hospitalized and received medical and psychiatric treatment at local facilities as discussed below and responded well to treatment

    Interictal Functional Connectivity of Human Epileptic Networks Assessed by Intracerebral EEG and BOLD Signal Fluctuations

    Get PDF
    In this study, we aimed to demonstrate whether spontaneous fluctuations in the blood oxygen level dependent (BOLD) signal derived from resting state functional magnetic resonance imaging (fMRI) reflect spontaneous neuronal activity in pathological brain regions as well as in regions spared by epileptiform discharges. This is a crucial issue as coherent fluctuations of fMRI signals between remote brain areas are now widely used to define functional connectivity in physiology and in pathophysiology. We quantified functional connectivity using non-linear measures of cross-correlation between signals obtained from intracerebral EEG (iEEG) and resting-state functional MRI (fMRI) in 5 patients suffering from intractable temporal lobe epilepsy (TLE). Functional connectivity was quantified with both modalities in areas exhibiting different electrophysiological states (epileptic and non affected regions) during the interictal period. Functional connectivity as measured from the iEEG signal was higher in regions affected by electrical epileptiform abnormalities relative to non-affected areas, whereas an opposite pattern was found for functional connectivity measured from the BOLD signal. Significant negative correlations were found between the functional connectivities of iEEG and BOLD signal when considering all pairs of signals (theta, alpha, beta and broadband) and when considering pairs of signals in regions spared by epileptiform discharges (in broadband signal). This suggests differential effects of epileptic phenomena on electrophysiological and hemodynamic signals and/or an alteration of the neurovascular coupling secondary to pathological plasticity in TLE even in regions spared by epileptiform discharges. In addition, indices of directionality calculated from both modalities were consistent showing that the epileptogenic regions exert a significant influence onto the non epileptic areas during the interictal period. This study shows that functional connectivity measured by iEEG and BOLD signals give complementary but sometimes inconsistent information in TLE

    The past, present, and future of the brain imaging data structure (BIDS)

    Get PDF
    The Brain Imaging Data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard has developed and grown over time. We outline the principles behind the project, the mechanisms by which it has been extended, and some of the challenges being addressed as it evolves. We also discuss the lessons learned through the project, with the aim of enabling researchers in other domains to learn from the success of BIDS

    EEG-fMRI Based Information Theoretic Characterization of the Human Perceptual Decision System

    Get PDF
    The modern metaphor of the brain is that of a dynamic information processing device. In the current study we investigate how a core cognitive network of the human brain, the perceptual decision system, can be characterized regarding its spatiotemporal representation of task-relevant information. We capitalize on a recently developed information theoretic framework for the analysis of simultaneously acquired electroencephalography (EEG) and functional magnetic resonance imaging data (fMRI) (Ostwald et al. (2010), NeuroImage 49: 498–516). We show how this framework naturally extends from previous validations in the sensory to the cognitive domain and how it enables the economic description of neural spatiotemporal information encoding. Specifically, based on simultaneous EEG-fMRI data features from n = 13 observers performing a visual perceptual decision task, we demonstrate how the information theoretic framework is able to reproduce earlier findings on the neurobiological underpinnings of perceptual decisions from the response signal features' marginal distributions. Furthermore, using the joint EEG-fMRI feature distribution, we provide novel evidence for a highly distributed and dynamic encoding of task-relevant information in the human brain

    A comparative study of the enzymatic hydrolysis of batch organosolv-pretreated birch and spruce biomass

    Get PDF
    A shift towards a sustainable and green society is vital to reduce the negative effects of climate change associated with increased CO2 emissions. Lignocellulosic biomass is both renewable and abundant, but is recalcitrant to deconstruction. Among the methods of pretreatment available, organosolv (OS) delignifies cellulose efficiently, significantly improving its digestibility by enzymes. We have assessed the hydrolysability of the cellulose-rich solid fractions from OS-pretreated spruce and birch at 2% w/v loading (dry matter). Almost complete saccharification of birch was possible with 80 mg enzyme preparation/gsolids (12 FPU/gsolids), while the saccharification yield for spruce was only 70%, even when applying 60 FPU/gsolids. As the cellulose content is enriched by OS, the yield of glucose was higher than in their steam-exploded counterparts. The hydrolysate was a transparent liquid due to the absence of phenolics and was also free from inhibitors. OS pretreatment holds potential for use in a large-scale, closed-loop biorefinery producing fuels from the cellulose fraction and platform chemicals from the hemicellulose and lignin fractions respectively

    Whole-scalp EEG mapping of somatosensory evoked potentials in macaque monkeys

    Get PDF
    corecore