1,767 research outputs found

    Degradation of human kininogens with the release of kinin peptides by extracellular proteinases of Candida spp.

    Get PDF
    The secretion of proteolytic enzymes by pathogenic microorganisms is one of the most successful strategies used by pathogens to colonize and infect the host organism. The extracellular microbial proteinases can seriously deregulate the homeostatic proteolytic cascades of the host, including the kinin-forming system, repeatedly reported to he activated during bacterial infection. The current study assigns a kinin-releasing activity to secreted proteinases of Candida spp. yeasts, the major fungal pathogens of humans. Of several Candida species studied, C. parapsilosis and C. albicans in their invasive filamentous forms are shown to produce proteinases which most effectively degrade proteinaceous kinin precursors, the kininogens. These enzymes, classified as aspartyl proteinases, have the highest kininogen-degrading activity at low pH (approx. 3.5), but the associated production of bradykinin-related peptides from a small fraction of kininogen molecules is optimal at neutral pH (6.5). The peptides effectively interact with cellular B2-type kinin receptors. Moreover, kinin-related peptides capable of interacting with inflammation-induced B1-type receptors are also formed, but with a reversed pH dependence. The presented variability of the potential extracellular kinin production by secreted aspartyl proteinases of Candida spp. is consistent with the known adaptability of these opportunistic pathogens to different niches in the host organism

    Cathodoluminescence investigations of GaAs thin layers

    Get PDF
    AbstractIn this work, we report the theoretical results of cathodoluminescence (CL) for GaAs layer. The simulation of the CL excitation and intensity is developed using 2-D model based on the electron beam energy dissipation and taking into account the effects of carrier diffusion, internal absorption and the recombination process in the semiconductors.We have investigated the influence of the electron beam conditions (energy, current and beam diameter) and some physical parameters (absorption coefficient, gap energy) on the CL intensity. Results allow us particularly to predict the intensity evolution and shift of CL peak emitted near the fundamental energy gap as a function of the electron beam current and energy. A comparative study between simulated and experimental CL spectra at low temperature is realized

    Positive effects of a novel non-peptidyl low molecular weight radical scavenger in renal ischemia/reperfusion: a preliminary report

    Get PDF
    Ischemia/reperfusion (I/R) is one of the most common causes of acute kidney injury. Reactive oxygen species have been recognized to be an important contributor to the pathogenesis of I/R injury. We hypothesize that a non-peptidyl low molecular weight radical scavenger (IAC) therapy may counteract this factor, ultimately providing some protection after acute phase renal I/R injury. The aim of this preliminary study was to assess the ability of IAC to reduce acute kidney injury in C57BL/6 mice after 30-minute of bilateral ischemia followed by reperfusion. The rise in serum creatinine level was higher in C57BL/6 control mice after I/R when compared to IAC (1 mg)-treated mice. Control mice showed greater body weight loss compared to IAC-treated mice, and at pathology, reduced signs of tubular necrosis were also evident in IAC-treated mice. These preliminary evidences lay the basis for more comprehensive studies on the positive effects of IAC as a complementary therapeutic approach for acute phase renal I/R injury

    Immune heterogeneity of head and tail pancreatic lymph nodes in non-obese diabetic mice

    Get PDF
    The pancreatic lymph node is critical to the pathogenesis of autoimmune diabetes, as it constitutes the initial site for the priming of autoreactive T cells. In this study, we compared the histopathology of the head pancreatic lymph node (HPLN) to the tail pancreatic lymph node (TPLN) in NOD mice. HPLNs and TPLNs were harvested from 4 week-, 8 week-, and 12 week-old NOD mice, and their microvasculature, extracellular matrix, and immune cell subsets were characterized. The percentages of B cells and antigen-presenting cells (APCs) were much higher in the HPLN, as compared to the TPLN. Notably, the HPLNs of 12 week-old mice were characterized by greater expansion of high endothelial venules (HEVs) and lymphatic vessels in comparison to the TPLNs. Finally, we observed a higher density of extracellular matrix (ECM) fibers surrounding the lymphatic vasculature in the HPLNs than in the TPLNs. These data for the first time demonstrate that the HPLN possesses a different immune microanatomy and organization from the TPLN. These novel observations unveil a major phenotypic difference between two types of LNs from the same organ and may highlight an independent fundamental role played by each PLN during the establishment of T1D

    Versatile anti-infective properties of pyrido- and dihydropyrido[2,3-d]pyrimidine-based compounds

    Get PDF
    A series of 1H-indeno[2',1':5,6]dihydropyrido[2,3-d]pyrimidine and 1H-indeno[2',1':5,6]pyrido[2,3-d]pyrimidine derivatives was prepared and screened for antiparasitic and viral RNase H inhibitory activity. Several compounds showed considerable activity against Toxoplasma gondii parasites and Leishmania major amastigotes, which warrants further investigation. Based on the structural similarities of certain derivatives with common viral RNase H inhibitors, a HIV-1 RNase H assay was used to study the RNase H inhibition by selected test compounds. Docking of active derivatives into the active site of the HIV-1 RNase H enzyme was carried out. The new compound 2a, inactive in the antiparasitic tests, showed distinct HIV-1 RNase H inhibition. Thus, ring substitution determines antiparasitic or HIV-1 RNase H inhibitory activity of this promising compound class

    A New Zn(II) Metal Hybrid Material of 5-Nitrobenzimidazolium Organic Cation (C7H6N3O2)2[ZnCl4]: Elaboration, Structure, Hirshfeld Surface, Spectroscopic, Molecular Docking Analysis, Electric and Dielectric Properties

    Get PDF
    The slow solvent evaporation approach was used to create a single crystal of (CHNO)[ZnCl] at room temperature. Our compound has been investigated by single-crystal XRD which declares that the complex crystallizes in the monoclinic crystallographic system with the P2/c as a space group. The molecular arrangement of the compound can be described by slightly distorted tetrahedral ZnCl anionic entities and 5-nitrobenzimidazolium as cations, linked together by different non-covalent interaction types (H-bonds, Cl…Cl, π…π and C–H…π). Hirshfeld’s surface study allows us to identify that the dominant contacts in the crystal building are H…Cl/Cl…H contacts (37.3%). FT-IR method was used to identify the different groups in (CHNO)[ZnCl]. Furthermore, impedance spectroscopy analysis in 393 ≤ T ≤ 438 K shows that the temperature dependence of DC conductivity follows Arrhenius’ law. The frequency–temperature dependence of AC conductivity for the studied sample shows one region (E = 2.75 eV). In order to determine modes of interactions of compound with double stranded DNA, molecular docking simulations were performed at molecular level

    Metasurface-Inspired Flexible Wearable MIMO Antenna Array for Wireless Body Area Network Applications and Biomedical Telemetry Devices

    Get PDF
    This article presents a sub-6GHz ISM-band flexible wearable MIMO antenna array for wireless body area networks (WBANs) and biomedical telemetry devices. The array is based on metasurface inspired technology. The antenna array consists of 2×2 matrix of triangular-shaped radiation elements that were realized on 0.8 mm thick Rogers RT/duroid 5880 substrate. Radiation characteristics of the array are enhanced by isolating the surface current interaction between the individual radiators in the array. This is achieved by inserting an electromagnetic bandgap (EBG) decoupling structure between the radiating elements. The radiating elements were transformed into a metasurface by etching sub-wavelength slots inside them. The periodic arrangement of slots acts like resonant scatterers that manipulate the electromagnetic response of the surface. Results confirm that by employing the decoupling structure and sub-wavelength slots the isolation between the radiators is significantly improved (>34.8 dB). Moreover, there is an improvement in the array’s fractional bandwidth, gain and the radiation efficiency. The optimized array design for operation over 5.0-6.6 GHz has an average gain and efficiency of 10 dBi and 83%, respectively. Results show that the array’s performance is not greatly affected by a certain amount of bending. In fact, the antenna maintains a gain between 8.65-10.5 dBi and the efficiency between 77-83%. The proposed MIMO antenna array is relatively compact, can be easily fabricated on one side of a dielectric material, allows easy integration with RF circuitry, is robust, and maintains its characteristics with some bending. These features make it suitable for various wearable applications and biomedical telemetry devices
    • …
    corecore