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Abstract: The slow solvent evaporation approach was used to create a single crystal of (C7H6N3O2)2[ZnCl4]
at room temperature. Our compound has been investigated by single-crystal XRD which declares that
the complex crystallizes in the monoclinic crystallographic system with the P21/c as a space group. The
molecular arrangement of the compound can be described by slightly distorted tetrahedral ZnCl42− anionic
entities and 5-nitrobenzimidazolium as cations, linked together by different non-covalent interaction types
(H-bonds, Cl . . . Cl, π . . . π and C–H . . . π). Hirshfeld’s surface study allows us to identify that the
dominant contacts in the crystal building are H . . . Cl/Cl . . . H contacts (37.3%). FT-IR method was used
to identify the different groups in (C7H6N3O2)2[ZnCl4]. Furthermore, impedance spectroscopy analysis
in 393≤ T≤ 438 K shows that the temperature dependence of DC conductivity follows Arrhenius’ law.
The frequency–temperature dependence of AC conductivity for the studied sample shows one region
(Ea = 2.75 eV). In order to determine modes of interactions of compound with double stranded DNA,
molecular docking simulations were performed at molecular level.

Keywords: Zinc (II) complex; hydrogen bonds; AC conductivity; FT-IR; molecular docking study

1. Introduction

Zinc (belonging to the fourth period of T.P) is one of the most essential metallic entities
in the human body and has a major role in biological systems [1]. Zn has a bacteriostatic
behavior on many microorganisms [2,3], and has various industrial applications such as
in food, pharmacology, power leading, materials, and chemistry [4–7]. Furthermore, Zn
(II) is often stabilized by a tetrahedral coordination environment to fill out the 4s and 4p
orbitals [8–10]. The complexes based on Zn have a high-performance property focusing on
photoluminescence, letting them to be adapted as light sensors, biological imaging probes,
and electrochemical machines [11–21]. The interaction types X–H . . . A which are classified
as non-covalent, metallophilic, halogen–halogen, X–H . . . π, π . . . π, lead to mixing two
entities (organic and inorganic parts) together in a single hybrid derivative, resulting in
structure stability [22–33].
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In organic entities that include heteroatoms in their structures, π-electrons come from
the aromatic ones, and conjugated bonds can be adapted in various fields, as mentioned by
several researchers in their work [34–36]. Benzimidazole derivatives have an important role
in the domain of chemistry especially medicinal chemistry. The benzimidazole derivatives
are used as fungicides in agriculture due to the high activity against pathogenic and
non-pathogenic fungi [37,38]. Recent research have demonstrated that benzimidazole
derivatives exhibit very good steel-inhibiting performance in acid solution [39–44].

In this article, we present an in-depth study of a new material synthesized by an
acid–base reaction between zinc chloride and the ligand 5-nitrobenzimidazole, by using
SCXRD, PXRD, FT-IR spectroscopy, molecular docking study and impedance spectroscopy.

2. Experimental Part
2.1. Chemical Preparation

By the acid–base reaction between methanolic solution containing 5-nitrobenzimidazole
(0.3262 g, 2 mmol, purity 98%, Sigma-Aldrich, Burlington, MA, USA) and solution contain-
ing ZnCl2 (0.2445 g, 1 mmol, purity≥98%, Sigma-Aldrich) dissolved in 10 mL of hydrochlo-
ric acid (1M, purity 36–38%, Sigma-Aldrich), we produced crystals of (C7H6N3O2)2[ZnCl4]
by evaporation method at T = 24 ◦C. Colorless prism crystals appeared after three weeks
(Yield: 78%).

The reaction Scheme 1:
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Scheme 1. Synthesis of (C7H6N3O2)2[ZnCl4].

The CHN-elemental analysis declares: C: 31.46%; 31.39%/N: 15.70; 15.65/H: 2.26%;
2.18%/O: 11.95%; 11.88%.

2.2. Methods Details

Using Xcalibur, Ruby, Gemini diffractometer equipped with MoKα radiation (0.71073 Å)
at 293 K, we succeeded in identifying the crystallographic data of (C7H6N3O2)2[ZnCl4].
The refinement was performed by the SHELXL program version 2018/1 [45]. By exploiting
the Diamond program, we succeeded in drawing the graphs explaining the structure of the
material [46]. The ORTEP was drawn by the Mercury software [47]. All crystallographic
details are displayed in Table S1. To acquire the infrared spectrum of (C7H6N3O2)2[ZnCl4],
a spectrophotometer called Nicolet Impact 410 FT-IR was used according to the manufac-
turer’s instruction (SpectraLab Scientific Inc., Markham, ON, Canada). The measurement of
the real Z’ and imaginary Z” impedance characteristics was carried out for 393 ≤ T ≤ 438 K
and for 101 ≤ f ≤ 107 Hz by using the Hewlett Packard 4192A analyzer and with a disc of
pellets approximately 6 mm in diameter and 1.2 mm in thickness.

Chemical computing Inc., Molecular operating environment MOE 2017 program
was applied for molecular docking simulations of interaction analysis of compounds.
Crystal structure of (C7H6N3O2)2[ZnCl4] was imported to MOE interphase for optimization
of the structure through the MOPAC 7.0 level of theory. The model was fetched from
the database after geometry fixing. X-ray crystallographic structure of DNA leading to
PDB ID: 6TNY and resolution of 3.0 Å was uploaded from the Protein Data Bank [48].
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6TNY was protonated and optimized through the protonate-3D menu after the removal
of water molecules from the 6TNY structure. In order to investigate docking analysis,
coordinates of 6TNY were optimized using AMBER force field and semi-empirical PM3
approaches. Relaxed coordinates possessed the lowest energy and stable conformation for
the uploaded functional function calculations. (C7H6N3O2)2[ZnCl4] compound optimized
geometries were subjected to methodical molecular docking taking 6TNY as receptor at
default parameters with an RMS gradient in the order of 0.01 kcal/mol. Dummy atoms were
generated for finding interactions sites of 6TNY using Site Finder. Many docking essays
were carried out to performed runs to obtain the final docking poses as perfect as possible.
The interaction energy of (C7H6N3O2)2[ZnCl4] compound with 6TNY was determined at
each step of the simulation. The rest of the parameters were kept as default [49].

3. Discussion Part
3.1. Crystal Structure Details

From the results obtained by SCXRD technique, the ORTEP of the bis(5-benzimidazolium)
tetrachlorozincate (II) compound is constituted by two independent [ZnCl4]2-anions and
four independent 5-nitrobenzimidazolium cations (Figure 1).
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The solid-state arrangement of (C7H6N3O2)2[ZnCl4] can be described as an alternation
between (C7H6N3O2)+ cations and tetrachlorozincate (II) entities. These entities are linked
together through four types of H-bonds (Table S2 and Figure 2).

According to Figure 2, Zn (II) ions are surrounded by four chlorine atoms. Applying
the Yang parameter τ4 [50], we can differentiate between the square plane geometry and
the tetrahedral geometry. Thus, we specify the deformation rate of the geometries:

τ4 =
360− (α+ β)

141
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For the [Zn(1)Cl4]2− anions: α = 119.84 (5)◦, β = 110.83 (5)◦ and τ4 = 0.917 and for
[Zn(2)Cl4]2− anions: α = 116.23 (5)◦, β = 114.25 (5)◦ and τ4 = 0.918. Based on the values
of τ4, we can affirm that the tetrachloridozincate (II) anions are slightly deformed tetrahe-
dral. The dZn(1)–Cl varies between 2.2488 (11) and 2.3220 (12) Å for [Zn(1)Cl4]2− and the
dZn(2)–Cl varies from 2.2489 (12) to 2.3162 (13) Å. On the other side, the Cl–Zn(1)–Cl angles
vary from 104.42 (4) to 119.84 (5)◦ and the ˆClZn(2)Cl vary from 104.25 (5) to 116.23 (5)◦

(Table S3). These values are very close to those found in works based on tetrachlorozincate
(II) anions [51–56].
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In general, the cohesion of the crystal structure is ensured by different types of interac-
tions. The main interaction in this structure is the hydrogen bonds which contribute to the
stabilization of the crystal packing. Figure 2 states that the N–H and C–H moieties of the
cation (C7H6N3O2)+ perform as H-bonds donors with the chlorine atoms of tetrachlorozin-
cate (II) (C–H . . . Cl and N–H . . . Cl) and these fragments also act as donors of hydrogen
bonds with the oxygen atoms of –NO2 group (C–H . . . O and N–H . . . O). The H-bond
values vary from 3.1441 to 3.8471 Å (Table S2). As shown in Figure 3, the presence of
C–H . . . π interactions in the crystal arrangement shows another type of interactions. The
measurement of interaction values is determined by measuring the d (distance) between
the centroid of the benzene values cycle and the C–H fragment of neighboring cations.
This distance varies between 3.654 and 3.687 Å (Figure 3a) [57]. Figure 3b shows the weak
π . . . π interactions (betwixt the centroids of two parallel aromatic rings).

The characteristic properties of the organic cations (C7H6N3O2)+ are displayed in
Table S4. For the nitro groups, the dN–O are located between 1.205 (5) and 1.223 (5) Å and
the ˆONO angles vary from 118.2 (5) to 124.1 (6)◦. For the benzimidazolium groups, the
values of the dN–C vary from 1.310 (5) to 1.475 (7) Å. The C–C distances vary between
1.356 (6) and 1.393 (5) Å. The values of ˆCCC, ˆNCC, and ˆNCN are betwixt 106.0 (4) and



Materials 2022, 15, 7973 5 of 18

133.0 (4)◦. These values are almost homologous to the values obtained in 2-(3-hydroxypropyl)
benzimidazoles [58].
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3.2. HS Analysis, 2D Fingerprint Plots and EXY

Exploiting CrystalExplorer 17.5 software [59], the Hirshfeld surfaces of (C7H6N3O2)2[ZnCl4]
were mapped over curvedness (range from−4.0000 to 0.4000), patch fragment (vary between
0.0000 and 49.0000), dnorm (vary between −0.4160 and 1.3942), shape index (vary between
−1.0000 and 1.0000), di (range from 0.8343 to 2.6553 Å), and de (range between 0.8341 and
2.7385 Å) (Figure 4a–f). The red spots in the surface mapped on dnorm reveal that close con-
tact interactions are observable near the Cl, N, C, and O atoms involved in the H-bonds
(Table S2 and Figure 5). The presence of C–H . . . π interactions is strongly affirmed by the
shape-index mapping. The two-dimensional fingerprint plots allow us to discuss all intermolec-
ular contacts present in the crystal structure of our sample (Figure 6). The EXY and EXX were
realized out of the actual contacts between the different entities and equiprobable proportions
calculated from the chemical surface content.
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The CrystalExplorer software gives us the opportunity also to determine the void 
surface in the crystal structure of (C7H6N3O2)2[ZnCl4]. The calculation of the crystalline 
voids (0.002 a.u. isovalue) indicates that the void volume and the surface area of 
(C7H6N3O2)2[ZnCl4] are exactly equal to 381.08 Å3 and to 1285.09 Å2 respectively. The data 
given by the monocrystal XRD analysis showed that the volume of the unit cell is equal 
to 3995.8 Å3 (Table S1 and Figure 7). 9.54% represents the calculated porosity value and 
indicates that the cavities are not spacious. The electron density isosurfaces are not closed 
near the entities but are spaced out where there are H-bonds [60].  

Figure 6. The 2D fingerprints plot of the intermolecular contacts presents in (C7H6N3O2)2[ZnCl4]:
(a) 100%, (b) Cl . . . H/H . . . Cl contacts, (c) O . . . H/H . . . O contacts, (d) C . . . H/H . . . C contacts,
(e) H . . . H contacts and (f) C . . . Cl/Cl . . . C contacts.

In the crystalline structure of our compound, there are in fact fourteen H-bonds
(Table S2). The H . . . Cl/Cl . . . H contacts are the favored interactions with de + di ~ 2.2 Å,
and their contributions is of the order 37.3% (Figure 6b) with EH . . . Cl = 1.79 > 1. This domi-
nance is related to the abundance of chlorine (%SCl = 25.3%) and hydrogen (%SH = 41.4%)
at the molecular surface (Table 1). The second place of the dominant interactions in the
crystalline structure is reserved for the H . . . O/O . . . H contacts with a contribution equal
to 16.2% due to the abundance of hydrogen and oxygen (%SO = 14.7%) on the molecular sur-
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face. In the fingerprint diagram, the H . . . O/O . . . H contacts (corresponding to N–H . . . X
and C–H . . . X H-bonds with X = O) are viewed like a pair of symmetrical spikes with di + de
~ 2.4 Å) (Figure 6c). The percentage 9.1% is attributed to the C . . . H/H . . . C interactions
representing the third most important interaction on the surface with an enrichment ratio
below 1, EC . . . H = 0.829 (Figure 6d). The H . . . C/C . . . H interactions correspond to
the strong C–H . . . π interaction types. The H . . . H contacts are the fourth most fre-
quent interactions materializing as a large region in the middle of the 2D fingerprint plot,
forming 8.3% of the total Hirshfeld surface area (Figure 6e). Finally, 5.1% is attributed to
C . . . Cl/Cl . . . C interactions.

Table 1. Enrichment reports (EXY) of (C7H6N3O2)2[ZnCl4].

Atoms Zn Cl N O C H

% Surface 0.8 25.3 4.85 14.7 13.35 41.1

Zn - 0.988 - 0.760

Cl 0.249 1.344

N 0.771 - 0.627

O 0.174 1.52 1.070 1.340

C 0.754 1.402 0.829

H 1.793 0.491

The CrystalExplorer software gives us the opportunity also to determine the void surface
in the crystal structure of (C7H6N3O2)2[ZnCl4]. The calculation of the crystalline voids (0.002
a.u. isovalue) indicates that the void volume and the surface area of (C7H6N3O2)2[ZnCl4] are
exactly equal to 381.08 Å3 and to 1285.09 Å2 respectively. The data given by the monocrystal
XRD analysis showed that the volume of the unit cell is equal to 3995.8 Å3 (Table S1 and
Figure 7). 9.54% represents the calculated porosity value and indicates that the cavities are not
spacious. The electron density isosurfaces are not closed near the entities but are spaced out
where there are H-bonds [60].
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3.3. Infrared Spectroscopy

Spectral band assignments of the sample (C7H6N3O2)2[ZnCl4] are determined using
IR spectra of similar compounds [61–66]. The experimental infrared spectrum in the range
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of 4000–500 cm−1 is shown in Figure 8. In this spectrum, specifically in the domain where
the wavelength varies from 3600 to 3000 cm−1, the peaks detected at 3592 and 3439 cm−1

are reserved for N–H stretching vibrations, on the other hand, the bands sighted at 3178 and
3120 cm−1 are allotted to C–H vibration of the aromatic ring. The band around 1629 cm−1 is
assigned to the stretching flexion of N–H and C=N. The band at 1533 cm−1 was attached to
the C=C and C–N stretching vibrations. The organic cation (5-nitrobenzimidazolium)
that participates in the synthesis of (C7H6N3O2)2[ZnCl4] has a nitro group which is
bonded to the aromatic ring. In the previous research, asymmetric–symmetric stretch-
ing vibrations of –NO2 are normally observed between 1570 and 1485 cm−1 and between
1370 and 1320 cm−1 [67], respectively. The band spotted at 1482 cm−1 was reserved to
νs(–NO2) vibrations. The planar aromatic ρ(C–H) and δ(C–H) vibrations occur at 1055 and
736 cm−1, respectively.
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3.4. Electric and Dielectric Reports
3.4.1. ε’ and ε” versus Ln(f)

The dielectric characteristics of materials change relatively with the frequency of the
applied electric field. Electrical permittivity is associated with dipole oscillations free in an
alternating field which is demonstrated by Debye’s theory [68]. The complex permittivity
ε* is bounded by the relation ε* = ε’(ω) − iε”(ω), so that ε’(ω) (the real part) exhibits the
phenomenon of bound absorption to the energy storage capacity of the capacitor and ε”
(the imaginary part) shows the phenomenon of energy dissipation. They are calculated
using the following equations:

ε’(ω) =
1
ωC0

[
−Z′′

Z ’2 + Z′′2

]
; ε′′(ω) =

1
ωC0

[
Z’

Z’2 + Z′′2

]
with C0 =

ε0 S
e

ε0: represent the geometric capacitance without dielectric (vacuum or air).
S: is the surface of the pellet which has the cylindrical shape.
e: called the thickness of the pellet.
In Figure 9, we present the variation spectra of the real ε’ (a) and imaginary ε” (b) part

of the permittivity as a function of the frequency for a range of temperatures varying from
393 to 438 K. According to these graphs (a), (b), and (c), we notice that as the temperature
increases, we see a strong increase in the permittivity at low frequency, followed by a
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decrease at high frequency in the vicinity of 10 Hz. The increase in the measurement
temperature indicates an increase in the permittivity of the sample for ε”(b) and ε”(c);
this is relatively defined by the significant presence of the relaxation time distribution in
(C7H6N3O2)2[ZnCl4].
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3.4.2. Impedance Spectroscopy

The Nyquist diagram−Z” (imaginary part) versus (real part) of the studied compound
at different temperatures (393 ≤ T ≤ 438 K) is shown in Figure 10. Well-defined semicircles
passing through or near the origin were obtained for temperatures varying from 393 to
438 K. According to the diagrams announced in graphs (a) and (b), we can see that when
the temperature increases, these circles get smaller and smaller, leading to an activated
thermal conduction mechanism.
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Figure 10. −Z” versus Z’: (a) in the range 393–413 K and (b) in the range 418–438.

In Figure 11a–f, we show Z’ (real part) and Z” (imaginary part) of the impedance
versus Ln(f) at 393 ≤ T ≤ 438 K. The amplitude of Z’ decreases when the temperature and
the frequency increase and consequently the AC conductivity increases. The phenomenon
stated that the crystal comports as a semiconductor crystal. Z” increases with the frequency
until reaching a maximum peak (Z” max), then we noticed a relaxation with the increase
in the frequency. Moreover, the decrease in Z” max values is related to the increase in
temperature and localization toward the side of the high frequencies showing a single time
of relaxation [69,70].
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3.4.3. Electric Conductivity

Figure 12 shows an affine line explaining the variation of Ln(σ.T) versus 1000/T. This
graph is explained by the formula of Arrhenius [71]:

σ·T = A exp (−Ea/Kβ·T)

where Ea is the activation energy; A is the pre-exponential factor; Kβ is the Boltzmann
constant; T is the temperature in K. Using this straight line, we succeeded in determining
the value of the activation energy such that its value is equal to Ea = 2.75 eV in the range of
temperatures varying from 393 to 438 K. This value asserts that the transport mechanism is
due to the thermally activated hopping process.
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3.4.4. Electrical Modulus

The electrical characteristics of the compound (C7H6N3O2)2[ZnCl4] can be evaluated
by applying complex electrical modulus formalism. This alternative approach is equally
adequate to identify observable phenomenon in the compound such as the polarization
of the electrodes and the relaxation times of the conductivity [72]. The complex electrical
modulus can be stated by the following formula:

M ∗ (ω) =
1
ε∗

= M’ + jM”

where M’ = ΩC0Z”, M” = ΩC0Z’, ω represents the angular frequency (2πf), and
C0 = ε0(A/t) is the geometrical capacitance.

The graphs in Figure 13 present M’ and M” (real and imaginary parts respectively) of
the electrical modulus M versus Ln(f) in temperature interval of 393–438 K. In the graph (a),
M’ values are low in the low frequency region and gradually increase with frequency. On
the other side in the graph, (b) M” declares a maximum at a frequencyωmax highlighting
the relaxation phenomenon of the system. Thus, we can notice that the position of the peak
M” max approaches toward higher frequencies as the temperature increases. Therefore, the
presence of such relaxation peaks in the plot M” shows that one can consider the samples
as ionic conductors [73]. Accordingly, the frequency region below the M” max peak assigns
the range in which H+ charge carriers are mobile over a long distance. Nevertheless,
the frequency regions above the M” max peak designate the range in which carriers are
confined to potential wells and are mobile over short distances.
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3.5. Molecular Docking Details

The molecular mechanism and modes of interactions in the title compound with
double-stranded DNA were interpreted by means of molecular docking approach. The
reasoning of the pose view and conformations of the compound with the lowest free energy
are shown in Figure 14. Binding free energy (∆G) and binding constants “Kb” value of
(C7H6N3O2)2[ZnCl4] compound are reported in Table 2.
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ligplots (b) determined by PM3 semi-empirical level of theory.

Table 2. “Kb” and ∆G values for the ds DNA complexes calculated from molecular docking data.

Complex Code Molecular Docking

”Kb”/M−1 (−∆G) KJ·mol−1

(C7H6N3O2)2[ZnCl4] 7.99 × 107 45.01

Figure 14a side view and top view represented the best possible interactions of the
title material with DNA through groove binding with the grooves of DNA. A disordered
structure led to different interactions with different parts. It is evident from the ligplot,
Figure 14b that here ZnCl2 interacted via electrostatic with negatively charged thymine
DT(12) and aromatic fragments 2D ligplot exhibited arene–arene interaction with ade-
nine DA (11) and donor-acceptor interactions with thymine DT (12) also represented
as DT (A12). Binding constant ”Kb” and free energy ∆G indicated that the interaction
of (C7H6N3O2)2[ZnCl4] compound with DNA is spontaneous with sufficient binding
propensity [74,75].

For the comprehensive understanding of physicochemical interactions of the com-
plex, a number of electronic and steric descriptors are determined and are grouped in
Tables 3 and 4. EHUMO and ELUMO values provided an estimate of the electron-donating or
electron-accepting character of a given compound and, therefore, a compound is believed to
be more electron-donating as the value of its EHOMO escalates and more electrons accepting
as the value of its ELUMO declines [76]. Results depicted that our compound acts as an
electron acceptor during its interactions with DNA base pairs. While interacting with DNA,
(C7H6N3O2)2[ZnCl4] which draws electrons from electron-rich base pairs and performs as
a good electron acceptor defines the reason for higher binding value of the title material
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with DNA. On the other hand, steric descriptors also displayed a reasonably good corre-
lation with binding constant, “Kb”. SlogP termed as partition coefficient determined the
extent of lipophilicity of compounds indicating the complex is lipophilic in nature. Molar
refractivity (MR) is another important steric descriptor which measures polarizability of the
molecule [77]. The compounds having greater polarizability have greater tendency of its
electronic cloud distortion and overlap with DNA base pairs, hence (C7H6N3O2)2[ZnCl4]
exhibited greater potential of interactions with DNA base pairs (Table 4).

Table 3. Details of electronic descriptions calculated from molecular docking data.

Complex EHOMO ELUMO Eele EIP ETotal

(C7H6N3O2)2[ZnCl4]-DNA −16.88 −9.36 −2,294,329.0 16.88 −275,981.313

Table 4. Details of steric descriptors calculated from molecular docking information.

Complex MR Hf SlogP Dipole

(C7H6N3O2)2[ZnCl4]-DNA 24.61 887.22 7.61 33.59

In conclusion, molecular docking is a powerful technique to find binding of com-
pounds with biological macromolecule and allows the identification of correct intermolec-
ular binding conformation. The compound (C7H6N3O2)2[ZnCl4] revealed good binding
energy with all targets of the compound which showed an excellent binding energy estab-
lished on the interaction between cationic and anionic entities [78,79].

4. Conclusions

Summarizing, the compound (C7H6N3O2)2[ZnCl4] crystallized in monoclinic system
P21/c as evidenced by the results obtained by X-ray diffraction. The atomic arrangement
can be described by alternation between cations and anions in the (ac) plane. The crystal
structure of bis(5-nitrobenzimidazolium) tetrachlorozincate (II) is stabilized by four types
of H-bonds and different types of interactions forming a 3D architecture. The HS allowed
us to show that the H . . . Cl/Cl . . . H (37.3%) contacts are the most frequent in the
crystalline structure. IR spectroscopy was manipulated to substantiate the presence of
different functional groups in the compound. Temperature and frequency have important
roles in showing dielectric characteristics in the range 393–438 K. Arrhenius’ law governs
relaxation time and electrical conductivity. The conductivity of this material was examined
as a function of frequency in the temperature range 393–438 K, where the conduction
process attributed to the ion-hopping mechanism. Finally, the docking study revealed that
compound interacted with DNA efficiently with significant binding strength exhibiting
antibacterial activity.
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www.mdpi.com/article/10.3390/ma15227973/s1, Table S1: The crystallographic details of
(C7H6N3O2)2[ZnCl4]; Table S2: The different H-bonds present in (C7H6N3O2)2[ZnCl4]; Table S3: The
different values of dZn–Cl and ˆClZnCl in [ZnCl4]2− anions; Table S4: The different characteristics of
(C7H6N3O2)+ cation.
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