52 research outputs found

    Toward the Language Oscillogenome

    Get PDF
    Language has been argued to arise, both ontogenetically and phylogenetically, from specific patterns of brain wiring. We argue that it can further be shown that core features of language processing emerge from particular phasal and cross-frequency coupling properties of neural oscillations; what has been referred to as the language ‘oscillome.’ It is expected that basic aspects of the language oscillome result from genetic guidance, what we will here call the language ‘oscillogenome,’ for which we will put forward a list of candidate genes. We have considered genes for altered brain rhythmicity in conditions involving language deficits: autism spectrum disorders, schizophrenia, specific language impairment and dyslexia. These selected genes map on to aspects of brain function, particularly on to neurotransmitter function. We stress that caution should be adopted in the construction of any oscillogenome, given the range of potential roles particular localized frequency bands have in cognition. Our aim is to propose a set of genome-to-language linking hypotheses that, given testing, would grant explanatory power to brain rhythms with respect to language processing and evolution

    Playing with language, creating complexity:has play contributed to the evolution of complex language?

    Get PDF
    We argue that enhanced play may have contributed to the emergence of complex language systems in modern humans (Homo sapiens). To support this idea, we first discuss evidence for an expansion of playing behavior connected to the extended childhood of modern human children, and the potential of this period for the transmission of complex cultural traits, including language. We then link two of the most important functions of play-exploration and innovation-to the potential for cumulative cultural evolution in general and for the emergence of complex language in particular. If correct, the shorter childhood of Neanderthals-involving restrictions on time to experiment and innovate-may have restricted their language (and other symbolic) system/s. Consequently, fully investigating the role that play may have had in the transmission of language and the development of symbolic cultures in both modern humans and Neanderthals provides a new avenue of research for Paleolithic archaeology and related disciplines.</p

    Language impairment in a case of a complex chromosomal rearrangement with a breakpoint downstream of FOXP2

    Get PDF
    BACKGROUND: We report on a young female, who presents with a severe speech and language disorder and a balanced de novo complex chromosomal rearrangement, likely to have resulted from a chromosome 7 pericentromeric inversion, followed by a chromosome 7 and 11 translocation. RESULTS: Using molecular cytogenetics, we mapped the four breakpoints to 7p21.1-15.3 (chromosome position: 20,954,043-21,001,537, hg19), 7q31 (chromosome position: 114,528,369-114,556,605, hg19), 7q21.3 (chromosome position: 93,884,065-93,933,453, hg19) and 11p12 (chromosome position: 38,601,145-38,621,572, hg19). These regions contain only non-coding transcripts (ENSG00000232790 on 7p21.1 and TCONS_00013886, TCONS_00013887, TCONS_00014353, TCONS_00013888 on 7q21) indicating that no coding sequences are directly disrupted. The breakpoint on 7q31 mapped 200 kb downstream of FOXP2, a well-known language gene. No splice site or non-synonymous coding variants were found in the FOXP2 coding sequence. We were unable to detect any changes in the expression level of FOXP2 in fibroblast cells derived from the proband, although this may be the result of the low expression level of FOXP2 in these cells. CONCLUSIONS: We conclude that the phenotype observed in this patient either arises from a subtle change in FOXP2 regulation due to the disruption of a downstream element controlling its expression, or from the direct disruption of non-coding RNAs

    Pere Alberch's developmental morphospaces and the evolution of cognition

    Get PDF
    In this article we argue for an extension of Pere Alberch's notion of developmental morphospace into the realm of cognition and introduce the notion of cognitive phenotype as a new tool for the evolutionary and developmental study of cognitive abilities

    Communication : where evolutionary linguistics went wrong

    Get PDF
    In this article we offer a detailed assessment of current approaches to the origins of language, with a special focus on their historical and theoretical underpinnings. It is a widely accepted view within evolutionary linguistics that an account of the emergence of human language necessarily involves paying special attention to its communicative function and its relation to other animal communication systems. Ever since Darwin, some variant of this view has constituted the mainstream version in evolutionary linguistics; however, it is our contention in this article that this approach is seriously flawed, and that "animal communication" does not constitute a natural kind on which a sound theoretical model can be built. As a consequence, we argue that this communicative perspective is better abandoned in favor of a structural/formal approach based on the notion of homology, and that some interesting and unexpected similarities may be found by applying this venerable comparative method founded in the 19th century by Richard Owen

    Self domestication and the evolution of language

    Get PDF

    Neurobiology and neurogenetics of dyslexia

    No full text
    Introduction: Dyslexia is a learning disability in which reading (but not any other) impairment is the most prominent symptom. There seems to be a high comorbidity among dyslexia and other learning disabilities, such as SLI, SSD or ADHD. Development: The nulear deficit in dyslexia appears to correspond to an impairment in phonological processing. Structural and functional studies in dyslexic readers converge to indicate the presence of malformations in the brain areas corresponding to the reading systems, but also a failure of these systems to function properly during reading. Genes linked (or associated) to dyslexia have been shown to be involved in neuronal migration and axon guidance during the formation of the cortex. In the developing cerebral neocortex of rats, local loss of function of most of these genes not only results in abnormal neuronal migration and neocortical and hippocampal malformations, but also in deficits related to auditory processing and learning. While the structural malformations resemble neuronal migration abnormalities observed in the brains of individuals with developmental dyslexia, processing/learning deficits also resemble deficits described in individuals affected by the disease. Conclusions: On the whole, dyslexia seems to be on a continuum with typical reading at different biological levels (genetic, biochemical, physiological, cognitive). Furthermore, certain elements belonging to some of these levels (mainly -some of the-genes linked or associated to the disease, but also -some of the-neuronal structures whose development is regulated by these genes) would simultaneously belong to those of other cognitive abilities, which give rise to diseases of a different nature (i.e. non-dyslexic impairments) when they are impaired Resumen: Introducción: La dislexia es un trastorno cognitivo que lleva aparejada una competencia lectora reducida y que suele ser comórbido con otros que tienen como característica distintiva un déficit en la capacidad de aprendizaje y de adquisición de competencias específicas (fundamentalmente, trastorno específico del lenguaje, de los sonidos del habla o por déficit de atención e hiperactividad). Desarrollo: En el caso de la dislexia, el déficit nuclear parece corresponderse con una disfunción del componente fonológico de la memoria de trabajo verbal. El cerebro de los individuos disléxicos presenta diversos tipos de malformaciones estructurales, así como patrones anómalos de actividad cerebral durante las tareas de lectura y deletreo, que conciernen, entre otras, a las áreas que integran el dispositivo de procesamiento cuya actividad se ha asociado con estas actividades en la población no disléxica. Los genes identificados hasta la fecha cuya mutación parece constituir un componente causal (o un factor de riesgo) significativo en relación con el trastorno codifican proteínas que intervienen en la regulación de la migración de determinados linajes neuronales o del proceso de axonogénesis. La disminución del grado de expresión de los correspondientes genes ortólogos produce en el cerebro de los organismos modelo del trastorno alteraciones estructurales y funcionales semejantes a las observadas en los individuos disléxicos. Dichas alteraciones originan, a su vez, déficit auditivos y cognitivos que recapitulan satisfactoriamente los descritos en dichos individuos. Conclusiones: En conjunto, resulta plausible la hipótesis de que la dislexia vendría a ser, en diferentes niveles de complejidad biológica (genético, bioquímico, fisiológico, cognitivo), y en mayor o menor grado, un extremo del continuo de desarrollo que representa la capacidad de lectura en la población general; al mismo tiempo, algunos de los elementos que integran estos niveles (en particular —varios de—, los genes relacionados con el trastorno, así como —algunas de— las estructuras neuronales cuyo desarrollo está regulado, en buena medida, por los programas que conforman dichos genes) podrían formar parte simultáneamente de los correspondientes a otras capacidades cognitivas, cuya disfunción da lugar a trastornos de diferente naturaleza clínica. Keywords: Animal models, Comorbidity, Dyslexia, Neurobiology, Neurogenetics, Palabras clave: Comorbilidad, Dislexia, Neurobiología, Neurogenética, Modelos animale

    Ancient DNA and language evolution: A special section

    No full text
    corecore