79 research outputs found

    Post-fire Recruitment Failure as a Driver of Forest to Non-forest Ecosystem Shifts in Boreal Regions

    Get PDF
    Climate change and land-use are driving large changes in forest ecosystems around the globe. In the boreal biome it is likely that increases in temperature and the associated lengthening of the growing season will cause the forest to expand into the northern tundra and upwards in elevation, whilst potentially contracting at its southern limits. This increase in temperature is also driving an increase in the frequency and severity of boreal forest fires. A growing number of studies have observed the failure of forest species to re-establish after a standreplacing fire event, which results in the shift to a non-forested ecosystem. In this chapter, this process is referred to as post-fire recruitment failure. We provide multiple lines of evidence for boreal forests, and more specifically for southern Siberia forests, that a possible regional tipping point is unfolding, which could lead to the rapid replacement of large areas of forest ecosystems with low-stature non-forest ecosystems. This change would come with significant consequences for the carbon balance, surface albedo and the resulting altered energy balanc

    Identification and differential expression dynamics of peach small GTPases encoding genes during fruit development and ripening

    Get PDF
    The function of monomeric GTPases of the RAS superfamily in fruit development and ripening has been partially characterized. Here the identification of peach (Prunus persica) small GTPases of the RAS superfamily expressed in fruit and the characterization of their expression profiles during fruit development are described. Extensive searches on expressed sequence tag (EST) databases led to the selection of a total of 24 genes from peach encoding proteins with significant similarity to Arabidopsis small GTPases. Sequence similarity analyses and identification of conserved motifs, diagnostic of specific RAS families and subfamilies, enabled bona fide assignment of fourteen PpRAB, seven PpARF/ARL/SAR, two PpROP and one PpRAN GTPases. Transcriptional expression profiles of peach monomeric GTPases, analysed by real-time quantitative reverse transcription-PCR, were obtained for mesocarp samples, collected in two consecutive years. Reproducible patterns of expression could be identified for five peach RAB-encoding genes (PpRABA1-1, PpRABA2, PpRABD2-1, PpRABD2-2, and PpRABC2), two ARFs (PpARFA1-1 and PpARLB1), and two ROPs (PpROP3 and PpROP4). Interestingly, the transient transcriptional up-regulation of PpARF genes and of PpRAB genes of the A and D clades, putatively controlling the exocytic delivery of cell wall components and modifying enzymes, appeared to coincide with peaks of growth speed and sugar accumulation and with the final phases of ripening. To our knowledge, this is the first description of the co-ordinated differential expression of a set of genes encoding small GTPases of the ARF and RAB families which takes place during key moments of fruit development and maturation

    Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance

    Get PDF
    Background and Aims Rice is one of the few crops able to withstand periods of partial or even complete submergence. One of the adaptive traits of rice is the constitutive presence and further development of aerenchyma which enables oxygen to be transported to submerged organs. The development of lysigenous aerenchyma is promoted by ethylene accumulating within the submerged plant tissues, although other signalling mechanisms may also co-exist. In this study, aerenchyma development was analysed in two rice (Oryza sativa) varieties, ā€˜FR13Aā€™ and ā€˜Arborio Precoceā€™, which show opposite traits in flooding response in terms of internode elongation and survival. Methods The growth and survival of rice varieties under submergence was investigated in the leaf sheath of ā€˜FR13Aā€™ and ā€˜Arborio Precoceā€™. The possible involvement of ethylene and reactive oxygen species (ROS) was evaluated in relation to aerenchyma formation. Cell viability and DNA fragmentation were determined by FDA/FM4-64 staining and TUNEL assay, respectively. Ethylene production was monitored by gas chromatography and by analysing ACO gene expression. ROS production was measured by using Amplex Red assay kit and the fluorescent dye DCFH2-DA. The expression of APX1 was also evaluated. AVG and DPI solutions were used to test the effect of inhibiting ethylene biosynthesis and ROS production, respectively. Key Results Both the varieties displayed constitutive lysigenous aerenchyma formation, which was further enhanced when submerged. ā€˜Arborio Precoceā€™, which is characterized by fast elongation when submerged, showed active ethylene biosynthetic machinery associated with increased aerenchymatous areas. ā€˜FR13Aā€™, which harbours the Sub1A gene that limits growth during oxygen deprivation, did not show any increase in ethylene production after submersion but still displayed increased aerenchyma. Hydrogen peroxide levels increased in ā€˜FR13Aā€™ but not in ā€˜Arborio Precoceā€™. Conclusions While ethylene controls aerenchyma formation in the fast-elongating ā€˜Arborio Precoceā€™ variety, in ā€˜FR13Aā€™ ROS accumulation plays an important role

    Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia

    Get PDF
    Climate change has driven an increase in the frequency and severity of fires in Eurasian boreal forests. A growing number of field studies have linked the change in fire regime to post-fire recruitment failure and permanent forest loss. In this study we used four burned area and two forest loss datasets to calculate the landscape-scale fire return interval (FRI) and associated risk of permanent forest loss. We then used machine learning to predict how the FRI will change under a high emissions scenario (SSP3ā€“7.0) by the end of the century. We found that there are currently 133,000 km2 forest at high, or extreme, risk of fire-induced forest loss, with a further 3 M km2 at risk by the end of the century. This has the potential to degrade or destroy some of the largest remaining intact forests in the world, negatively impact the health and economic wellbeing of people living in the region, as well as accelerate global climate change
    • ā€¦
    corecore