Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia

- 3 Arden L. Burrell^{1,2*} *aburrell@woodwellclimate.org
- 4 Qiaoqi Sun^{3,4}
- 5 Robert Baxter³
- 6 Elena A. Kukavskaya⁵
- 7 Sergey Zhila⁵
- 8 Tatiana Shestakova¹
- 9 Brendan M. Rogers¹
- 10 Jörg Kaduk²
- 11 Kirsten Barrett²
- 12 1. Woodwell Climate Research Center, Falmouth, MA, United States of America
- 13 2. Centre for Landscape and Climate Research, School of Geography, Geology and
- 14 Environment, University of Leicester, University Road, LE1 7RH, UK
- Department of Biosciences, University of Durham, Upper Mountjoy, South Road, Durham,
 DH1 3LE, United Kingdom.
- College of Wildlife and Protected Area, Northeast Forestry University, 26 Hexing Road,
 Harbin 150040, China
- V.N. Sukachev Institute of Forest of the Siberian Branch of the Russian Academy of Sciences
 separate subdivision of the FRC KSC SB RAS, 660036 Russian Federation, Krasnoyarsk,
 Akademgorodok 50/28.
- 22 Abstract
- 23 Climate change has driven an increase in the frequency and severity of fires in Eurasian boreal
- 24 forests. A growing number of field studies have linked the change in fire regime to post-fire
- 25 recruitment failure and permanent forest loss. In this study we used four burned area and two forest
- 26 loss datasets to calculate the landscape-scale fire return interval (FRI) and associated risk of
- 27 permanent forest loss. We then used machine learning to predict how the FRI will change under a
- high emissions scenario (SSP3-7.0) by the end of the century. We found that there are currently 133
- 29 000 km² forest at high, or extreme, risk of fire-induced forest loss, with a further 3 M km² at risk by
- 30 the end of the century. This has the potential to degrade or destroy some of the largest remaining
- 31 intact forests in the world, negatively impact the health and economic wellbeing of people living in
- 32 the region, as well as accelerate global climate change.
 - 1

33 **1.** Introduction

34 Boreal forests contain ~30 % of all of the world's forested area (Gauthier et al., 2015), ~65% of the world's forest carbon stocks (Bradshaw and Warkentin, 2015), contribute ~20 % of the world's 35 36 terrestrial carbon sink (Bradshaw and Warkentin, 2015; Pan et al., 2011) and include some of the 37 largest areas of intact forest in the world (Potapov et al., 2017). Warming rates in the boreal region 38 are among the fastest in the world (D'Orangeville et al., 2018), which has increased vegetation 39 productivity (Chen et al., 2016; Goetz et al., 2005; Kauppi et al., 2014; Keenan and Riley, 2018; Liu et 40 al., 2015) and driven the expansion of boreal species to higher altitudes and north into the tundra 41 (Brodie et al., 2019; Forbes et al., 2010; Myers-Smith et al., 2011; Suarez et al., 1999). There is 42 growing concern, however, that climate change is causing a reduction along the southern boundary 43 with the steppe biome, especially in more water-limited forests (Guay et al., 2014; Huang et al., 44 2010; Koven, 2013; Payette and Delwaide, 2003).

45 Wildfire is one of the largest causes of stand mortality in boreal forests, a natural dynamic which has 46 been in place for thousands of years (Johnstone et al., 2010; Kharuk et al., 2021; Ponomarev et al., 47 2016). As a result, many regions have been in a dynamic equilibrium, whereby the amount of 48 ecosystem carbon lost to wildfire, determined by factors such as the Fire Return Interval (FRI) and 49 the portion of stand-replacing fires, is balanced by the rate of recovery (Brazhnik et al., 2017; Brown 50 and Johnstone, 2012). In these regions, periodic fires play an essential role in maintaining ecosystem 51 health and biodiversity (Kharuk et al., 2021). However, at the southern limits of the Eurasian boreal 52 zone, there is growing evidence of recruitment failure (RF) driven forest loss (Barrett et al., 2020; 53 Kukavskaya et al., 2016). RF is where boreal tree species fail to re-establish after a stand-replacing 54 disturbance and instead undergo a change to a steppe/grassland (Barrett et al., 2020).

55 Although the conditions that cause RF are complex and multifaceted, certain drivers such as the FRI 56 and the percentage of stand-replacing fires have distinct thresholds beyond which RF is highly likely 57 (Hansen et al., 2018; Kukavskaya et al., 2016; Stevens-Rumann et al., 2018). For example, in the first 58 20-30 years after a stand replacing fire, the regenerating tree species have almost no fire tolerance and contribute very little to the seed pool, which is essential for robust post-fire recruitment (Cai et 59 60 al., 2018; Hansen et al., 2018; Kukavskaya et al., 2016). For this reason, the interval between a 61 stand-replacing fire and the next fire event is one of the strongest predictors of RF within the boreal 62 zone (Kukavskaya et al., 2016; Whitman et al., 2019).

Although the global extent of RF remains entirely unquantified (Burrell et al., 2021), it has been
observed in field studies from both the Eurasian (Barrett et al., 2020; Kukavskaya et al., 2016;

65 Shvetsov et al., 2019) and North American boreal forest (Boucher et al., 2019; Brown and Johnstone, 66 2012; Hansen et al., 2018; Stevens-Rumann et al., 2018). In a study of 1538 field sites across boreal 67 North America, post-fire RF was observed at ~10% of sites (Baltzer et al., 2021) though it should be 68 noted that the link between RF and forest loss is less certain in the mixed broadleaf and coniferous 69 forests of North America (Gill et al., 2017; Johnstone and Chapin, 2006; Whitman et al., 2019), than 70 it is in the coniferous forests of Eurasia (Barrett et al., 2020; Burrell et al., 2021; Kukavskaya et al., 71 2016). If RF and its associated forest loss is widespread, this poses a serious risk to the wealth of 72 ecosystem services provided by boreal forests (Gauthier et al., 2015; Hansen et al., 2013). It would 73 also negatively impact the boreal carbon sink, potentially leading to a net source, which would 74 further amplify climate change (Chen and Loboda, 2018; Hayes et al., 2011; Lin et al., 2020).

75 Eurasia contains some of the hottest and driest parts of the boreal biome and is warming faster than 76 the global average (Burrell et al., 2021). Given the influence of fuel availability, fire season length, 77 and fire weather, there are direct links between burned area and climatology, as well as climate 78 changes in Siberia (de Groot et al., 2013; Kharuk et al., 2021; Tepley et al., 2018). The Eurasian 79 boreal biome has already experienced an extension of the fire season, increases in fire frequency, 80 extent and severity – including increased proportions of fires that are stand replacing (Brazhnik et 81 al., 2017; Feurdean et al., 2020; Kharuk et al., 2021; Malevsky-Malevich et al., 2008; Ponomarev et 82 al., 2016; Tomshin and Solovyev, 2021). As the climate continues to warm, this trend is likely to 83 continue (Malevsky-Malevich et al., 2008; Shvetsov et al., 2016), with the Sixth Assessment Report of 84 the United Nations Intergovernmental Panel on Climate Change (IPCC) predicting increase in fire 85 frequency and severity across all of Eurasia (IPCC, 2021). Given the strong link to climate change, the growing evidence of site-level RF, the threat it poses to boreal carbon sink and the limited 86 87 knowledge over large areas, quantifying the extent of RF in the boreal forest as a key knowledge gap 88 in the boreal zone (Baltzer et al., 2021; Burrell et al., 2021).

89 The reason the extent of RF remains unknown is because of a lack of the data and methods needed 90 to systematically quantify it at large scales (Burrell et al., 2021). The ideal method to measure post-91 fire RF would involve a large number of field sites with >30 years of tree cover data, which does not 92 currently exist for many parts of the often very remote boreal zone, with the data availability in 93 Siberia, for example, being especially low (Burrell et al., 2021). Another option for quantifying RF 94 would be to directly detect it using remotely sensed imagery, or by proxy using remotely sensed 95 data products to construct site-level fire histories. Such histories can indicate where the gap 96 between a stand-replacing fire and the subsequent fire event was less than the 30-year threshold 97 observed in field studies of recruitment (Hansen et al., 2018; Kukavskaya et al., 2016). To the best of

98 our knowledge, there have been no studies that have done this at a large spatial scale. This is likely 99 because performing the analysis over a large area would require high spatial resolution data with a 100 temporal record that is longer than is currently available (Burrell et al., 2021; Chu and Guo, 2014). 101 Existing studies using remote sensing to look at post-fire forest recovery generally only assess 102 recovery in the first 5 years after fire (Frazier et al., 2018). Given that site-level fire/disturbance 103 histories extending beyond the satellite period are unavailable in most areas, landscape-scale FRI, 104 calculated using a space for time substitution, has been used to investigate ecosystem changes 105 driven by wildfire (Coops et al., 2018; Kharuk et al., 2021; Soja et al., 2006; Tomshin and Solovyev, 106 2021).

107 The Russian Far East and Siberian portions of the boreal zone have been the focus of notably fewer 108 research studies than either the North American or Scandinavian boreal forest (Rogers et al., 2020). 109 This is particularly problematic because the climatology and current rates of warming in Siberia 110 suggest that the changes occurring in this region may be truly indicative of the future of the boreal 111 zone as the climate warms (Burrell et al., 2021). These are also the regions with multiple studies 112 showing RF induced forest loss (Barrett et al., 2020; Kukavskaya et al., 2016; Shvetsov et al., 2019). 113 The aim of the present study was to use freely available remotely sensed datasets to investigate 114 landscape-scale FRI, stand replacing FRI (FRI_{SR}) and the all-cause Disturbance Return Interval (DRI) 115 which together can be used as a proxy for RF risk and, by association, the areas most at risk of 116 permanent biome shift in the Eurasian boreal forest. Machine learning methods were then used to

examine the link between FRI and climate over the observed period and, in combination with futureclimate projections, to quantify how this risk will change over the next century.

119 2. Materials and Methods

120 2.1 Study Area

The analysis was performed over the entire Eurasian boreal forest, a region containing ~15 M km² of
forest dominated by a small number of tree species from four main genera, larch (*Larix*), pine
(*Pinus*), birch (*Betula*), and spruce (*Picea*) (Bartalev et al., 2004; de Groot et al., 2013; Rogers et al.,

124 2015) (Figure 1).

- 130 As this study focuses on the shift of the boreal-steppe boundary and existing static boreal forest 131 maps may be misleading due to shifts in this boundary, we derived the boreal biome boundary using 132 forest cover data rather than using an existing biome map. We used version 1.7 of the Hansen Global 133 Forest Change (HansenGFC) 2000 tree cover data (Hansen et al., 2013) to identify the boreal-steppe 134 boundary and mask out non-forested areas in all datasets. For this study we included any area 135 located between 40° to 70° of latitude and -10.0° to 180° of longitude that had a fractional tree cover 136 greater than 10 %. To exclude the temperate forests that occur in these regions, we then used boreal ecoregions from Dinerstein et al. (2017) with a 1° buffer to account for any uncertainties in 137
- the boundaries.

139 2.2 Burned Area Datasets

140 In order to partially control for the uncertainties and biases in any one data source, we used four 141 global Burned Area (BA) products to estimate FRIs in Eurasian boreal forests (Table 1). The first, the 142 Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 Burned Area product 143 (MCD64A1), is the most widely used and validated global BA dataset (Giglio et al., 2018). The second 144 is the fourth version of the Global Fire Emissions Database 4.1 (GFED4) BA (including small fires) (van 145 der Werf et al., 2017), which is mostly based on MODIS MCD64A1 data (Randerson et al., 2017). The 146 'small fires' version of GFED4 incorporates a correction to address the known bias in BA products of 147 underrepresenting the extent and frequency of smaller and/or low intensity fires (Randerson et al., 148 2012). It was included in this study because it is comparable to the lower resolution datasets that 149 have previously been used to examine FRI in Eurasia. The third is the European Space Agency's 150 Climate Change Initiative FireCCI version 5.1 (FireCCI51), which uses MODIS spectral and active fire 151 data, and was designed to improve the accuracy over MCD64A1 (Lizundia-Loiola et al., 2020). The 152 fourth is the Copernicus Global Land Service BA product (CGLS-BA) which is derived from PROBA-V 153 data (Smets et al., 2017). In comparison to other products, the performance of CGLS-BA is expected 154 to be worse than other products in the boreal zone because it cannot detect any spring or autumn fires north of 51°, but we included it in this study because it is the only high-resolution global BA 155 156 product that is currently being updated and is entirely independent of MODIS data.

In addition to the BA products, we also used version 1.7 of the 25 m Hansen Global Forest Change 157 158 (HansenGFC) dataset to estimate forest loss rates due to fire (Hansen et al., 2013). HansenGFC v1.7 159 uses Landsat 8 for improved detection of boreal forest loss, including from fire. However, this 160 correction is not applied to the years 2001 to 2010. To examine the rate of forest loss due to fires, 161 we followed the procedure used by Krylov et al. (2014) and used MODIS active fire data (MCD14ML) 162 to mask out areas where forest loss does not occur within 4 km of a fire (HansenGFC-MAF). HansenGFC-MAF is the subset of the forest loss in HansenGFC that can be attributed to fires, and 163 164 therefore represents only stand replacing fires.

Product	Dataset type	Resolution	Temporal range	Citation
MCD64A1	Burned Area	~500 m	2001 to present	Giglio et al. (2018)
GFED4	Burned Area	0.25-degree	1996 to 2017	van der Werf et al.
		(~27 km at the		(2017)
		equator)		

165 Table 1 Summary of gridded datasets used

FireCCI51	Burned Area	~250 m	2001 to present	Lizundia-Loiola et al.
				(2020)
CGLS-BA	Burned Area	~300 m	2014 to present	Smets et al. (2017)
HansenGFC	Forest loss	25 m	2001 to present	Hansen et al. (2013)
TerraClimate	Precipitation	~4 km	1984 to present	Abatzoglou et al.
	and			(2018)
	Temperature			

166

167 2.3 Calculating landscape-scale FRI

168 Estimating site-level FRI requires long-term observations with multiple fire events, typically from 169 sediment cores, tree rings from surviving trees or long-term site monitoring; information that is not 170 publicly available for most of the Eurasian boreal forest zone. FRI can also be calculated at regional and continental scales using space-for-time substitution, assuming homogeneity in FRI at a 171 172 particular spatial scale (Archibald et al., 2013). Because all the moderate and high spatial resolution 173 BA products currently available have insufficient temporal record for the majority of site-level FRI's 174 in Eurasian boreal forests, we adopted this latter approach. For the four BA datasets (GFED4, 175 FIreCCI51, MCD64A1 and CGLS-BA), we calculated the fire frequency for each forested pixel and then 176 applied a 1 degree moving window (excluding non-forest areas) to calculate the landscape-scale 177 mean annual burned fraction (AnBF). AnBF for a given pixel is calculated using:

178 1.
$$AnBF = \frac{\left(\sum_{yr=ys}^{yf} \left(\frac{BA_{yr}}{FC}\right)\right)}{yf-ys+1}$$

where *ys* is the first year of the dataset, *yf* is the last year of the dataset, *BA_{yr}* is the total area burned
in a given year (*yr*) in a 1° box around the pixel, and *FC* is the total area covered by forest in the 1°
box around the pixel. The 1° moving window was chosen after preliminary testing which found that
a smaller window (0.5°) was highly sensitive to noise, while larger windows (2° and 5°) resulted in
very similar results as 1° but at greatly increased computing cost. This moving window also
minimises the impact of differences in the resolution of the input datasets as it is a courser
resolution than all of the datasets used.

The landscape FRI was then calculated by taking the reciprocal of the AnBF. This procedure was also
applied to both the HansenGFC and HansenGFC-MAF to calculate the Disturbance Return Interval
(DRI) and the FRI_{SR} respectively, after upscaling these products from their native 25 m resolution to
250 m (the same grid as FireCCI). The DRI is the return interval for all stand replacing disturbances
and includes stand replacing fires, logging and wind disturbance while the FRI_{SR} is return interval for

the subset of stand replacing disturbances that are linked to fire. For all datasets we used the full
temporal record available at time of analysis (2001 to 2018 for FIreCCI51, MCD64A1, HansenGFC and
HansenGFC-MAF; 1997 to 2018 for GFED4; and 2014 to 2018 for CGLS-BA) which may account for

some of the differences between the estimated FRI's.

195 While stand-replacing fires temporarily reduce the risk of subsequent fire events by reducing fuel 196 loads (Bernier et al., 2016; Beverly, 2017; Erni et al., 2018; Walker et al., 2020), this effect appears to 197 be relatively short-lived in Siberia because of the rapid recovery of flammable understory grasses 198 (Kukavskaya et al., 2014), with studies showing that wildfire can occur in a forest of any stand age, 199 composition or canopy density (Brazhnik et al., 2017; Hansen et al., 2013; Kukavskaya et al., 2016). 200 This dynamic has also been observed in western Canada (Stralberg et al., 2018). Given this, and 201 assuming that a proportion of fires are stand-replacing (Section 2.4.2), the landscape FRI indicates 202 how long a forest has between a stand replacing fire and the next fire event.

Using a space-for-time substitution to calculate FRI becomes much less accurate in areas with long
FRI's (small AnBF's) (Archibald et al., 2013; Falk et al., 2007). In these areas the addition of a single
fire event can make a large difference in the calculated FRI. For this reason, we only report FRI up to
10 000 years. Beyond FRI's of 10 000 years, single pixel decreases in AnBF result in exponential
increases in the estimated FRI. As such, areas with FRI >10 000 years were also excluded from the
modelling of FRI.

209 2.4 Selection of critical thresholds

210 Our thresholds for permanent forest loss risk were selected by combining the FRI, which is the 211 frequency a location experiences a fire of any intensity, with both the FRI_{SR} and DRI, which provide 212 information on disturbance dynamics and by association stand age. In the present study we used 213 thresholds of landscape FRI as a proxy for the risk of permanent forest loss with <15 years indicating 214 extreme risk and 15 to 30 years indicating high risk, while for the DRI and FRI_{SR} the extreme risk threshold was <60 years and 60 to 120 years for high risk. When the FRI risk group is used in 215 216 combination with the FRI_{SR}/DRI risk group, it is possible to estimate how likely an area is to 217 experience a burn during the vulnerable establishment phase of recovery and therefore assign a risk 218 category. A full justification of the thresholds and combined risk categories is described below. 219 These thresholds for both the FRI and FRI_{SR}/DRI were selected based upon information from Scots

220 Pine (*Pinus sylvestris*) stands, which have been studied in the context of recruitment failure and

- 221 represent the dominant tree species in parts of the Eurasian boreal forest with the highest levels of
- drought and shortest FRI's (Shvetsov et al., 2019). This suggests a fire regime that excludes Scots
 - 8

pine is highly likely to exclude all other boreal tree species such as larch (*Larix* spp.) and dark taiga
(*Picea* and *Abies* spp.) (Schulze et al., 2012). Applying the procedure detailed above to larch gives FRI
thresholds that are equal to, or greater than, those for Scots pine

226 2.4.1 FRI thresholds

227 We used two primary sources of ecological information on *Pinus sylvestris* to establish our risk 228 thresholds. The first is the relationship between stand age and seed production, and the second is 229 the relationship between stand age and fire-induced tree mortality. Whilst high severity crown fires 230 result in high to total mortality of trees regardless of age and DBH, the probability of mortality for a 231 tree in low-severity surface fires is directly associated with its width, or diameter at breast height 232 (DBH): for example the probability of fire-induced mortality is 80 to 100 % for trees with DBH <10 cm, 14 % for DBH from 10 to 20 cm and 1.4 % for trees with a DBH of 40 to 50 cm (Kukavskaya et al., 233 234 2014; Linder et al., 1998). As for the relationships between stand age and seed production, it 235 generally takes between 5 and 15 years after a stand-replacing fire for trees to produce seeds that 236 begin to replenish the seedbank (Sullivan, 1993; Wright et al., 1967). This initial seed production is 237 generally very limited, with the first large seeding events not occurring until the trees reach 25 to 30 years of age (Broome et al., 2016). 238

239 Trees less than 15 years old almost always have a DBH < 10 cm, meaning any fires that occur within 240 that period will kill almost all the saplings, and with little to no seedbank, a transition to a non-241 forested ecosystem is almost guaranteed unless the stand is immediately adjacent to a seed source 242 (Chmura et al., 2012; Kukavskaya et al., 2014; Linder et al., 1998). Multiple field studies have 243 observed RF if an area burns again <15 years after a stand-replacing fire (Kukavskaya et al., 2016, 244 2016; Shvetsov et al., 2016). While the stand age vs DBH relationship varies considerably between 245 regions, in general stands 30 years old will have DBHs between 10 and 20 cm, which means they have ~80 % chance of surviving a low-severity surface fire but remain vulnerable to moderate and 246 247 high severity fires (Linder et al., 1998; Sidoroff et al., 2007; Sullivan, 1993). It should be noted that 248 the estimates of DBH vs age are often based on plantations and as such represent an upper limit on 249 growth rate. Looking at natural forests, there are many sites with average DBH below 20 cm more 250 than 100 years after the stand replacing fire (Edwards and Mason, 2006; Sandström et al., 2020; 251 Stavrova et al., 2020). We chose 15 to 30 years as our second critical threshold due to both the high 252 mortality rate and lower seed availability before the first mass seeding event.

It should be noted that while we used Scots pine to represent a reasonable lower bound of the FRI
survivability of boreal tree species, our thresholds are consistent with those found in studies of postfire RF in similar ecosystems with different dominant species across the globe (Baltzer et al., 2021;

Hansen et al., 2018; Stevens-Rumann et al., 2018). For example, in a study of RF in the alpine region
of the continental USA, the serotinous lodgepole pine (*Pinus contorta*), a species whose first large
seeding event occurs at 15 years of age (Broome et al., 2016), only failed to establish when FRIs
were <20 years and stands were far (>1 km) from a seed source (Hansen et al., 2018).

260 2.4.2 DRI and FRI_{SR} thresholds

261 If all the fires observed in an area are low severity surface fires with little to no fire-induced stand 262 mortality, then FRI cannot be used as a proxy for ecosystem risk. Even though most fires in the 263 Siberian boreal forests are surface fires (Rogers et al., 2015) this non-stand-replacing fire dynamic is 264 not common in most coniferous forests. It has been, however, observed in the broadleaf forest 265 along the boreal-temperate boundary (Krylov et al., 2014; Schulze et al., 2012). A similar dynamic 266 has also been observed in some mature Scots pine forest stands in southern Siberia with FRI's of 20 267 to 40 years, but less than 10% of fires being high mortality crown fires (Kharuk et al., 2021). To 268 account for the influence of low-severity surface fires versus stand-replacing fires, we compared the 269 DRI and FRI_{SR} from HansenGFC and HansenGFC-MAF data, respectively. The FRI_{SR} is always equal or 270 longer than DRI because HansenGFC-MAF is a subset of the HansenGFC data. DRI is included in the 271 risk framework because non-fire disturbances like logging can act in place of a stand replacing fire to 272 start the recovery phase and because they have been shown to significantly increase the likelihood 273 of RF (Kukavskaya et al., 2014; Perrault-Hébert et al., 2017; Shvetsov et al., 2021).

274 In the Eurasian boreal zone, conifer species generally experience a FRI of between 30 to 50 years and 275 FRI_{sR} around 200 years (120 to 300 years), though FRI_{sR}'s as low as 60 years have been observed in 276 some of the southern boreal regions (Kharuk et al., 2021, 2016; Schulze et al., 2012). We chose <60 277 years as our extreme threshold as it is the lowest value observed in stable forests, with 60 - 120278 years being high risk as 120 years is the bottom of the normal range and is also close to when Scots 279 pine transition from early to mid-stage successional dynamics (Stavrova et al., 2020). Given that 280 regenerating forests are highly vulnerable to reburning for the first 30 years, a DRI/FRI_{SR} of 60 years 281 means a that a forest spends ~50% of its time being vulnerable to fire induced RF, while a DRI/FRI_{SR} 282 of 120 years means a forest spends ~25% of the time being vulnerable.

283 2.4.3 Combined risk framework

The forest risk framework works by combining the DRI/FRI_{SR} thresholds of <60 years for extreme risk and <120 years for high risk, with the FRI thresholds of <15 years for extreme risk and < 30 years for high risk to determine the risk of forest loss. An area is considered low risk if it is not in the high or extreme risk groups for both FRI and DRI/FRI_{SR}, moderate risk is either FRI or DRI/FRI_{SR} is high/extreme risk but not the other, high risk is where both FRI and DRI/FRI_{SR} are high risk but

neither is extreme risk, and extreme risk if either FRI or DRI/FRI_{SR} is extreme risk and the other is high
or extreme risk. The combined risk framework also makes a distinction between the different risks
caused by the dominant driver of stand replacement. In cases where the FRI_{SR} and the DRI risk group
are the same, then fire must be the dominate cause of disturbance and the risk driver. When the DRI
group is a higher than the FRI_{SR} risk group, it indications that process like logging or insect predation
are increasing the risk of RF induced forest lost. The full risk criteria are described in Table 2.

ŭ

Table 2 Thresholds used to determine forest loss risk and resulting risk classes. All numbers represent

296 years. The dominant driver is listed in parentheses with dist indicating disturbance.

	FRI _{sr} <60	FRI _{SR} 60-120		FRI _{SR} >120		
	DRI<60	DRI<60	DRI 60-120	DRI<60	DRI 60-120	DRI>120
	(extreme)	(extreme)	(high)	(extreme)	(high)	(Low)
FRI<15	Extreme	Extreme Risk	Extreme Risk	Extreme Risk	Extreme Risk	Moderate
(extreme)	Risk (fire)	(dist)	(fire)	(dist)	(fire)	Risk (fire)
FRI 15-30	Extreme	Extreme Risk		Extreme Risk	High Risk	Moderate
(high)	Risk (fire)	(dist)	High Risk (fire)	(dist)	(dist)	Risk (fire)
FRI>30	Moderate	Moderate	Moderate Risk	Moderate	Moderate	
(low)	Risk (fire)	Risk (dist)	(fire)	Risk (dist)	Risk (dist)	Low Risk

297

298 This analysis and the risk framework are both predicated on the assumption that errors in the BA 299 products do not have high commission error bias. Accuracy assessments of BA products have found 300 large errors with a strong omissions bias and a tendency to greatly underrepresent low severity 301 surface fires in the boreal zone (Brennan et al., 2019; Giglio et al., 2018; Humber et al., 2019; 302 Lizundia-Loiola et al., 2020). This would indicate that the actual landscape-scale FRI might be 303 significantly shorter than that found in this study. We also performed a small, independent, accuracy 304 assessment at 50 field sites in the Zabaikal region of southern Siberia the method and results of which are included in Supplementary Text 1 and Supplementary Figure 1 and 2. 305

2.5 *Modelling the relationship between FRI and the climatology*

To model the relationship between FRI and climatology, we applied two machine learning
approaches. The first was a simple multivariate regression implemented using the scikit-learn python
library (Pedregosa et al., 2011), and the second was as an Extreme Gradient Boosted regression
implemented using XGBoost (Chen and Guestrin, 2016). To look at the relationship between FRI and

- 311 climatology we used the TerraClimate gridded monthly temperature and precipitation data
- 312 (Abatzoglou et al., 2018) as well as the TerraClimate predicted future climate (Qin et al., 2020).
- 313 TerraClimate is a ~4 km global dataset of monthly climate variables created by combining multiple

existing gridded and remotely-sensed climate data products (Abatzoglou et al., 2018).

315 To calculate our observed climatology, we used TerraClimate precipitation and temperature data

- 316 (Abatzoglou et al., 2018). For each year we calculated the accumulated precipitation and the
- 317 monthly mean temperature for the meteorological seasons (December-February (DJF), March-May
- 318 (MAM), June-August (JJA), September-November (SON)). The seasonal climatology was then
- calculated by taking the mean over the 31 years from 1985 to 2015. This time period was chosen
- 320 because it is long enough to account for natural climate variability (Burrell et al., 2020), has a
- 321 significant overlap with all the BA datasets, and is directly comparable with the TerraClimate
- 322 predicted future climate (Qin et al., 2020).

323 To calculate the relationship between FRI and seasonal climatology, the climate dataset was

324 resampled to the same grid as the FRI dataset being tested using a second order conservative

325 remapping using the Climate Data Operators software package (Schulzweida, 2020). Then we

- 326 applied the same 1° x 1° moving window to climate data as we used to calculate the FRI. To avoid
- 327 training and testing the machine learning models on spatially autocorrelated data, one pixel was
- 328 selected from each 1° x 1° grid cell (~110 km²). We then excluded areas with less than 10% forest
- 329 cover as well as areas with landscape FRI >10 000 (section 2.3).
- 330 We used mean Annual Burned fraction as a dependent variable because initial trials showed better 331 model performance predicting AnBF and then converting to FRI compared to models that predict FRI 332 directly. This is probably because machine learning methods perform better on variables that are 333 scaled between 0 and 1 (Wan, 2019; Zheng and Casari, 2018). For independent variables, we used 334 the seasonal precipitation and temperature climatology as well as the mean tree cover fraction in 335 the year 2000 derived from Hansen GFC dataset (Hansen et al., 2013). These independent variables were pre-processed using a Quantile Transform. We then used Python's Scikit-learn package 336 337 (Pedregosa et al., 2011) to perform an 80:20 train-test split with the 20% remaining withheld to 338 assess out-of-sample accuracy.
- 339 The accuracy of the models was assessed by calculating the R² on the fully withheld testing values.
- 340 We then applied these trained models to every pixel at the native resolution of the BA product. This
- 341 process was applied to all four BA datasets. In the case of the XGBoost models, the importance of

different variables was also determined using Feature Importance and Permutation Importancetests.

344 **2.6** Determining the climate change-driven trends and estimating future FRI

To estimate future FRI, we used the recently developed TerraClimate predicted future climate (Qin 345 346 et al., 2020), which uses a 23-member climate model ensemble to generate a realistic climate 347 dataset for the period 2085 to 2115 under Shared Socioeconomic Pathways (SSP)3 – 7.0 emissions. Because of the known issues with CMIP model predictions of precipitation like the widely 348 349 documented "drizzle problem" (Abdelmoaty et al., 2021; Akinsanola et al., 2020; Chen et al., 2021; 350 Coppola et al., 2021; Srivastava et al., 2020), we also created three predicted climatologies for the periods 2015 to 2045, 2045 to 2075, and 2085 to 2115 by adding the climate change-driven trend to 351 352 the observed 1985-2015 climatology.

353 Calculating the climate change-driven trend in regions with high natural climate variability, such as 354 the boreal steppe transition zone in Siberia, requires removing the inherent interannual and inter-355 decadal climate variability (Burrell et al., 2020, 2019). To do so, we used the process outlined in 356 Burrell et al. (2020), whereby a 20-year leading edge moving average smoothing (sometimes called a 357 Simple Moving Average) was applied to each pixel to remove interannual climate variability. Using a moving window smoothing to separate variability and trend components is standard practice in time 358 359 series analysis and is widely used when working with climate time-series data (Abram et al., 2020; 360 Ahmed et al., 2018; Bläsche et al., 2014). A Theil-sen Slope estimator (Theil, 1950) was then applied 361 to calculate the climate change-driven shift in seasonal temperature and precipitation over the 362 period 1985 to 2015 with a Spearman's rank correlation co-efficient test used to measure statistical significance for each pixel (Yue et al., 2002). The Benjamini–Hochberg procedure was then applied to 363 364 the p-values from the Spearman's rank correlation co-efficient test to control for False Discovery Rate (FDR) (α_{FDR} = 0.10), which accounts for multiple testing and spatial autocorrelation issues (See 365 366 (Wilks, 2016) for details). FDR testing ($\alpha_{FDR} = 0.10$) is more rigorous and more robust than the more 367 commonly used p-value test ($\alpha_{p-value} = 0.05$) alone (Wilks, 2016). We then used the observed climate 368 change driven trend and the significant trends to estimate future climatology. Non-significant trends were not included. All the climatology datasets were prepared in the same manner as detailed in 369 370 section 2.5, and the models trained over the observed period (1985 to 2015) were applied to create estimates of future FRI. We then calculated the future fire-induced forest loss risk using the 371 372 predictions of FRI and the fire risk criteria detailed in Table 2. The calculation of future forest loss 373 risk assumes that the proportion of fires that were stand replacing remained constant though time 374 for a given location.

375 **3. Results**

376 3.1 Current Fire Return Interval (FRI)

Looking at the large-scale patterns in FRI between the BA datasets (Figure 2), FRI's calculated from 377 378 the three MODIS-derived BA datasets (GFED4, MCD64A1, FireCCI51) show similar spatial patterns 379 with the shortest FRI's observed along the southern boundary of the Eurasian boreal forest, as well as the forests around Yakutsk. There is less agreement between CGLS-BA and the MODIS-derived BA 380 381 products, with large differences along the northern tundra/boreal border, as well as in Far East along 382 the China-Russia border north of Vladivostok (Figure 2). These patterns are also apparent in the median (1st, 99th percentile) FRI, with 446 yrs (20 yrs, >10,000 yrs) for GFED4, 549 (17 yrs, >10,000 383 yrs) for MCD64A1, 501 (9yrs, >10,000yrs) for FireCCI51 and 319 yrs (21 yrs, >10,000 yrs) for CGLS-BA. 384 385 Looking at the areas with the shortest FRI's, our results indicate that between 0.2% and 2.4% (GFED4: 32,011 km², MCD64A1: 65,356 km², FireCCI:225,932 km², CGLS-BA: 21,114 km²) of the 386 Eurasian boreal zone that was forested in 2000 has experienced an FRI <15 years. In addition, there 387 is a further 2.2% to 3.3% of forests with FRI's between 15 to 30 years (GFED4: 215,612 km², 388

389 MCD64A1: 269,934 km², FireCCI: 255,931 km², CGLS-BA: 347,181 km²).

390

Figure 2 Maps of the landscape-scale Fire Return Interval (FRI) in years calculated using a 1° x 1° moving window applied
 to four Burned Area (BA) datasets: a) GFED4; b) MCD64A1; c) FireCCI51, and d) CGLS-BA. Non-Boreal Forest regions are

393 masked in grey.

394 3.2 Current FRI_{sr} and DRI

Looking at the all-cause Disturbance Return Interval (DRI) and stand-replacing Fire Return Interval

- 396 (FRI_{SR}), we find that fire accounts for about 63.7% of the forest loss in the Hansen global forest cover
- dataset. Over the Eurasian boreal forest, the median (1st, 99th percentile) FRI_{SR} was 1302 yrs (59 yrs,
- 398 >10,000 yrs) while the DRI was 367 yrs (52 yrs, >10,000 yrs). Comparing SR and DRI spatially, fire is
- 399 the dominant driver (FRI_{SR} \approx DRI) of disturbance in eastern Eurasia, while in the western half of the
- 400 region DRI is much shorter than FRI_{SR} which indicates that logging, wind or other drivers are the
- 401 dominant causes of disturbance. The DRI with fire removed is included in Supplementary figure 3.

404 Figure 3 Rates of Forest loss a) The stand-replacing Fire Return Interval (FRI_{SR}) calculated using HansenGFC-MAF (Krylov et
 405 al., 2014); b) the Disturbance Return Interval (DRI) calculated using HansenGFC (Hansen et al., 2013); c) The percentage of
 406 fires that are stand-replacing calculated by dividing the FireCCI5.1 mean annual burn fraction with the HansenGFC-MAF
 407 mean annual burn fraction. Note: Percentage is shown on a log scale.

408 Looking at the proportion of fires that are stand-replacing (Figure 3c), we find that in 40% of areas 409 100% of the observed fires were stand replacing, with an area weighted mean stand replacing fire 410 percentage of 69% across the entire domain. The fraction of fires that are stand replacing varies 411 considerably for each dominant tree species (Supplementary Figure 4). In the pine, larch and spruce forests, which dominate in the eastern half of the continent, the only fires detected were stand-412 413 replacing in more than 40% of areas, with only a small fraction of areas having a high proportion of 414 non-stand-replacing fires. By contrast, Fir, Birch and Aspen, as well as the Maple, Linden, Beech and 415 Oak which make up the other category, all have large proportions of their areas with low rates of 416 stand replacing fires (Supplementary Figure 4).

417 3.3 Current risk of RF induced forest loss

- 418 In total there are 64 858 km² of forests that are at extreme risk of fire driven permanent forest loss,
- 419 92, 403 km² at high risk, 1.86 M km² at moderate risk, and 8.85 M km² at low risk based on the
- 420 criteria outlined in section 2.4 and Table 2. The largest areas at high or extreme risk are found in
- 421 the eastern half of the continent (Figure 4).

Figure 4 Current Risk of Forest Loss. The risk of permanent forest loss using FRI, FRI_{SR} and DRI over the period 2001 to 2018.
Criteria are shown in Table 2.

425

426 3.4 FRI and Climatology

427 Over Eurasia the mean maximum monthly temperature decreases from south to north, while the 428 mean annual rainfall shows a decrease from west to east (Figure 5a-b). The regions with the lowest 429 mean annual rainfall are along the forest-steppe boundary as well as in Eastern Siberia. Broadly, this 430 tracks with FRI estimates shown in Figure 2 with short FRI's found in hotter and drier areas. We find 431 that between 1985 and 2015, climate change has driven a median increase in temperature over the 18

- 432 Eurasian Forest zone of 0.04°C per year, with the largest increases in temperature coming in winter
- 433 and spring (Supplementary Figure 5). Interestingly, while the climate change-driven trends in
- 434 precipitation are mixed, only regions with negative trends (Figure 5) are statistically significant (α_{FDR}
- 435 = 0.10). This pattern holds when considering the seasonal trends as well which is shown in the
- 436 seasonal breakdown of the trends and the climatology included in Supplementary Figure 5 and 6
- 437 respectively.

- 442 ecosystems are masked in grey, and, for panels c and d, the stippling indicates statistical significance ($\alpha_{FDR} = 0.10$). Data:
- 443 TerraClimate (Abatzoglou et al., 2018).
- 444 Over the Eurasian boreal forest, there is a strong link between FRI and climatology, with the XGBoost
- 445 ML regression models generated using the four BA datasets and seasonal climatology having an out
- of sample FRI R² of 0.60 for GFED4, 0.54 for MCD64A1, 0.53 for CGLS-BA and 0.47 for FireCCI51.
- 447 Despite having the lowest overall R², the FireCCI51 model has the best skill when predicting areas
- 448 with FRI < 60 years and is the only model to have any skill at predicting regions with an FRI of <15
- 449 years (Figure 6a-d). All models do well in the 30 to 60, 60 to 120, and the 120 to 500 years groups
- 450 but have poor performance for all FRI's > 500. Overall, we find that temperature variables have more
- 451 model importance than precipitation variables, with summer temperatures being the strongest
- 452 explanatory variable (Figure 6).

453

454 Figure 6 Modelling Landscape FRI using XGBoost. Panels a-d show heatmaps of the observed FRI vs predicted FRI for four 455 XGBoost models trained using a) GFED4, b) MCD64A1, c) FireCCI51, and d) CGLS-BA burned area data. The results have 456 been binned using the same categories as Figure 2 and then normalised by dividing the number of points in the Observed 457 FRI category so that each column sums to 1. The black line represents the 1 to 1 line where all values would fall in a perfect 458 model. Panels e and f show the importance of different predictor variables determined using a e) Permutation Importance 459 test, and f) Feature Importance test, where ppt is mean precipitation and tmean is mean temperature for the different 460 meteorological seasons (DJF, MAM, JJA and SON) (Abatzoglou et al., 2018). treecover2000 is the fractional treecover in the 461 year 2000 (Hansen et al., 2013).

462 3.5 FRI under future climate condition

Using the XGBoost machine learning model fitted between FRI and observed climatology, applied to 463 464 the five future climatology scenarios, we found that the climate change will drive a widespread 465 shortening of the FRI over the next century (Figure 7). Given current trends in climatology and the 466 FireCCI51 model, we find that areas with a modelled FRI <30 years will increase from 0.55 M km² 467 over the observed period (1985-2015) (Figure 7a) to 2.99 M km² by the end of the century (2085 to 468 2115) (Figure 7d). This result also holds when our machine learning model is applied to the CMIP-5 469 based Terraclimate future climate dataset (TCfut) as shown in Figure 7e (2.64 M km² for 2085 to 470 2115). Both the trend and TCfut models show these increases occurring almost entirely in the 471 coniferous forests of eastern Siberia, much of which is already at some level of permanent forest 472 loss risk (Figure 4). This suggests that >25 % of all Eurasian boreal forests would be at high risk of 473 fire-driven forest loss by the end of the century. We only report the results of the FireCCI model in 474 this section because the models derived from other datasets could not reproduce FRI <30 years over the observed period in a fully withheld testing dataset (Figure 6). The results of the other BA dataset 475 476 are shown in Supplementary Figure 7-9 and the results using multivariate linear regression instead of 477 XGBoost are shown in Supplementary Figure 10-13.

478

479 Figure 7 Maps of the predicted FRI a-d) based on current climate trend, XGBoost and FireCCI51 FRI data. e) TCpred is the
 480 TerraClimate prediction for a 4°C warmer world, which approximates SSP3-7.0 2085 – 2115

481

482 3.6 Future risk of RF induced forest loss

483 Using the future based estimate of FRI (Figure 7d) and the criteria outlined in section 2.4 to predict

- 484 the future of RF induced forest loss, we find that the area at high or extreme risk will rise rapidly
- 485 over the coming century with a 5 fold increase predicted from the 2015 to 2045 window compared
- to the 1985 to 2015 baseline (Table 3).
- 487 Table 3 Total areas at risk of RF induced forest loss over the next century. TCpred refers to the future predictions that use
 488 the Terrclimate future climate dataset based on CMIP-5 models.

	1985-2015	2015-2045	2045-2075	2085-2115	2085-2115 TCpred
Low Risk	9 096 172	6 774 806	5 268 266	4 140 387	4 992 808
Moderate risk	1 661 365	3 555 590	4 107 291	4 198 496	3 465 230
High Risk	53 098	158 719	185 048	199 835	140 234
Extreme Risk	48 078	369 593	1 298 134	2 320 026	2 260 526

- 489 Looking to the end of the century (2085 to 2115), we predict a 25-fold increase in high and extreme
- 490 risk areas using a XGBoost model trained on trend based climate estimates and a 24-fold increase
- 491 using the CMIP based Terraclimate future data. As shown in Figure 8, almost all of this increased risk
- 492 is predicted to occur in the eastern half of the continent.

494 Figure 8 Risk of Forest Loss by 2085 to 2115. The risk of permanent forest loss using future FRI estimated using XGBoost
495 and FireCCI51, assuming that the fraction of fires that are stand-replacing remains constant through time. Criteria are
496 shown in Table 2.

497 **4.** Discussion

493

498 4.1 The patterns and drivers of the observed FRI

499 Broadly speaking, all datasets showed a shortening of the FRI from north to south and from west to 500 east, which is consistent with previous research and fire ecology for the region (Kharuk et al., 2021; Kharuk and Ponomarev, 2017; Ponomarev et al., 2016). However, we find higher annual burn 501 502 fractions and shorter FRI's than previous studies (Kharuk et al., 2021, 2016; Ponomarev et al., 2016) 503 likely because of omission bias present in the AVHRR and MODIS BA datasets used in those studies 504 (Humber et al., 2019; Lizundia-Loiola et al., 2020; Mouillot et al., 2014; Potapov et al., 2008). Both our accuracy assessment (Supplementary text 1.2) and larger assessments of BA accuracy suggest 505 506 that, despite significant improvements in the recent versions of the MCD64A1 and FireCCI51, all BA 507 datasets tested have a net omission bias because BA products often fail to identify small surface fires 508 (Humber et al., 2019; Lizundia-Loiola et al., 2020). A recent high resolution regional study in Siberia 509 found FRI's that were far shorter than had been previously reported (Sizov et al., 2021). This 510 suggests that even FireCCI51, the dataset with the shortest median FRI, is likely underestimating the 511 actual annual burned fraction.

The strong link between climatology and FRI over the Eurasian boreal zone shown in Figure 6 is 512 513 consistent with previous studies that used both remotely sensed and paleo reconstructions of the 514 fire dynamics and found that they are strongly associated with climatology (Feurdean et al., 2020; 515 Forkel et al., 2012; Gaboriau et al., 2020; Kharuk et al., 2021; Kharuk and Ponomarev, 2017; 516 Ponomarev et al., 2016). The summer temperature is the strongest predictor of landscape FRI 517 (Figure 6), which is consistent with previous studies (Natole et al., 2021; Tomshin and Solovyev, 2021). This is alarming because most of eastern Eurasia is experiencing a summer warming rate of 518 519 >0.04°C per year (Supplementary Figure 2). The results of this study support previous findings that 520 hotter and drier conditions are resulting in more frequent, and higher severity, fires (Feurdean et al., 521 2020; IPCC, 2021; Natole et al., 2021).

522 Looking at the proportion of stand replacing fires, Supplementary Figure 4 shows that the likelihood 523 of a fire being stand replacing varies considerably with dominant tree species. In the larch and pine-524 dominated forests of Eastern Siberia (Bartalev et al., 2004), the DRI and FRI_{SR} are extremely 525 consistent with each other and close to 100% of fires detected are stand replacing (Figure 3c and 526 Supplementary Figure 4), which suggests that fire is the dominant driver of stand dynamics. This 527 matches with the findings of previous studies that suggest Siberian conifer species such as Pinus 528 sylvestris experience a FRI_{SR} of >~150 years (Feurdean et al., 2020). The stand-replacing fire 529 percentage in these areas is higher than would be expected considering the prevalence of low stand 530 mortality surface fires observed in previous studies that used AVHRR and MODIS BA data (Kharuk et 531 al., 2021; Ponomarev et al., 2016). For example, Krylov et al. (2014) found that larch, pine and fir 532 species have stand-replacing fire percentages in the 40 to 70% range. The discrepancy between our 533 findings and existing studies can be explained by the BA omission bias discussed above and supports 534 the conclusions that the BA products are omitting a large portion of the low stand mortality surface 535 fires.

In contrast, forests in Western Siberia and in the Russian Far East along the Russia-China border
north of Vladivostok, do not have a stand-replacing fire dynamic with stand-replacing fires making
up <1% of BA (Figure 3c). In Western Siberia, the boreal and steppe biomes are separated by a strip
of birch-dominated temperate continental forest (FAO, 2000; Feurdean et al., 2020). In these regions
we find FRI_{SR} of >1000 years despite FRI's of <30 years. These findings are consistent with previous
work that found short FRI's but very low stand mortality (Feurdean et al., 2020; Shuman et al., 2017)
and suggest that these areas are at lower risk of permanent forest loss.

543 4.2 Current forest loss risk

In total, our framework for characterising the risk of RF induced permanent forest loss identified
155,261 km² of forests that are at high or extreme risk (Figure 4). When examining the Zabaikal
region, located to the east of Lake Baikal near Chita in southern Siberia (Figure 5e), which is a known
hotspot of post-fire recruitment failure (Barrett et al., 2020; Kukavskaya et al., 2016; Shvetsov et al.,
2019), all MODIS-derived BA products have large areas with FRI's of <30 years as well as both DRI's
and FRI_{SR}'s of <120 years. In this region the risk framework identifies large areas with high and
extreme fire risk. This supports the use of this framework to identify other potential hotspots.

- 551 Similar patterns to the ones found in the Zabaikal region are apparent between Krasnoyarsk and 552 Irkutsk, as well as in the forests west of Yakutsk. As such, these regions are probable hotspots of 553 post-fire recruitment failure and forest loss. Field-based studies, most of which are published only in 554 Russian, have found post-fire deforestation in the ribbon-like Scots pine forests grown in the zone of 555 dry forest-steppe in the Altai region, Minusinsk stands of the Krasnoyarsk krai and the Balgazynsky pine forests of the Tyva Republic (Buryak et al., 2011; Ishutin, 2004; Kupriyanov et al., 2003; 556 557 Paramonov and Ishutin, 1999). All three areas are found between Krasnoyarsk and the Russia-558 Mongolia border. At time of writing, the authors of this study are aware of no studies looking at 559 postfire RF in Yakutia and the Far East.
- 560 In the Zabaikal and Yakutia regions, the risk framework shown in Figure 4 identified high or extreme 561 disturbance-driven risk. The link between DRI and permanent forest loss is more nuanced than the 562 link with FRI. When a short DRI is coincident with a short FRI, it can drive forest loss by increasing the 563 "resilience debt" (Burrell et al., 2021; Johnstone et al., 2016). Previous studies have shown that 564 repeat disturbances, especially post-fire salvage logging which is a common practice in many 565 regions, contributes to recruitment failure in Siberia (Burrell et al., 2021; Kukavskaya et al., 2016). 566 Logging can also replace the initial stand-replacing fire in the RF regime. In Russia, it is standard 567 practice to replant trees after logging, but ~50% of the areas replanted in the most fire-prone parts 568 of southern Siberia burn again within 15 years (Kukavskaya et al., 2016), which is likely to result in RF 569 and forest loss. By contrast, in Scandinavia, where there is a <120 year DRI as the result of the widespread managed forestry (Curtis et al., 2018; Hansen et al., 2013) but a FRI of > 10,000 years, 570 571 there is likely low risk of permanent forest loss. Interestingly, DRI's over central and western Eurasia are considerably shorter than the FRI_{SR}, which indicates forest loss is still prevalent, even if it is not 572 573 being caused by fires (Figure 3b) (Curtis et al., 2018). Given this nuanced relationship, areas with a 574 short FRI and short DRI's, but much longer FRI_{SR} (Mod. Risk and High Risk (dist) in Figure 3c), are 575 arguably still at higher risk of forest loss and should be the focus of future research.

576 4.3 Future forest loss risk

577 Our modelling results predict that Eurasia will experience a large and consistent increase in the area 578 with a predicted FRI <30 years throughout the next century as the earth warms (Figure 7) which has 579 large impact of the risk of RF induced forest loss. We estimate that area of forest at high or extreme 580 risk during the 2015 to 2045 window will grow to 530, 000 km², which is more than double the 581 amount of area predicted for the 1985-2015 reference period. While no comparable estimates exists 582 for comparison, both the 2020 and 2021 fire seasons, which are not included in the data used in this 583 study, have been exceptionally large with some of the most extensive burns occurring in Yakutia 584 (Ponomarev et al., 2021) where we predict large changes in FRI. Looking forward to the end of the 585 century, both the trend-based and CMIP model-based estimates of future risk predict more than 586 2.5M km² (>20%) will have high or extreme risk of forest loss, with almost all of this increase in the 587 risk of future fire-driven forest loss occurring over the pine and larch forests of Eastern Eurasia.

588 Current Earth System Models (ESMs), Land Surface Models, and even ecosystem-scale forest 589 models, predict or assume gains or stability in the extent of boreal tree cover (Friend et al., 2014; 590 Shuman et al., 2017). These models often underestimate the FRI (Shuman et al., 2017), if complex 591 fire-vegetation interactions are modelled at all. There are only four models included in CMIP-6 that 592 can model fire prognostically with future coupled projections (EC-Earth3-Veg, CESM2, CNRM-ESM2-1 593 and MPI-ESM1-2-LR) (Sanderson and Fisher, 2020). Even the state of the art fire models assessed in 594 Fire Model Intercomparison Project use vegetation type as an input (Hantson et al., 2020) and are 595 therefore not currently suited to modelling the possibility of fire-induced changes in vegetation type 596 caused by post-fire RF. Currently, the best prediction of ecosystem change in the Eurasian boreal 597 zone use Species Distribution Models (SDMs) in combination with ESMs to investigate changes in 598 habitat suitability (Noce et al., 2019). This modelling approach predicts significant changes in the 599 dominant species across Eurasia, but no major shift in the extent of forest zone itself. However, this 600 approach does not consider fire and cannot account for post-fire RF (Noce et al., 2019). The most 601 recent IPCC report, however, identified uncertainties around indirect CO₂ emissions from things like 602 forest fires as a key limitation that can greatly impact our ability to predict the changes that will 603 occur over the next 100 years (IPCC, 2021) suggesting an urgent need for coupled climate vegetation 604 models including realistic disturbance dynamics.

605 Eastern Eurasia contains some of the largest areas of unmanaged primary forest in the world

606 (Potapov et al., 2017) and the widespread loss of forest in this region will accelerate the loss of

- habitats and associated biodiversity that is already occurring at an alarming rate (Brondizio et al.,
- 608 2019; Dinerstein et al., 2017). The Eurasian boreal zone contains globally significant amounts of
 - 26

609 carbon stored in both the above ground biomass and the soil (Brondizio et al., 2019; Kharuk et al., 610 2021). Previous studies have shown that increases in the frequency of fires will drive widespread 611 carbon loss and amplify the impacts of climate change (de Groot et al., 2013; Kharuk et al., 2021). In 612 addition to the global impacts, an increase in fire frequency will likely worsen air quality problems 613 and associated health issues that already occur in cities like Novosibirsk, Krasnoyarsk and Yakutsk 614 during large fire years (Kharuk et al., 2021). The loss of forest goods and commercially valuable tree 615 species is likely to negatively impact upon the economic and social well-being of the local population 616 which is reliant on the forestry industry (Leskinen et al., 2020) and could contribute to the further 617 loss of indigenous culture and language in the region (Brondizio et al., 2019).

618 4.4 The limitations of future predictions of forest loss

619 The main limitation of our FRI prediction approach is that we are unable to consider secondary 620 effects and feedback loops. For example, increases in drought severity and summer temperatures 621 may lead to a large increase in the portion of fires that are stand-replacing (de Groot et al., 2013; 622 Tepley et al., 2018). At the same time, heatwave and drought events which are increasing with 623 climate change are potentially greatly reducing the survivability of seedling and saplings (Boucher et 624 al., 2019; Sannikov et al., 2020). Our modelling approach assumes a constant tree cover, but there is 625 strong evidence that forest fragmentation results in an increase in the frequency of fires as a result 626 of increased human access which lead to significantly more ignitions (Driscoll et al., 2021; Shvetsov 627 et al., 2021), as well as forest edge effects that increase the flammability of the forest (Driscoll et al., 628 2021). Also, our approach does not consider distance to seed source which is an important predictor 629 of recruitment failure in many regions, with sites adjacent to mature forest having a lower risk of RF 630 (Hansen et al., 2018). However, we expect that this will not significantly change our risk 631 categorisation because we considered dynamics at a spatial scale 3 to 4 orders of magnitude larger 632 than the distance over which seed sources can offer a protective effect (Hansen et al., 2018). Areas with higher or extreme risk experience stand replacing fires and forest fragmentation at a scale that 633 634 will greatly limit the protective effect of adjacent seed sources, though further research on this point 635 is needed.

One feedback loop that might act to mitigate the risk of fire induced forest loss is the species
balance shift from conifers to broadleaf tree species such as trembling aspen (*Populus tremuloides*)
(Gill et al., 2017; Johnstone and Chapin, 2006; Whitman et al., 2019). This transition has been widely
observed in boreal North America (Gill et al., 2017; Johnstone and Chapin, 2006; Whitman et al.,
2019), and has been described as a potential strategy to mitigate the impact of an increase in forest
fires (Astrup et al., 2018). Whilst this dynamic has also been observed in Eurasia (Kharuk et al.,

642 2021), it is highly unlikely to be able to offset the forest loss predicted by this study. In Eurasia, 643 temperature, and to a lesser extent, water availability, is the key limiting factor in reshaping species 644 ranges (Noce et al., 2019). This means that while models currently predict a significant expansion in 645 the range of Aspen throughout this century (Noce et al., 2019), almost all this expansion is predicted 646 to occur in western Eurasia, with almost none occurring in areas where we predict fire-induced 647 forest loss risk increases. Another feedback loop that might act to mitigate the risk of fire induced 648 forest loss is that increased burning may have a long-term negative feedback on fire frequency 649 because of reductions in fuel availability (Bernier et al., 2016), though evidence from throughout the 650 boreal zone suggests that the effect can be completely offset by the establishment of flammable 651 grasses (Kukavskaya et al., 2014; Stralberg et al., 2018).

When the potential increase in stand-replacing fires (de Groot et al., 2013; Tepley et al., 2018), the reduced survivability of seedlings (Boucher et al., 2019; Sannikov et al., 2020) and the increase in fire frequency (Driscoll et al., 2021; Kukavskaya et al., 2014) are considered together, a strong likelihood of a positive feedback mechanism emerges which, in turn, raises the concerning possibility that the predictions shown in Figure 7 may actually underestimate the risk of future fire driven RF induced forest loss. Unlike boreal North America, species balance shifts are much less likely to mitigate the risk of increased fires.

659 **5.** Conclusions

660 Understanding the processes that may drive significant changes to the extent of the boreal forest 661 biome is essential for understanding the impacts of climate change on the biosphere and feedbacks to future climate change (Kharuk et al., 2021). Our results show that 1.2 % of the Eurasian boreal 662 663 zone is already at high or extreme risk of fire induced forest loss with a further 11 % of areas at 664 moderate risk. Given current warming rates, >20 % of the Eurasian forest zone is likely to be at high 665 risk by the end of the century. This poses a substantial risk to the forestry industry in the region and 666 has the potential to dampen, and potentially, even reverse, the boreal carbon sink. As such, there is 667 an urgent need for more research to examine this critical dynamic in the field and to include it in 668 models of vegetation and climate feedbacks.

669 6. Acknowledgments

670 This work was supported by (i) the UK Natural Environment Research Council [grant number

671 NE/N009495/1] awarded to KB, RB and JK and (ii) the National Aeronautics and Space Administration

- 672 (NASA) Arctic Boreal Vulnerability Experiment (ABoVE) grant 80NSSC19M0112. EK and SZ
 - 28

673	acknowledge funding support from the RFBR, Government of the Krasnoyarsk krai and the			
674	Krasnoyarsk Regional Foundation of Scientific and Scientific-Technical Support (Grant #20-44-			
675	242004).		
676	7.	Author contributions		
677	ALB and	KB conceived the study. ALB developed the methodology with input from KB, RB and QS.		
678	ALB per	formed the analysis and wrote the manuscript with input from QS, RB, EAK, SZ, TS, BMR, JK		
679	and KB.			
680	8.	Data Availability		
681	All data	sets used in this study are publicly available and can be accessed from their original creators.		
682	9.	Code availability		
683	The cod	e will be made available upon publication.		
684				

685 10. References

- Abatzoglou, J.T., Dobrowski, S.Z., Parks, S.A., Hegewisch, K.C., 2018. TerraClimate, a high-resolution
 global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 5,
 170191. https://doi.org/10.1038/sdata.2017.191
- Abdelmoaty, H.M., Papalexiou, S.M., Rajulapati, C.R., AghaKouchak, A., 2021. Biases Beyond the
 Mean in CMIP6 Extreme Precipitation: A Global Investigation. Earths Future 9,
 e2021EF002196. https://doi.org/10.1029/2021EF002196
- Abram, N.J., Wright, N.M., Ellis, B., Dixon, B.C., Wurtzel, J.B., England, M.H., Ummenhofer, C.C.,
 Philibosian, B., Cahyarini, S.Y., Yu, T.-L., Shen, C.-C., Cheng, H., Edwards, R.L., Heslop, D.,
 2020. Coupling of Indo-Pacific climate variability over the last millennium. Nature 579, 385–
 392. https://doi.org/10.1038/s41586-020-2084-4
- Ahmed, K., Shahid, S., Nawaz, N., 2018. Impacts of climate variability and change on seasonal
 drought characteristics of Pakistan. Atmospheric Res. 214, 364–374.
 https://doi.org/10.1016/j.atmosres.2018.08.020
- Akinsanola, A.A., Kooperman, G.J., Reed, K.A., Pendergrass, A.G., Hannah, W.M., 2020. Projected
 changes in seasonal precipitation extremes over the United States in CMIP6 simulations.
 Environ. Res. Lett. 15, 104078. https://doi.org/10.1088/1748-9326/abb397
- Archibald, S., Lehmann, C.E.R., Gómez-Dans, J.L., Bradstock, R.A., 2013. Defining pyromes and global
 syndromes of fire regimes. Proc. Natl. Acad. Sci. 201211466.
 https://doi.org/10.1073/pnas.1211466110
- Astrup, R., Bernier, P.Y., Genet, H., Lutz, D.A., Bright, R.M., 2018. A sensible climate solution for the
 boreal forest. Nat. Clim. Change 8, 11–12. https://doi.org/10.1038/s41558-017-0043-3
- Baltzer, J.L., Day, N.J., Walker, X.J., Greene, D., Mack, M.C., Alexander, H.D., Arseneault, D., Barnes,
 J., Bergeron, Y., Boucher, Y., Bourgeau-Chavez, L., Brown, C.D., Carrière, S., Howard, B.K.,
 Gauthier, S., Parisien, M.-A., Reid, K.A., Rogers, B.M., Roland, C., Sirois, L., Stehn, S.,
 Thompson, D.K., Turetsky, M.R., Veraverbeke, S., Whitman, E., Yang, J., Johnstone, J.F., 2021.
 Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc. Natl.
 Acad. Sci. 118. https://doi.org/10.1073/pnas.2024872118
- Barrett, K., Baxter, R., Kukavskaya, E., Balzter, H., Shvetsov, E., Buryak, L., 2020. Postfire recruitment
 failure in Scots pine forests of southern Siberia. Remote Sens. Environ. 237, 111539.
 https://doi.org/10.1016/j.rse.2019.111539
- Bartalev, S., Yaroshenko, A., Ershov, D., A.S., I., Potapov, P., Turubanova, S., 2004. Russia's Forests
 Dominating Forest Types and Their Canopy Density.
- Bartholomé, E., Belward, A.S., 2005. GLC2000: a new approach to global land cover mapping from
 Earth observation data. Int. J. Remote Sens. 26, 1959–1977.
 https://doi.org/10.1080/01431160412331291297
- Bernier, P.Y., Gauthier, S., Jean, P.-O., Manka, F., Boulanger, Y., Beaudoin, A., Guindon, L., 2016.
 Mapping Local Effects of Forest Properties on Fire Risk across Canada. Forests 7, 157.
 https://doi.org/10.3390/f7080157

- Beverly, J.L., 2017. Time since prior wildfire affects subsequent fire containment in black spruce. Int.
 J. Wildland Fire 26, 919–929. https://doi.org/10.1071/WF17051
- Bläsche, T., Bowden, R.J., Posch, P.N., 2014. Data smoothing and end correction using entropic
 kernel compression. Stat 3, 250–257. https://doi.org/10.1002/sta4.59
- Boucher, D., Gauthier, S., Thiffault, N., Marchand, W., Girardin, M., Urli, M., 2019. How climate
 change might affect tree regeneration following fire at northern latitudes: a review. New
 For. https://doi.org/10.1007/s11056-019-09745-6
- Bradshaw, C.J.A., Warkentin, I.G., 2015. Global estimates of boreal forest carbon stocks and flux.
 Glob. Planet. Change 128, 24–30. https://doi.org/10.1016/j.gloplacha.2015.02.004
- Brazhnik, K., Hanley, C., Shugart, H.H., 2017. Simulating Changes in Fires and Ecology of the 21st
 Century Eurasian Boreal Forests of Siberia. Forests 8, 49. https://doi.org/10.3390/f8020049
- Brennan, J., Gómez-Dans, J.L., Disney, M., Lewis, P., 2019. Theoretical uncertainties for global
 satellite-derived burned area estimates. Biogeosciences 16, 3147–3164.
 https://doi.org/10.5194/bg-16-3147-2019
- Brodie, J.F., Roland, C.A., Stehn, S.E., Smirnova, E., 2019. Variability in the expansion of trees and
 shrubs in boreal Alaska. Ecology e02660. https://doi.org/10.1002/ecy.2660
- Brondizio, E.S., Settele, J., Díaz, S., Ngo, H.T., 2019. Global assessment report on biodiversity and
 ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and
 Ecosystem Services. IPBES Secr. Bonn.
- Broome, A., Summers, R.W., Vanhala, T., 2016. Understanding the provision of conifer seed for
 woodland species. Res. Note-For. Comm.
- Brown, C.D., Johnstone, J.F., 2012. Once burned, twice shy: Repeat fires reduce seed availability and
 alter substrate constraints on Picea mariana regeneration. For. Ecol. Manag. 266, 34–41.
 https://doi.org/10.1016/j.foreco.2011.11.006
- Burrell, A.L., Evans, J.P., De Kauwe, M.G., 2020. Anthropogenic climate change has driven over 5
 million km 2 of drylands towards desertification. Nat. Commun. 11, 3853.
 https://doi.org/10.1038/s41467-020-17710-7
- Burrell, A.L., Evans, J.P., Liu, Y., 2019. The Addition of Temperature to the TSS-RESTREND
 Methodology Significantly Improves the Detection of Dryland Degradation. IEEE J. Sel. Top.
 Appl. Earth Obs. Remote Sens. 1–7. https://doi.org/10.1109/JSTARS.2019.2906466
- Burrell, A.L., Kukavskaya, E.A., Baxter, R., Sun, Q., Barrett, K., 2021. Post-fire recruitment failure as a
 driver of forest to non-forest ecosystem shifts in boreal regions, in: Ecosystem Collapse and
 Climate Change, Ecological Studies. Springer International Publishing.
- Buryak, L.V., Sukhinin, A.I., Kalenskaya, O.P., Ponomarev, E.I., 2011. Effects of fires in ribbon-like pine
 forests of southern Siberia. Contemp. Probl. Ecol. 4, 248–253.
 https://doi.org/10.1134/S1995425511030039
- Cai, W.H., Liu, Z., Yang, Y.Z., Yang, J., 2018. Does Environment Filtering or Seed Limitation Determine
 Post-fire Forest Recovery Patterns in Boreal Larch Forests? Front. Plant Sci. 9.
 https://doi.org/10.3389/fpls.2018.01318

- Chen, D., Dai, A., Hall, A., 2021. The Convective-To-Total Precipitation Ratio and the "Drizzling" Bias
 in Climate Models. J. Geophys. Res. Atmospheres 126, e2020JD034198.
 https://doi.org/10.1029/2020JD034198
- Chen, D., Loboda, T.V., 2018. Surface forcing of non-stand-replacing fires in Siberian larch forests.
 Environ. Res. Lett. 13, 045008. https://doi.org/10.1088/1748-9326/aab443
- Chen, H.Y.H., Luo, Y., Reich, P.B., Searle, E.B., Biswas, S.R., 2016. Climate change-associated trends in
 net biomass change are age dependent in western boreal forests of Canada. Ecol. Lett. 19,
 1150–1158. https://doi.org/10.1111/ele.12653
- Chen, T., Guestrin, C., 2016. XGBoost: A Scalable Tree Boosting System. Proc. 22nd ACM SIGKDD Int.
 Conf. Knowl. Discov. Data Min. 785–794. https://doi.org/10.1145/2939672.2939785
- Chmura, D.J., Rożkowski, R., Chałupka, W., 2012. Growth and phenology variation in progeny of
 Scots pine seed orchards and commercial seed stands. Eur. J. For. Res. 131, 1229–1243.
 https://doi.org/10.1007/s10342-012-0594-9
- Chu, T., Guo, X., 2014. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of
 Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 6, 470–520.
 https://doi.org/10.3390/rs6010470
- Coops, N.C., Hermosilla, T., Wulder, M.A., White, J.C., Bolton, D.K., 2018. A thirty year, fine-scale,
 characterization of area burned in Canadian forests shows evidence of regionally increasing
 trends in the last decade. PLOS ONE 13, e0197218.
 https://doi.org/10.1371/journal.pone.0197218
- Coppola, E., Raffaele, F., Giorgi, F., Giuliani, G., Xuejie, G., Ciarlo, J.M., Sines, T.R., Torres-Alavez, J.A.,
 Das, S., di Sante, F., Pichelli, E., Glazer, R., Müller, S.K., Abba Omar, S., Ashfaq, M., Bukovsky,
 M., Im, E.-S., Jacob, D., Teichmann, C., Remedio, A., Remke, T., Kriegsmann, A., Bülow, K.,
 Weber, T., Buntemeyer, L., Sieck, K., Rechid, D., 2021. Climate hazard indices projections
 based on CORDEX-CORE, CMIP5 and CMIP6 ensemble. Clim. Dyn. 57, 1293–1383.
 https://doi.org/10.1007/s00382-021-05640-z
- Curtis, P.G., Slay, C.M., Harris, N.L., Tyukavina, A., Hansen, M.C., 2018. Classifying drivers of global
 forest loss. Science 361, 1108–1111. https://doi.org/10.1126/science.aau3445
- de Groot, W.J., Cantin, A.S., Flannigan, M.D., Soja, A.J., Gowman, L.M., Newbery, A., 2013. A
 comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manag., The Megafire reality 294, 23–34. https://doi.org/10.1016/j.foreco.2012.07.033
- 794 Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N.D., Wikramanayake, E., Hahn, N., Palminteri, 795 S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E.C., Jones, B., Barber, C.V., Hayes, R., 796 Kormos, C., Martin, V., Crist, E., Sechrest, W., Price, L., Baillie, J.E.M., Weeden, D., Suckling, 797 K., Davis, C., Sizer, N., Moore, R., Thau, D., Birch, T., Potapov, P., Turubanova, S., Tyukavina, 798 A., de Souza, N., Pintea, L., Brito, J.C., Llewellyn, O.A., Miller, A.G., Patzelt, A., Ghazanfar, 799 S.A., Timberlake, J., Klöser, H., Shennan-Farpón, Y., Kindt, R., Lillesø, J.-P.B., van Breugel, P., 800 Graudal, L., Voge, M., Al-Shammari, K.F., Saleem, M., 2017. An Ecoregion-Based Approach to 801 Protecting Half the Terrestrial Realm. BioScience 67, 534–545.
- 802 https://doi.org/10.1093/biosci/bix014

- D'Orangeville, L., Houle, D., Duchesne, L., Phillips, R.P., Bergeron, Y., Kneeshaw, D., 2018. Beneficial
 effects of climate warming on boreal tree growth may be transitory. Nat. Commun. 9, 3213.
 https://doi.org/10.1038/s41467-018-05705-4
- Driscoll, D.A., Armenteras, D., Bennett, A.F., Brotons, L., Clarke, M.F., Doherty, T.S., Haslem, A., Kelly,
 L.T., Sato, C.F., Sitters, H., Aquilué, N., Bell, K., Chadid, M., Duane, A., Meza-Elizalde, M.C.,
 Giljohann, K.M., González, T.M., Jambhekar, R., Lazzari, J., Morán-Ordóñez, A., Wevill, T.,
 2021. How fire interacts with habitat loss and fragmentation. Biol. Rev. 96, 976–998.
 https://doi.org/10.1111/brv.12687
- Edwards, C., Mason, W., 2006. Stand structure and dynamics of four native Scots pine (Pinus
 sylvestris L.) woodlands in northern Scotland. For. Int. J. For. Res. 79, 261–277.
 https://doi.org/10.1093/forestry/cpl014
- Erni, S., Arseneault, D., Parisien, M.-A., 2018. Stand Age Influence on Potential Wildfire Ignition and
 Spread in the Boreal Forest of Northeastern Canada. Ecosystems 21, 1471–1486.
 https://doi.org/10.1007/s10021-018-0235-3
- Falk, D.A., Miller, C., McKenzie, D., Black, A.E., 2007. Cross-Scale Analysis of Fire Regimes.
 Ecosystems 10, 809–823. https://doi.org/10.1007/s10021-007-9070-7
- FAO, 2000. Global Forest Resources Assessment 2000: Main Reports (FAO Forestry Paper No. 140).
 UN Food and Agriculture Organization, Rome.
- Feurdean, A., Florescu, G., Tanţău, I., Vannière, B., Diaconu, A.-C., Pfeiffer, M., Warren, D.,
 Hutchinson, S.M., Gorina, N., Gałka, M., Kirpotin, S., 2020. Recent fire regime in the southern
 boreal forests of western Siberia is unprecedented in the last five millennia. Quat. Sci. Rev.
 244, 106495. https://doi.org/10.1016/j.quascirev.2020.106495
- Forbes, B.C., Fauria, M.M., Zetterberg, P., 2010. Russian Arctic warming and 'greening' are closely
 tracked by tundra shrub willows. Glob. Change Biol. 16, 1542–1554.
 https://doi.org/10.1111/j.1365-2486.2009.02047.x
- Forkel, M., Thonicke, K., Beer, C., Cramer, W., Bartalev, S., Schmullius, C., 2012. Extreme fire events
 are related to previous-year surface moisture conditions in permafrost-underlain larch
 forests of Siberia. Environ. Res. Lett. 7, 044021. https://doi.org/10.1088/17489326/7/4/044021
- Frazier, R.J., Coops, N.C., Wulder, M.A., Hermosilla, T., White, J.C., 2018. Analyzing spatial and
 temporal variability in short-term rates of post-fire vegetation return from Landsat time
 series. Remote Sens. Environ. 205, 32–45. https://doi.org/10.1016/j.rse.2017.11.007
- Friend, A.D., Lucht, W., Rademacher, T.T., Keribin, R., Betts, R., Cadule, P., Ciais, P., Clark, D.B.,
 Dankers, R., Falloon, P.D., Ito, A., Kahana, R., Kleidon, A., Lomas, M.R., Nishina, K., Ostberg,
 S., Pavlick, R., Peylin, P., Schaphoff, S., Vuichard, N., Warszawski, L., Wiltshire, A., Woodward,
 F.I., 2014. Carbon residence time dominates uncertainty in terrestrial vegetation responses
 to future climate and atmospheric CO2. Proc. Natl. Acad. Sci. 111, 3280–3285.
 https://doi.org/10.1073/pnas.1222477110
- Gaboriau, D.M., Remy, C.C., Girardin, M.P., Asselin, H., Hély, C., Bergeron, Y., Ali, A.A., 2020.
 Temperature and fuel availability control fire size/severity in the boreal forest of central

843	Northwest Territories, Canada. Quat. Sci. Rev. 250, 106697.
844	https://doi.org/10.1016/j.quascirev.2020.106697
845	Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A.Z., Schepaschenko, D.G., 2015. Boreal forest
846	health and global change. Science 349, 819–822. https://doi.org/10.1126/science.aaa9092
847	Giglio, L., Boschetti, L., Roy, D.P., Humber, M.L., Justice, C.O., 2018. The Collection 6 MODIS burned
848	area mapping algorithm and product. Remote Sens. Environ. 217, 72–85.
849	https://doi.org/10.1016/j.rse.2018.08.005
850	Gill, N.S., Sangermano, F., Buma, B., Kulakowski, D., 2017. Populus tremuloides seedling
851	establishment: An underexplored vector for forest type conversion after multiple
852	disturbances. For. Ecol. Manag. 404, 156–164. https://doi.org/10.1016/j.foreco.2017.08.008
853	Goetz, S.J., Bunn, A.G., Fiske, G.J., Houghton, R.A., 2005. Satellite-observed photosynthetic trends
854	across boreal North America associated with climate and fire disturbance. Proc. Natl. Acad.
855	Sci. 102, 13521–13525. https://doi.org/10.1073/pnas.0506179102
856	Guay, K.C., Beck, P.S.A., Berner, L.T., Goetz, S.J., Baccini, A., Buermann, W., 2014. Vegetation
857	productivity patterns at high northern latitudes: a multi-sensor satellite data assessment.
858	Glob. Change Biol. 20, 3147–3158. https://doi.org/10.1111/gcb.12647
859 860 861 862	 Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., Stehman, S.V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., Townshend, J.R.G., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 342, 850–853. https://doi.org/10.1126/science.1244693
863	Hansen, W.D., Braziunas, K.H., Rammer, W., Seidl, R., Turner, M.G., 2018. It takes a few to tango:
864	changing climate and fire regimes can cause regeneration failure of two subalpine conifers.
865	Ecology 99, 966–977. https://doi.org/10.1002/ecy.2181
866	 Hantson, S., Kelley, D.I., Arneth, A., Harrison, S.P., Archibald, S., Bachelet, D., Forrest, M., Hickler, T.,
867	Lasslop, G., Li, F., Mangeon, S., Melton, J.R., Nieradzik, L., Rabin, S.S., Prentice, I.C., Sheehan,
868	T., Sitch, S., Teckentrup, L., Voulgarakis, A., Yue, C., 2020. Quantitative assessment of fire
869	and vegetation properties in simulations with fire-enabled vegetation models from the Fire
870	Model Intercomparison Project. Geosci. Model Dev. 13, 3299–3318.
871	https://doi.org/10.5194/gmd-13-3299-2020
872 873 874	Hayes, D.J., McGuire, A.D., Kicklighter, D.W., Gurney, K.R., Burnside, T.J., Melillo, J.M., 2011. Is the northern high-latitude land-based CO2 sink weakening? Glob. Biogeochem. Cycles 25. https://doi.org/10.1029/2010GB003813
875	Huang, J., Tardif, J.C., Bergeron, Y., Denneler, B., Berninger, F., Girardin, M.P., 2010. Radial growth
876	response of four dominant boreal tree species to climate along a latitudinal gradient in the
877	eastern Canadian boreal forest. Glob. Change Biol. 16, 711–731.
878	https://doi.org/10.1111/j.1365-2486.2009.01990.x
879 880 881	Humber, M.L., Boschetti, L., Giglio, L., Justice, C.O., 2019. Spatial and temporal intercomparison of four global burned area products. Int. J. Digit. Earth 12, 460–484. https://doi.org/10.1080/17538947.2018.1433727
882 883	IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change.34

884 Ishutin, Ya.N., 2004. Reforestation of Burned Areas in Ribbon-Like Pine Forest of Altai (Barnaul, 885 2004) [in Russian]. 886 Johnstone, J.F., Allen, C.D., Franklin, J.F., Frelich, L.E., Harvey, B.J., Higuera, P.E., Mack, M.C., 887 Meentemeyer, R.K., Metz, M.R., Perry, G.L., Schoennagel, T., Turner, M.G., 2016. Changing 888 disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369-378. https://doi.org/10.1002/fee.1311 889 890 Johnstone, J.F., Chapin, F.S., 2006. Effects of Soil Burn Severity on Post-Fire Tree Recruitment in 891 Boreal Forest. Ecosystems 9, 14–31. https://doi.org/10.1007/s10021-004-0042-x 892 Johnstone, J.F., Hollingsworth, T.N., Chapin, F.S., Mack, M.C., 2010. Changes in fire regime break the 893 legacy lock on successional trajectories in Alaskan boreal forest. Glob. Change Biol. 16, 894 1281-1295. https://doi.org/10.1111/j.1365-2486.2009.02051.x 895 Kauppi, P.E., Posch, M., Pirinen, P., 2014. Large Impacts of Climatic Warming on Growth of Boreal 896 Forests since 1960. PLOS ONE 9, e111340. https://doi.org/10.1371/journal.pone.0111340 897 Keenan, T.F., Riley, W.J., 2018. Greening of the land surface in the world's cold regions consistent 898 with recent warming. Nat. Clim. Change 1. https://doi.org/10.1038/s41558-018-0258-y 899 Kharuk, V.I., Dvinskaya, M.L., Petrov, I.A., Im, S.T., Ranson, K.J., 2016. Larch forests of Middle Siberia: 900 long-term trends in fire return intervals. Reg. Environ. Change 16, 2389–2397. 901 https://doi.org/10.1007/s10113-016-0964-9 902 Kharuk, V.I., Ponomarev, E.I., 2017. Spatiotemporal characteristics of wildfire frequency and relative 903 area burned in larch-dominated forests of Central Siberia. Russ. J. Ecol. 48, 507–512. 904 https://doi.org/10.1134/S1067413617060042 905 Kharuk, V.I., Ponomarev, E.I., Ivanova, G.A., Dvinskaya, M.L., Coogan, S.C.P., Flannigan, M.D., 2021. 906 Wildfires in the Siberian taiga. Ambio. https://doi.org/10.1007/s13280-020-01490-x 907 Koven, C.D., 2013. Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nat. Geosci. 908 6, 452–456. https://doi.org/10.1038/ngeo1801 909 Krylov, A., McCarty, J.L., Potapov, P., Loboda, T., Tyukavina, A., Turubanova, S., Hansen, M.C., 2014. 910 Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environ. Res. 911 Lett. 9, 105007. https://doi.org/10.1088/1748-9326/9/10/105007 912 Kukavskaya, E.A., Buryak, L.V., Shvetsov, E.G., Conard, S.G., Kalenskaya, O.P., 2016. The impact of 913 increasing fire frequency on forest transformations in southern Siberia. For. Ecol. Manag. 914 382, 225–235. https://doi.org/10.1016/j.foreco.2016.10.015 Kukavskaya, E.A., Ivanova, G.A., Conard, S.G., McRae, D.J., Ivanov, V.A., 2014. Biomass dynamics of 915 916 central Siberian Scots pine forests following surface fires of varying severity. Int. J. Wildland Fire 23, 872-886. https://doi.org/10.1071/WF13043 917 918 Kupriyanov, A.N., Trofimov, I.T., Zablotskiy, V.I., Makarychev, S.V., Kudryashov, I.V., Malinovskikh, 919 A.A., Burmistrov, M.V., Strakowski, A.N., Bolotov, A.G., Begovich, Y., 2003. Restoration of 920 forest ecosystems after fires.

- Leskinen, P., Lindner, M., Verkerk, P.J., Nabuurs, G.-J., Van Brusselen, J., Kulikova, E., Hassegawa, M.,
 Lerink, B. (Eds.), 2020. Russian forests and climate change, What Science Can Tell Us.
 European Forest Institute. https://doi.org/10.36333/wsctu11
- Lin, X., Rogers, B.M., Sweeney, C., Chevallier, F., Arshinov, M., Dlugokencky, E., Machida, T.,
 Sasakawa, M., Tans, P., Keppel-Aleks, G., 2020. Siberian and temperate ecosystems shape
 Northern Hemisphere atmospheric CO2 seasonal amplification. Proc. Natl. Acad. Sci. 117,
 21079–21087. https://doi.org/10.1073/pnas.1914135117
- Linder, P., Jonsson, P., Niklasson, M., 1998. Tree mortality after prescribed burning in an old-growth
 Scots pine forest in northern Sweden. Silva Fenn. 32. https://doi.org/10.14214/sf.675
- Liu, Y.Y., Dijk, A.I.J.M. van, Jeu, R.A.M. de, Canadell, J.G., McCabe, M.F., Evans, J.P., Wang, G., 2015.
 Recent reversal in loss of global terrestrial biomass. Nat. Clim. Change 5, 470–474.
 https://doi.org/10.1038/nclimate2581
- Lizundia-Loiola, J., Otón, G., Ramo, R., Chuvieco, E., 2020. A spatio-temporal active-fire clustering
 approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ.
 236, 111493. https://doi.org/10.1016/j.rse.2019.111493
- Malevsky-Malevich, S.P., Molkentin, E.K., Nadyozhina, E.D., Shklyarevich, O.B., 2008. An assessment
 of potential change in wildfire activity in the Russian boreal forest zone induced by climate
 warming during the twenty-first century. Clim. Change 86, 463–474.
 https://doi.org/10.1007/s10584-007-9295-7
- Mouillot, F., Schultz, M.G., Yue, C., Cadule, P., Tansey, K., Ciais, P., Chuvieco, E., 2014. Ten years of
 global burned area products from spaceborne remote sensing—A review: Analysis of user
 needs and recommendations for future developments. Int. J. Appl. Earth Obs.
 Geoinformation 26, 64–79. https://doi.org/10.1016/j.jag.2013.05.014
- Myers-Smith, I.H., Forbes, B.C., Wilmking, M., Hallinger, M., Lantz, T., Blok, D., Tape, K.D., MaciasFauria, M., Sass-Klaassen, U., Lévesque, E., Boudreau, S., Ropars, P., Hermanutz, L., Trant, A.,
 Collier, L.S., Weijers, S., Rozema, J., Rayback, S.A., Schmidt, N.M., Schaepman-Strub, G.,
 Wipf, S., Rixen, C., Ménard, C.B., Venn, S., Goetz, S., Andreu-Hayles, L., Elmendorf, S.,
 Ravolainen, V., Welker, J., Grogan, P., Epstein, H.E., Hik, D.S., 2011. Shrub expansion in
 tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509.
 https://doi.org/10.1088/1748-9326/6/4/045509
- 951 Natole, M., Ying, Y., Buyantuev, A., Stessin, M., Buyantuev, V., Lapenis, A., 2021. Patterns of mega952 forest fires in east Siberia will become less predictable with climate warming. Environ. Adv.
 953 4, 100041. https://doi.org/10.1016/j.envadv.2021.100041
- Noce, S., Caporaso, L., Santini, M., 2019. Climate Change and Geographic Ranges: The Implications
 for Russian Forests. Front. Ecol. Evol. 7, 57. https://doi.org/10.3389/fevo.2019.00057
- Pan, Y., Birdsey, R.A., Fang, J., Houghton, R., Kauppi, P.E., Kurz, W.A., Phillips, O.L., Shvidenko, A.,
 Lewis, S.L., Canadell, J.G., Ciais, P., Jackson, R.B., Pacala, S.W., McGuire, A.D., Piao, S.,
 Rautiainen, A., Sitch, S., Hayes, D., 2011. A Large and Persistent Carbon Sink in the World's
 Forests. Science 333, 988–993. https://doi.org/10.1126/science.1201609
- 960 Paramonov, E.G., Ishutin, Ya.N., 1999. Large Fires in Altai Krai (Barnaul, 1999) [in Russian].

961 Payette, S., Delwaide, A., 2003. Shift of Conifer Boreal Forest to Lichen–Heath Parkland Caused by 962 Successive Stand Disturbances. Ecosystems 6, 540–550. https://doi.org/10.1007/PL00021507 963 964 Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, 965 966 M., Perrot, M., Duchesnay, É., 2011. Scikit-learn: Machine Learning in Python. J. Mach. 967 Learn. Res. 12, 2825–2830. 968 Perrault-Hébert, M., Boucher, Y., Fournier, R., Girard, F., Auger, I., Thiffault, N., Grenon, F., 2017. Ecological drivers of post-fire regeneration in a recently managed boreal forest landscape of 969 970 eastern Canada. For. Ecol. Manag. 399, 74–81. https://doi.org/10.1016/j.foreco.2017.05.026 971 Ponomarev, E., Yakimov, N., Ponomareva, T., Yakubailik, O., Conard, S.G., 2021. Current Trend of 972 Carbon Emissions from Wildfires in Siberia. Atmosphere 12, 559. 973 https://doi.org/10.3390/atmos12050559 974 Ponomarev, E.I., Kharuk, V.I., Ranson, K.J., 2016. Wildfires Dynamics in Siberian Larch Forests. 975 Forests 7, 125. https://doi.org/10.3390/f7060125 976 Potapov, P., Hansen, M.C., Laestadius, L., Turubanova, S., Yaroshenko, A., Thies, C., Smith, W., 977 Zhuravleva, I., Komarova, A., Minnemeyer, S., Esipova, E., 2017. The last frontiers of 978 wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Sci. Adv. 3, 979 e1600821. https://doi.org/10.1126/sciadv.1600821 980 Potapov, P., Hansen, M.C., Stehman, S.V., Loveland, T.R., Pittman, K., 2008. Combining MODIS and 981 Landsat imagery to estimate and map boreal forest cover loss. Remote Sens. Environ. 112, 982 3708-3719. https://doi.org/10.1016/j.rse.2008.05.006 983 Qin, Y., Abatzoglou, J.T., Siebert, S., Huning, L.S., AghaKouchak, A., Mankin, J.S., Hong, C., Tong, D., 984 Davis, S.J., Mueller, N.D., 2020. Agricultural risks from changing snowmelt. Nat. Clim. Change 985 10, 459-465. https://doi.org/10.1038/s41558-020-0746-8 986 Randerson, J.T., Chen, Y., Werf, G.R. van der, Rogers, B.M., Morton, D.C., 2012. Global burned area 987 and biomass burning emissions from small fires. J. Geophys. Res. Biogeosciences 117. 988 https://doi.org/10.1029/2012JG002128 989 Randerson, J.T., van der Werf, G.R., Giglio, L., Collatz, G.J., Kasibhatla, P.S., 2017. Global Fire 990 Emissions Database, Version 4.1 (GFEDv4) 1925.7122549999906 MB. 991 https://doi.org/10.3334/ORNLDAAC/1293 992 Rogers, B.M., Balch, J.K., Goetz, S.J., Lehmann, C.E.R., Turetsky, M., 2020. Focus on changing fire 993 regimes: interactions with climate, ecosystems, and society. Environ. Res. Lett. 15, 030201. 994 https://doi.org/10.1088/1748-9326/ab6d3a 995 Rogers, B.M., Soja, A.J., Goulden, M.L., Randerson, J.T., 2015. Influence of tree species on 996 continental differences in boreal fires and climate feedbacks. Nat. Geosci. 8, 228–234. 997 https://doi.org/10.1038/ngeo2352 998 Sanderson, B.M., Fisher, R.A., 2020. A fiery wake-up call for climate science. Nat. Clim. Change 10, 999 175–177. https://doi.org/10.1038/s41558-020-0707-2

- Sandström, J., Edman, M., Jonsson, B.G., 2020. Rocky pine forests in the High Coast Region in
 Sweden: structure, dynamics and history. Nat. Conserv. 38, 101.
- Sannikov, S.N., Sannikova, N.S., Petrova, I.V., Cherepanova, O.E., 2020. The forecast of fire impact on
 Pinus sylvestris renewal in southwestern Siberia. J. For. Res.
 https://doi.org/10.1007/s11676-020-01260-1
- Schulze, E.-D., Wirth, C., Mollicone, D., von Lüpke, N., Ziegler, W., Achard, F., Mund, M., Prokushkin,
 A., Scherbina, S., 2012. Factors promoting larch dominance in central Siberia: fire versus
 growth performance and implications for carbon dynamics at the boundary of evergreen
 and deciduous conifers. Biogeosciences 9, 1405–1421. https://doi.org/10.5194/bg-9-1405 2012
- 1010 Schulzweida, U., 2020. CDO User Guide. https://doi.org/10.5281/zenodo.5614769
- Shuman, J.K., Foster, A.C., Shugart, H.H., Hoffman-Hall, A., Krylov, A., Loboda, T., Ershov, D.,
 Sochilova, E., 2017. Fire disturbance and climate change: implications for Russian forests.
 Environ. Res. Lett. 12, 035003. https://doi.org/10.1088/1748-9326/aa5eed
- Shvetsov, E.G., Kukavskaya, E.A., Buryak, L.V., 2016. Satellite monitoring of the state of forest
 vegetation after fire impacts in the Zabaikal region. Contemp. Probl. Ecol. 9, 702–710.
 https://doi.org/10.1134/S1995425516060123
- Shvetsov, E.G., Kukavskaya, E.A., Buryak, L.V., Barrett, K., 2019. Assessment of post-fire vegetation
 recovery in Southern Siberia using remote sensing observations. Environ. Res. Lett. 14,
 055001. https://doi.org/10.1088/1748-9326/ab083d
- Shvetsov, E.G., Kukavskaya, E.A., Shestakova, T.A., Laflamme, J., Rogers, B.M., 2021. Increasing fire
 and logging disturbances in Siberian boreal forests: a case study of the Angara region.
 Environ. Res. Lett. 16, 115007. https://doi.org/10.1088/1748-9326/ac2e37
- Sidoroff, K., Kuuluvainen, T., Tanskanen, H., Vanha-Majamaa, I., 2007. Tree mortality after low intensity prescribed fires in managed Pinus sylvestris stands in southern Finland. Scand. J.
 For. Res. 22, 2–12. https://doi.org/10.1080/02827580500365935
- Sizov, O., Ezhova, E., Tsymbarovich, P., Soromotin, A., Prihod'ko, N., Petäjä, T., Zilitinkevich, S.,
 Kulmala, M., Bäck, J., Köster, K., 2021. Fire and vegetation dynamics in northwest Siberia
 during the last 60 years based on high-resolution remote sensing. Biogeosciences 18, 207–
 228. https://doi.org/10.5194/bg-18-207-2021
- Smets, B., Tansey, K., Wolfs, D., Jacobs, T., 2017. PRODUCT USER MANUAL BURNED AREA AND
 SEASONALITY COLLECTION 300M VERSION 1.
- Soja, A., Shugart, H., Sukhinin, A., Conard, S., Stackhouse Jr, P., 2006. Satellite-Derived Mean Fire
 Return Intervals As Indicators Of Change In Siberia (1995–2002). Mitig. Adapt. Strateg. Glob.
 Change 11, 75–96. https://doi.org/10.1007/s11027-006-1009-3
- Srivastava, A., Grotjahn, R., Ullrich, P.A., 2020. Evaluation of historical CMIP6 model simulations of
 extreme precipitation over contiguous US regions. Weather Clim. Extrem. 29, 100268.
 https://doi.org/10.1016/j.wace.2020.100268

1038 Stavrova, N.I., Gorshkov, V.V., Katjutin, P.N., Bakkal, I.J., 2020. The Structure of Northern Siberian 1039 Spruce–Scots Pine Forests at Different Stages of Post-Fire Succession. Forests 11, 558. https://doi.org/10.3390/f11050558 1040 1041 Stevens-Rumann, C.S., Kemp, K.B., Higuera, P.E., Harvey, B.J., Rother, M.T., Donato, D.C., Morgan, P., 1042 Veblen, T.T., 2018. Evidence for declining forest resilience to wildfires under climate change. 1043 Ecol. Lett. 21, 243–252. https://doi.org/10.1111/ele.12889 1044 Stralberg, D., Wang, X., Parisien, M.-A., Robinne, F.-N., Sólymos, P., Mahon, C.L., Nielsen, S.E., Bayne, 1045 E.M., 2018. Wildfire-mediated vegetation change in boreal forests of Alberta, Canada. 1046 Ecosphere 9, e02156. https://doi.org/10.1002/ecs2.2156 1047 Suarez, F., Binkley, D., Kaye, M.W., Stottlemyer, R., 1999. Expansion of forest stands into tundra in 1048 the Noatak National Preserve, northwest Alaska. Écoscience 6, 465–470. 1049 https://doi.org/10.1080/11956860.1999.11682538 1050 Sullivan, Janet., 1993. Pinus sylvestris. [WWW Document]. Fire Eff. Inf. Syst. Online US Dep. Agric. 1051 For. Serv. Rocky Mt. Res. Stn. Fire Sci. Lab. Prod. URL 1052 https://www.fs.fed.us/database/feis/plants/tree/pinsyl/all.html (accessed 3.5.21). 1053 Tepley, A.J., Thomann, E., Veblen, T.T., Perry, G.L.W., Holz, A., Paritsis, J., Kitzberger, T., Anderson-1054 Teixeira, K.J., 2018. Influences of fire-vegetation feedbacks and post-fire recovery rates on 1055 forest landscape vulnerability to altered fire regimes. J. Ecol. 106, 1925–1940. 1056 https://doi.org/10.1111/1365-2745.12950 1057 Theil, H., 1950. A rank-invariant method of linear and polynomial regression analysis, Part 3. 1058 Presented at the Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A, 1059 pp. 1397-1412. 1060 Tomshin, O., Solovyev, V., 2021. Spatio-temporal patterns of wildfires in Siberia during 2001–2020. 1061 Geocarto Int. 0, 1–19. https://doi.org/10.1080/10106049.2021.1973581 1062 van der Werf, G.R., Randerson, J.T., Giglio, L., van Leeuwen, T.T., Chen, Y., Rogers, B.M., Mu, M., van 1063 Marle, M.J.E., Morton, D.C., Collatz, G.J., Yokelson, R.J., Kasibhatla, P.S., 2017. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 9, 697–720. 1064 1065 https://doi.org/10.5194/essd-9-697-2017 1066 Walker, X.J., Rogers, B.M., Veraverbeke, S., Johnstone, J.F., Baltzer, J.L., Barrett, K., Bourgeau-1067 Chavez, L., Day, N.J., de Groot, W.J., Dieleman, C.M., Goetz, S., Hoy, E., Jenkins, L.K., Kane, 1068 E.S., Parisien, M.-A., Potter, S., Schuur, E. a. G., Turetsky, M., Whitman, E., Mack, M.C., 2020. 1069 Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. 1070 Clim. Change 10, 1130–1136. https://doi.org/10.1038/s41558-020-00920-8 1071 Wan, X., 2019. Influence of feature scaling on convergence of gradient iterative algorithm. J. Phys. 1072 Conf. Ser. 1213, 032021. https://doi.org/10.1088/1742-6596/1213/3/032021 1073 Whitman, E., Parisien, M.-A., Thompson, D.K., Flannigan, M.D., 2019. Short-interval wildfire and 1074 drought overwhelm boreal forest resilience. Sci. Rep. 9, 1–12. 1075 https://doi.org/10.1038/s41598-019-55036-7 1076 Wilks, D.S., 2016. "The Stippling Shows Statistically Significant Grid Points": How Research Results 1077 are Routinely Overstated and Overinterpreted, and What to Do about It. Bull. Am. Meteorol. 1078 Soc. 97, 2263–2273. https://doi.org/10.1175/BAMS-D-15-00267.1 39

- Wright, J.W., Wilson, L.F., Randall, W.K., 1967. Differences Among Scotch Pine Varieties in
 Susceptibility to European Pine Sawfly. For. Sci. 13, 175–181.
 https://doi.org/10.1093/forestscience/13.2.175
- Yue, S., Pilon, P., Cavadias, G., 2002. Power of the Mann–Kendall and Spearman's rho tests for
 detecting monotonic trends in hydrological series. J. Hydrol. 259, 254–271.
 https://doi.org/10.1016/S0022-1694(01)00594-7
- Zheng, A., Casari, A., 2018. Feature Engineering for Machine Learning: Principles and Techniques for
 Data Scientists. O'Reilly Media, Inc.