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Abstract 22 

Climate change has driven an increase in the frequency and severity of fires in Eurasian boreal 23 

forests. A growing number of field studies have linked the change in fire regime to post-fire 24 

recruitment failure and permanent forest loss. In this study we used four burned area and two forest 25 

loss datasets to calculate the landscape-scale fire return interval (FRI) and associated risk of 26 

permanent forest loss. We then used machine learning to predict how the FRI will change under a 27 

high emissions scenario (SSP3-7.0) by the end of the century. We found that there are currently 133 28 

000 km2 forest at high, or extreme, risk of fire-induced forest loss, with a further 3 M km2 at risk by 29 

the end of the century. This has the potential to degrade or destroy some of the largest remaining 30 

intact forests in the world, negatively impact the health and economic wellbeing of people living in 31 

the region, as well as accelerate global climate change.  32 
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1. Introduction  33 

Boreal forests contain ~30 % of all of the world’s forested area (Gauthier et al., 2015), ~65% of the 34 

world’s forest carbon stocks (Bradshaw and Warkentin, 2015), contribute ~20 % of the world’s 35 

terrestrial carbon sink (Bradshaw and Warkentin, 2015; Pan et al., 2011) and include some of the 36 

largest areas of intact forest in the world (Potapov et al., 2017). Warming rates in the boreal region 37 

are among the fastest in the world (D’Orangeville et al., 2018), which has increased vegetation 38 

productivity (Chen et al., 2016; Goetz et al., 2005; Kauppi et al., 2014; Keenan and Riley, 2018; Liu et 39 

al., 2015) and driven the expansion of boreal species to higher altitudes and north into the tundra 40 

(Brodie et al., 2019; Forbes et al., 2010; Myers-Smith et al., 2011; Suarez et al., 1999). There is 41 

growing concern, however, that climate change is  causing a reduction along the southern boundary 42 

with the steppe biome, especially in more water-limited forests (Guay et al., 2014; Huang et al., 43 

2010; Koven, 2013; Payette and Delwaide, 2003). 44 

Wildfire is one of the largest causes of stand mortality in boreal forests, a natural dynamic which has 45 

been in place for thousands of years (Johnstone et al., 2010; Kharuk et al., 2021; Ponomarev et al., 46 

2016). As a result, many regions have been in a dynamic equilibrium, whereby the amount of 47 

ecosystem carbon lost to wildfire, determined by factors such as the Fire Return Interval (FRI) and 48 

the portion of stand-replacing fires, is balanced by the rate of recovery (Brazhnik et al., 2017; Brown 49 

and Johnstone, 2012). In these regions, periodic fires play an essential role in maintaining ecosystem 50 

health and biodiversity (Kharuk et al., 2021). However, at the southern limits of the Eurasian boreal 51 

zone, there is growing evidence of recruitment failure (RF) driven forest loss (Barrett et al., 2020; 52 

Kukavskaya et al., 2016). RF is where boreal tree species fail to re-establish after a stand-replacing 53 

disturbance and instead undergo a change to a steppe/grassland (Barrett et al., 2020).  54 

Although the conditions that cause RF are complex and multifaceted, certain drivers such as the FRI 55 

and the percentage of stand-replacing fires have distinct thresholds beyond which RF is highly likely 56 

(Hansen et al., 2018; Kukavskaya et al., 2016; Stevens‐Rumann et al., 2018). For example, in the first 57 

20-30 years after a stand replacing fire, the regenerating tree species have almost no fire tolerance 58 

and contribute very little to the seed pool, which is essential for robust post-fire recruitment (Cai et 59 

al., 2018; Hansen et al., 2018; Kukavskaya et al., 2016).  For this reason, the interval between a 60 

stand-replacing fire and the next fire event is one of the strongest predictors of RF within the boreal 61 

zone (Kukavskaya et al., 2016; Whitman et al., 2019).  62 

Although the global extent of RF remains entirely unquantified (Burrell et al., 2021), it has been 63 

observed in field studies from both the Eurasian (Barrett et al., 2020; Kukavskaya et al., 2016; 64 
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Shvetsov et al., 2019) and North American boreal forest (Boucher et al., 2019; Brown and Johnstone, 65 

2012; Hansen et al., 2018; Stevens‐Rumann et al., 2018). In a study of 1538 field sites across boreal 66 

North America, post-fire RF was observed at ~10% of sites (Baltzer et al., 2021) though it should be 67 

noted that the link between RF and forest loss is less certain in the mixed broadleaf and coniferous 68 

forests of North America (Gill et al., 2017; Johnstone and Chapin, 2006; Whitman et al., 2019), than 69 

it is in the coniferous forests of Eurasia (Barrett et al., 2020; Burrell et al., 2021; Kukavskaya et al., 70 

2016). If RF and its associated forest loss is widespread, this poses a serious risk to the wealth of 71 

ecosystem services provided by boreal forests (Gauthier et al., 2015; Hansen et al., 2013). It would 72 

also negatively impact the boreal carbon sink, potentially leading to a net source, which would 73 

further amplify climate change (Chen and Loboda, 2018; Hayes et al., 2011; Lin et al., 2020).  74 

Eurasia contains some of the hottest and driest parts of the boreal biome and is warming faster than 75 

the global average (Burrell et al., 2021). Given the influence of fuel availability, fire season length, 76 

and fire weather, there are direct links between burned area and climatology, as well as climate 77 

changes in Siberia (de Groot et al., 2013; Kharuk et al., 2021; Tepley et al., 2018). The Eurasian 78 

boreal biome has already experienced an extension of the fire season, increases in fire frequency, 79 

extent and severity – including increased proportions of fires that are stand replacing (Brazhnik et 80 

al., 2017; Feurdean et al., 2020; Kharuk et al., 2021; Malevsky-Malevich et al., 2008; Ponomarev et 81 

al., 2016; Tomshin and Solovyev, 2021). As the climate continues to warm, this trend is likely to 82 

continue (Malevsky-Malevich et al., 2008; Shvetsov et al., 2016), with the Sixth Assessment Report of 83 

the United Nations Intergovernmental Panel on Climate Change (IPCC) predicting increase in fire 84 

frequency and severity across all of Eurasia (IPCC, 2021).   Given the strong link to climate change, 85 

the growing evidence of site-level RF, the threat it poses to boreal carbon sink and the  limited 86 

knowledge over  large areas, quantifying the extent of RF in the boreal forest as a key knowledge gap 87 

in the boreal zone (Baltzer et al., 2021; Burrell et al., 2021).   88 

The reason the extent of RF remains unknown is because of a lack of the data and methods needed 89 

to systematically quantify it at large scales (Burrell et al., 2021). The ideal method to measure post-90 

fire RF would involve a large number of field sites with >30 years of tree cover data, which does not 91 

currently exist for many parts of the often very remote boreal zone, with the data availability in 92 

Siberia, for example, being especially low (Burrell et al., 2021). Another option for quantifying RF 93 

would be to directly detect it using remotely sensed imagery, or by proxy using remotely sensed 94 

data products to construct site-level fire histories.  Such histories can indicate where the gap 95 

between a stand-replacing fire and the subsequent fire event was less than the 30-year threshold 96 

observed in field studies of recruitment (Hansen et al., 2018; Kukavskaya et al., 2016).  To the best of 97 
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our knowledge, there have been no studies that have done this at a large spatial scale. This is likely 98 

because performing the analysis over a large area would require high spatial resolution data with a 99 

temporal record that is longer than is currently available (Burrell et al., 2021; Chu and Guo, 2014). 100 

Existing studies using remote sensing to look at post-fire forest recovery generally only assess 101 

recovery in the first 5 years after fire (Frazier et al., 2018).  Given that site-level fire/disturbance 102 

histories extending beyond the satellite period are unavailable in most areas, landscape-scale FRI, 103 

calculated using a space for time substitution, has been used to investigate ecosystem changes 104 

driven by wildfire (Coops et al., 2018; Kharuk et al., 2021; Soja et al., 2006; Tomshin and Solovyev, 105 

2021).  106 

The Russian Far East and Siberian portions of the boreal zone have been the focus of notably fewer 107 

research studies than either the North American or Scandinavian boreal forest (Rogers et al., 2020). 108 

This is particularly problematic because the climatology and current rates of warming in Siberia 109 

suggest that the changes occurring in this region may be truly indicative of the future of the boreal 110 

zone as the climate warms (Burrell et al., 2021). These are also the regions with multiple studies 111 

showing RF induced forest loss (Barrett et al., 2020; Kukavskaya et al., 2016; Shvetsov et al., 2019).   112 

The aim of the present study was to use freely available remotely sensed datasets to investigate 113 

landscape-scale FRI, stand replacing FRI (FRISR) and the all-cause Disturbance Return Interval (DRI) 114 

which together can be used as a proxy for RF risk and, by association, the areas most at risk of 115 

permanent biome shift in the Eurasian boreal forest. Machine learning methods were then used to 116 

examine the link between FRI and climate over the observed period and, in combination with future 117 

climate projections, to quantify how this risk will change over the next century.  118 

2. Materials and Methods 119 

2.1 Study Area 120 

The analysis was performed over the entire Eurasian boreal forest, a region containing ~15 M km2 of 121 

forest dominated by a small number of tree species from four main genera, larch (Larix), pine 122 

(Pinus), birch (Betula), and spruce (Picea) (Bartalev et al., 2004; de Groot et al., 2013; Rogers et al., 123 

2015) (Figure 1).  124 
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 125 

Figure 1. Land cover types.  a) The dominant land cover class in the year 2000 (FBD: Broadleaf Deciduous Forest, FCE: 126 

Coniferous Evergreen Forest, FCD: Coniferous Deciduous Forest, FMx: Mixed Forest, SHC: Shrubs and/or Herbaceous Cover, 127 

CMA: Cultivated and/or Mixed Agriculture, BG: Bare Ground). b) The dominant tree species.  Data: a) GLC2000 (Bartholomé 128 

and Belward, 2005) and b) adapted from (Bartalev et al., 2004).  129 

As this study focuses on the shift of the boreal-steppe boundary and existing static boreal forest 130 

maps may be misleading due to shifts in this boundary, we derived the boreal biome boundary using 131 

forest cover data rather than using an existing biome map. We used version 1.7 of the Hansen Global 132 

Forest Change (HansenGFC) 2000 tree cover data (Hansen et al., 2013) to identify the boreal-steppe 133 

boundary and mask out non-forested areas in all datasets. For this study we included any area 134 

located between 40o to 70o of latitude and -10.0o to 180o of longitude that had a fractional tree cover 135 

greater than 10 %. To exclude the temperate forests that occur in these regions, we then used 136 

boreal ecoregions from Dinerstein et al. (2017) with a 1o buffer to account for any uncertainties in 137 

the boundaries. 138 
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2.2 Burned Area Datasets 139 

In order to partially control for the uncertainties and biases in any one data source, we used four 140 

global Burned Area (BA) products to estimate FRIs in Eurasian boreal forests (Table 1). The first, the 141 

Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 Burned Area product 142 

(MCD64A1), is the most widely used and validated global BA dataset (Giglio et al., 2018). The second 143 

is the fourth version of the Global Fire Emissions Database 4.1 (GFED4) BA (including small fires) (van 144 

der Werf et al., 2017), which is mostly based on MODIS MCD64A1 data (Randerson et al., 2017). The 145 

‘small fires’ version of GFED4 incorporates a correction to address the known bias in BA products of 146 

underrepresenting the extent and frequency of smaller and/or low intensity fires (Randerson et al., 147 

2012). It was included in this study because it is comparable to the lower resolution datasets that 148 

have previously been used to examine FRI in Eurasia. The third is the European Space Agency’s 149 

Climate Change Initiative FireCCI version 5.1 (FireCCI51), which uses MODIS spectral and active fire 150 

data, and was designed to improve the accuracy over MCD64A1 (Lizundia-Loiola et al., 2020). The 151 

fourth is the Copernicus Global Land Service BA product (CGLS-BA) which is derived from PROBA-V 152 

data (Smets et al., 2017). In comparison to other products, the performance of CGLS-BA is expected 153 

to be worse than other products in the boreal zone because it cannot detect any spring or autumn 154 

fires north of 51o, but we included it in this study because it is the only high-resolution global BA 155 

product that is currently being updated and is entirely independent of MODIS data.  156 

In addition to the BA products, we also used version 1.7 of the 25 m Hansen Global Forest Change 157 

(HansenGFC) dataset to estimate forest loss rates due to fire (Hansen et al., 2013). HansenGFC v1.7 158 

uses Landsat 8 for improved detection of boreal forest loss, including from fire. However, this 159 

correction is not applied to the years 2001 to 2010. To examine the rate of forest loss due to fires, 160 

we followed the procedure used by Krylov et al. (2014) and used MODIS active fire data (MCD14ML) 161 

to mask out areas where forest loss does not occur within 4 km of a fire (HansenGFC-MAF). 162 

HansenGFC-MAF is the subset of the forest loss in HansenGFC that can be attributed to fires, and 163 

therefore represents only stand replacing fires.   164 

Table 1 Summary of gridded datasets used  165 

Product  Dataset type Resolution Temporal range Citation 

MCD64A1 Burned Area ~500 m 2001 to present Giglio et al. (2018) 

GFED4 Burned Area 0.25-degree 

(~27 km at the 

equator)  

1996 to 2017 van der Werf et al. 

(2017) 
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FireCCI51 Burned Area ~250 m 2001 to present Lizundia-Loiola et al. 

(2020) 

CGLS-BA Burned Area ~300 m 2014 to present Smets et al. (2017) 

HansenGFC Forest loss 25 m  2001 to present Hansen et al. (2013) 

TerraClimate Precipitation 

and 

Temperature 

~4 km 1984 to present Abatzoglou et al. 

(2018) 

 166 

2.3 Calculating landscape-scale FRI 167 

Estimating site-level FRI requires long-term observations with multiple fire events, typically from 168 

sediment cores, tree rings from surviving trees or long-term site monitoring; information that is not 169 

publicly available for most of the Eurasian boreal forest zone. FRI can also be calculated at regional 170 

and continental scales using space-for-time substitution, assuming homogeneity in FRI  at a 171 

particular spatial scale (Archibald et al., 2013). Because all the moderate and high spatial resolution 172 

BA products currently available have insufficient temporal record for the majority of site-level FRI’s 173 

in Eurasian boreal forests, we adopted this latter approach. For the four BA datasets (GFED4, 174 

FIreCCI51, MCD64A1 and CGLS-BA), we calculated the fire frequency for each forested pixel and then 175 

applied a 1 degree moving window (excluding non-forest areas) to calculate the landscape-scale 176 

mean annual burned fraction (AnBF). AnBF for a given pixel is calculated using:  177 

1.                                                            𝐴𝑛𝐵𝐹 =  
(∑ (

𝐵𝐴𝑦𝑟

𝐹𝐶
)

𝑦𝑓
𝑦𝑟=𝑦𝑠 )

𝑦𝑓−𝑦𝑠+1
 178 

where ys is the first year of the dataset, yf is the last year of the dataset, BAyr is the total area burned 179 

in a given year (yr) in a 1o box around the pixel, and FC is the total area covered by forest in the 1o 180 

box around the pixel.   The 1o moving window was chosen after preliminary testing which found that 181 

a smaller window (0.5o) was highly sensitive to noise, while larger windows (2o and 5o) resulted in 182 

very similar results as 1o but at greatly increased computing cost. This moving window also 183 

minimises the impact of differences in the resolution of the input datasets as it is a courser 184 

resolution than all of the datasets used.   185 

The landscape FRI was then calculated by taking the reciprocal of the AnBF. This procedure was also 186 

applied to both the HansenGFC and HansenGFC-MAF to calculate the Disturbance Return Interval 187 

(DRI) and the FRISR respectively, after upscaling these products from their native 25 m resolution to 188 

250 m (the same grid as FireCCI). The DRI is the return interval for all stand replacing disturbances 189 

and includes stand replacing fires, logging and wind disturbance while the FRISR is return interval for 190 
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the subset of stand replacing disturbances that are linked to fire.  For all datasets we used the full 191 

temporal record available at time of analysis (2001 to 2018 for FIreCCI51, MCD64A1, HansenGFC and 192 

HansenGFC-MAF; 1997 to 2018 for GFED4; and 2014 to 2018 for CGLS-BA) which may account for 193 

some of the differences between the estimated FRI’s.  194 

While stand-replacing fires temporarily reduce the risk of subsequent fire events by reducing fuel 195 

loads (Bernier et al., 2016; Beverly, 2017; Erni et al., 2018; Walker et al., 2020), this effect appears to 196 

be relatively short-lived in Siberia because of the rapid recovery of flammable understory grasses 197 

(Kukavskaya et al., 2014), with studies showing that wildfire can occur in a forest of any stand age, 198 

composition or canopy density (Brazhnik et al., 2017; Hansen et al., 2013; Kukavskaya et al., 2016). 199 

This dynamic has also been observed in western Canada (Stralberg et al., 2018). Given this, and 200 

assuming that a proportion of fires are stand-replacing (Section 2.4.2), the landscape FRI indicates 201 

how long a forest has between a stand replacing fire and the next fire event.  202 

Using a space-for-time substitution to calculate FRI becomes much less accurate in areas with long 203 

FRI’s (small AnBF’s) (Archibald et al., 2013; Falk et al., 2007). In these areas the addition of a single 204 

fire event can make a large difference in the calculated FRI. For this reason, we only report FRI up to 205 

10 000 years. Beyond FRI’s of 10 000 years, single pixel decreases in AnBF result in exponential 206 

increases in the estimated FRI.  As such, areas with FRI >10 000 years were also excluded from the 207 

modelling of FRI. 208 

2.4 Selection of critical thresholds  209 

Our thresholds for permanent forest loss  risk were selected by combining the FRI, which is the 210 

frequency a location experiences a fire of any intensity, with both the FRISR and DRI, which provide 211 

information on disturbance dynamics and by association stand age. In the present study we used 212 

thresholds of landscape FRI as a proxy for the risk of permanent forest loss with <15 years indicating 213 

extreme risk and 15 to 30 years indicating high risk, while for the DRI and FRISR. the extreme risk 214 

threshold was <60 years and 60 to 120 years for high risk.  When the FRI risk group is used in 215 

combination with the FRISR/DRI risk group, it is possible to estimate how likely an area is to 216 

experience a burn during the vulnerable establishment phase of recovery and therefore assign a risk 217 

category.  A full justification of the thresholds and combined risk categories is described below.   218 

These thresholds for both the FRI and FRISR/DRI were selected based upon information from Scots 219 

Pine (Pinus sylvestris) stands, which have been studied in the context of recruitment failure and 220 

represent the dominant tree species in parts of the Eurasian boreal forest with the highest levels of 221 

drought and shortest FRI’s  (Shvetsov et al., 2019). This suggests a fire regime that excludes Scots 222 
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pine is highly likely to exclude all other boreal tree species such as larch (Larix spp.) and dark taiga 223 

(Picea and Abies spp.) (Schulze et al., 2012). Applying the procedure detailed above to larch gives FRI 224 

thresholds that are equal to, or greater than, those for Scots pine 225 

2.4.1 FRI thresholds 226 

We used two primary sources of ecological information on Pinus sylvestris to establish our risk 227 

thresholds. The first is the relationship between stand age and seed production, and the second is 228 

the relationship between stand age and fire-induced tree mortality. Whilst high severity crown fires 229 

result in high to total mortality of trees regardless of age and DBH, the probability of mortality for a 230 

tree in low-severity surface fires is directly associated with its width, or diameter at breast height 231 

(DBH): for example the probability of fire-induced mortality is 80 to 100 % for trees with DBH <10 232 

cm, 14 % for DBH from 10 to 20 cm and 1.4 % for trees with a DBH of 40 to 50 cm (Kukavskaya et al., 233 

2014; Linder et al., 1998). As for the relationships between stand age and seed production, it 234 

generally takes between 5 and 15 years after a stand-replacing fire for trees to produce seeds that 235 

begin to replenish the seedbank (Sullivan, 1993; Wright et al., 1967). This initial seed production is 236 

generally very limited, with the first large seeding events not occurring until the trees reach 25 to 30 237 

years of age (Broome et al., 2016).  238 

Trees less than 15 years old almost always have a DBH < 10 cm, meaning any fires that occur within 239 

that period will kill almost all the saplings, and with little to no seedbank, a transition to a non-240 

forested ecosystem is almost guaranteed unless the stand is immediately adjacent to a seed source 241 

(Chmura et al., 2012; Kukavskaya et al., 2014; Linder et al., 1998). Multiple field studies have 242 

observed RF if an area burns again <15 years after a stand-replacing fire (Kukavskaya et al., 2016, 243 

2016; Shvetsov et al., 2016). While the stand age vs DBH relationship varies considerably between 244 

regions, in general stands 30 years old will have DBHs between 10 and 20 cm, which means they 245 

have ~80 % chance of surviving a low-severity surface fire but remain vulnerable to moderate and 246 

high severity fires (Linder et al., 1998; Sidoroff et al., 2007; Sullivan, 1993). It should be noted that 247 

the estimates of DBH vs age are often based on plantations and as such represent an upper limit on 248 

growth rate. Looking at natural forests, there are many sites with average DBH below 20 cm more 249 

than 100 years after the stand replacing fire (Edwards and Mason, 2006; Sandström et al., 2020; 250 

Stavrova et al., 2020). We chose 15 to 30 years as our second critical threshold due to both the high 251 

mortality rate and lower seed availability before the first mass seeding event. 252 

It should be noted that while we used Scots pine to represent a reasonable lower bound of the FRI 253 

survivability of boreal tree species, our thresholds are consistent with those found in studies of post-254 

fire RF in similar ecosystems with different dominant species across the globe (Baltzer et al., 2021; 255 
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Hansen et al., 2018; Stevens‐Rumann et al., 2018). For example, in a study of RF in the alpine region 256 

of the continental USA, the serotinous lodgepole pine (Pinus contorta), a species whose first large 257 

seeding event occurs at 15 years of age (Broome et al., 2016), only failed to establish when FRIs 258 

were <20 years and stands were far (>1 km) from a seed source (Hansen et al., 2018).  259 

2.4.2 DRI and FRISR thresholds 260 

 If all the fires observed in an area are low severity surface fires with little to no fire-induced stand 261 

mortality, then FRI cannot be used as a proxy for ecosystem risk.  Even though most fires in the 262 

Siberian boreal forests are surface fires (Rogers et al., 2015) this non-stand-replacing fire dynamic is 263 

not common in most coniferous forests. It has been, however, observed in the broadleaf forest 264 

along the boreal-temperate boundary (Krylov et al., 2014; Schulze et al., 2012). A similar dynamic 265 

has also been observed in some mature Scots pine forest stands in southern Siberia with FRI’s of 20 266 

to 40 years, but less than 10% of fires being high mortality crown fires (Kharuk et al., 2021). To 267 

account for the influence of low-severity surface fires versus stand-replacing fires, we compared the 268 

DRI and FRISR from HansenGFC and HansenGFC-MAF data, respectively. The FRISR is always equal or 269 

longer than DRI because HansenGFC-MAF is a subset of the HansenGFC data. DRI is included in the 270 

risk framework because non-fire disturbances like logging can act in place of a stand replacing fire to 271 

start the recovery phase and because they have been shown to significantly increase the likelihood 272 

of RF (Kukavskaya et al., 2014; Perrault-Hébert et al., 2017; Shvetsov et al., 2021). 273 

In the Eurasian boreal zone, conifer species generally experience a FRI of between 30 to 50 years and 274 

FRISR
 around 200 years (120 to 300 years), though FRISR’s as low as 60 years have been observed in 275 

some of the southern boreal regions (Kharuk et al., 2021, 2016; Schulze et al., 2012). We chose <60 276 

years as our extreme threshold as it is the lowest value observed in stable forests, with 60 – 120 277 

years being high risk as 120 years is the bottom of the normal range and is also close to when Scots 278 

pine transition from early to mid-stage successional dynamics (Stavrova et al., 2020).  Given that 279 

regenerating forests are highly vulnerable to reburning for the first 30 years, a DRI/FRISR of 60 years 280 

means a that a forest spends ~50% of its time being vulnerable to fire induced RF, while a DRI/FRISR 281 

of 120 years means a forest spends ~25% of the time being vulnerable.   282 

2.4.3 Combined risk framework 283 

The forest risk framework works by combining the DRI/FRISR
 thresholds of <60 years for extreme risk 284 

and <120 years for high risk, with the FRI thresholds of <15 years for extreme risk and < 30 years for 285 

high risk to determine the risk of forest loss.  An area is considered low risk if it is not in the high or 286 

extreme risk groups for both FRI and DRI/FRISR, moderate risk is either FRI or DRI/FRISR is 287 

high/extreme risk but not the other, high risk is where both FRI and DRI/FRISR are high risk but 288 
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neither is extreme risk, and extreme risk if either FRI or DRI/FRISR is extreme risk and the other is high 289 

or extreme risk.  The combined risk framework also makes a distinction between the different risks 290 

caused by the dominant driver of stand replacement.  In cases where the FRISR and the DRI risk group 291 

are the same, then fire must be the dominate cause of disturbance and the risk driver. When the DRI 292 

group is a higher than the FRISR risk group, it indications that process like logging or insect predation 293 

are increasing the risk of RF induced forest lost. The full risk criteria are described in Table 2. 294 

Table 2 Thresholds used to determine forest loss risk and resulting risk classes. All numbers represent 295 

years. The dominant driver is listed in parentheses with dist indicating disturbance.   296 

  FRISR<60 FRISR 60-120   FRISR>120     

  

DRI<60 

(extreme) 

DRI<60 

(extreme) 

DRI 60-120 

(high) 

DRI<60 

(extreme) 

DRI 60-120 

(high) 

DRI>120 

(Low) 

FRI<15 

(extreme) 

Extreme 

Risk (fire) 

Extreme Risk 

(dist) 

Extreme Risk 

(fire) 

Extreme Risk 

(dist) 

Extreme Risk 

(fire) 

Moderate 

Risk (fire) 

FRI 15-30 

(high) 

Extreme 

Risk (fire) 

Extreme Risk 

(dist) High Risk (fire) 

Extreme Risk 

(dist) 

High Risk 

(dist) 

Moderate 

Risk (fire) 

FRI>30 

(low) 

Moderate 

Risk (fire) 

Moderate 

Risk (dist) 

Moderate Risk 

(fire) 

Moderate 

Risk (dist) 

Moderate 

Risk (dist) Low Risk 

 297 

This analysis and the risk framework are both predicated on the assumption that errors in the BA 298 

products do not have high commission error bias. Accuracy assessments of BA products have found 299 

large errors with a strong omissions bias and a tendency to greatly underrepresent low severity 300 

surface fires in the boreal zone (Brennan et al., 2019; Giglio et al., 2018; Humber et al., 2019; 301 

Lizundia-Loiola et al., 2020). This would indicate that the actual landscape-scale FRI might be 302 

significantly shorter than that found in this study. We also performed a small, independent, accuracy 303 

assessment at 50 field sites in the Zabaikal region of southern Siberia the method and results of 304 

which are included in Supplementary Text 1 and Supplementary Figure 1 and 2.  305 

2.5 Modelling the relationship between FRI and the climatology 306 

To model the relationship between FRI and climatology, we applied two machine learning 307 

approaches. The first was a simple multivariate regression implemented using the scikit-learn python 308 

library (Pedregosa et al., 2011), and the second was as an Extreme Gradient Boosted regression 309 

implemented using XGBoost (Chen and Guestrin, 2016). To look at the relationship between FRI and 310 
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climatology we used the TerraClimate gridded monthly temperature and precipitation data 311 

(Abatzoglou et al., 2018) as well as the TerraClimate predicted future climate (Qin et al., 2020). 312 

TerraClimate is a ~4 km global dataset of monthly climate variables created by combining multiple 313 

existing gridded and remotely-sensed climate data products (Abatzoglou et al., 2018).  314 

To calculate our observed climatology, we used TerraClimate precipitation and temperature data 315 

(Abatzoglou et al., 2018). For each year we calculated the accumulated precipitation and the 316 

monthly mean temperature for the meteorological seasons (December-February (DJF), March-May 317 

(MAM), June-August (JJA), September-November (SON)). The seasonal climatology was then 318 

calculated by taking the mean over the 31 years from 1985 to 2015. This time period was chosen 319 

because it is long enough to account for natural climate variability (Burrell et al., 2020), has a 320 

significant overlap with all the BA datasets, and is directly comparable with the TerraClimate 321 

predicted future climate (Qin et al., 2020).  322 

To calculate the relationship between FRI and seasonal climatology, the climate dataset was 323 

resampled to the same grid as the FRI dataset being tested using a second order conservative 324 

remapping using the Climate Data Operators software package (Schulzweida, 2020).  Then we 325 

applied the same 1o x 1o moving window to climate data as we used to calculate the FRI. To avoid 326 

training and testing the machine learning models on spatially autocorrelated data, one pixel was 327 

selected from each 1o x 1o grid cell (~110 km2). We then excluded areas with less than 10% forest 328 

cover as well as areas with landscape FRI >10 000 (section 2.3).  329 

We used mean Annual Burned fraction as a dependent variable because initial trials showed better 330 

model performance predicting AnBF and then converting to FRI compared to models that predict FRI 331 

directly. This is probably because machine learning methods perform better on variables that are 332 

scaled between 0 and 1 (Wan, 2019; Zheng and Casari, 2018). For independent variables, we used 333 

the seasonal precipitation and temperature climatology as well as the mean tree cover fraction in 334 

the year 2000 derived from Hansen GFC dataset (Hansen et al., 2013). These independent variables 335 

were pre-processed using a Quantile Transform. We then used Python’s Scikit-learn package 336 

(Pedregosa et al., 2011) to perform an 80:20 train-test split with the 20% remaining withheld to 337 

assess out-of-sample accuracy.  338 

The accuracy of the models was assessed by calculating the R2 on the fully withheld testing values. 339 

We then applied these trained models to every pixel at the native resolution of the BA product. This 340 

process was applied to all four BA datasets. In the case of the XGBoost models, the importance of 341 
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different variables was also determined using Feature Importance and Permutation Importance 342 

tests.  343 

2.6 Determining the climate change-driven trends and estimating future FRI 344 

To estimate future FRI, we used the recently developed TerraClimate predicted future climate (Qin 345 

et al., 2020), which uses a 23-member climate model ensemble to generate a realistic climate 346 

dataset for the period 2085 to 2115 under Shared Socioeconomic Pathways (SSP)3 – 7.0 emissions. 347 

Because of the known issues with CMIP model predictions of precipitation like the widely 348 

documented “drizzle problem” (Abdelmoaty et al., 2021; Akinsanola et al., 2020; Chen et al., 2021; 349 

Coppola et al., 2021; Srivastava et al., 2020), we also created three predicted climatologies for the 350 

periods 2015 to 2045, 2045 to 2075, and 2085 to 2115 by adding the climate change-driven trend to 351 

the observed 1985-2015 climatology.   352 

Calculating the climate change-driven trend in regions with high natural climate variability, such as 353 

the boreal steppe transition zone in Siberia, requires removing the inherent interannual and inter-354 

decadal climate variability (Burrell et al., 2020, 2019). To do so, we used the process outlined in 355 

Burrell et al. (2020), whereby a 20-year leading edge moving average smoothing (sometimes called a 356 

Simple Moving Average) was applied to each pixel to remove interannual climate variability. Using a 357 

moving window smoothing to separate variability and trend components is standard practice in time 358 

series analysis and is widely used when working with climate time-series data (Abram et al., 2020; 359 

Ahmed et al., 2018; Bläsche et al., 2014).  A Theil-sen Slope estimator (Theil, 1950) was then applied 360 

to calculate the climate change-driven shift in seasonal temperature and precipitation over the 361 

period 1985 to 2015 with a Spearman's rank correlation co-efficient test used to measure statistical 362 

significance for each pixel (Yue et al., 2002). The Benjamini–Hochberg procedure was then applied to 363 

the p-values from the Spearman's rank correlation co-efficient test to control for False Discovery 364 

Rate (FDR) (αFDR = 0.10), which accounts for multiple testing and spatial autocorrelation issues (See 365 

(Wilks, 2016) for details). FDR testing (αFDR = 0.10) is more rigorous and more robust than the more 366 

commonly used p-value test (αp-value = 0.05) alone (Wilks, 2016).  We then used the observed climate 367 

change driven trend and the significant trends to estimate future climatology. Non-significant trends 368 

were not included. All the climatology datasets were prepared in the same manner as detailed in 369 

section 2.5, and the models trained over the observed period (1985 to 2015) were applied to create 370 

estimates of future FRI. We then calculated the future fire-induced forest loss risk using the 371 

predictions of FRI and the fire risk criteria detailed in Table 2.  The calculation of future forest loss 372 

risk assumes that the proportion of fires that were stand replacing remained constant though time 373 

for a given location.   374 
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3. Results 375 

3.1 Current Fire Return Interval (FRI) 376 

Looking at the large-scale patterns in FRI between the BA datasets (Figure 2), FRI’s calculated from 377 

the three MODIS-derived BA datasets (GFED4, MCD64A1, FireCCI51) show similar spatial patterns 378 

with the shortest FRI’s observed along the southern boundary of the Eurasian boreal forest, as well 379 

as the forests around Yakutsk. There is less agreement between CGLS-BA and the MODIS-derived BA 380 

products, with large differences along the northern tundra/boreal border, as well as in Far East along 381 

the China-Russia border north of Vladivostok (Figure 2).  These patterns are also apparent in the 382 

median (1st, 99th percentile) FRI, with 446 yrs (20 yrs, >10,000 yrs) for GFED4, 549 (17 yrs, >10,000 383 

yrs) for MCD64A1, 501 (9yrs, >10,000yrs) for FireCCI51 and 319 yrs (21 yrs, >10,000 yrs) for CGLS-BA.  384 

Looking at the areas with the shortest FRI’s, our results indicate that between 0.2% and 2.4% 385 

(GFED4: 32,011 km2, MCD64A1: 65,356 km2, FireCCI:225,932 km2, CGLS-BA: 21,114 km2) of the 386 

Eurasian boreal zone that was forested in 2000 has experienced an FRI <15 years. In addition, there 387 

is a further 2.2% to 3.3% of forests with FRI’s between 15 to 30 years (GFED4: 215,612 km2, 388 

MCD64A1: 269,934 km2, FireCCI: 255,931 km2, CGLS-BA: 347,181 km2). 389 
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  390 

Figure 2 Maps of the landscape-scale Fire Return Interval (FRI) in years calculated using a 1o x 1o moving window applied 391 

to four Burned Area (BA) datasets: a) GFED4; b) MCD64A1; c) FireCCI51, and d) CGLS-BA. Non-Boreal Forest regions are 392 

masked in grey.  393 
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3.2 Current FRISR and DRI 394 

Looking at the all-cause Disturbance Return Interval (DRI) and stand-replacing Fire Return Interval 395 

(FRISR), we find that fire accounts for about 63.7% of the forest loss in the Hansen global forest cover 396 

dataset.  Over the Eurasian boreal forest, the median (1st, 99th percentile) FRISR was 1302 yrs (59 yrs, 397 

>10,000 yrs) while the DRI was 367 yrs (52 yrs, >10,000 yrs). Comparing SR and DRI spatially, fire is 398 

the dominant driver (FRISR ≈ DRI) of disturbance in eastern Eurasia, while in the western half of the 399 

region DRI is much shorter than FRISR which indicates that logging, wind or other drivers are the 400 

dominant causes of disturbance. The DRI with fire removed is included in Supplementary figure 3.  401 

 402 



17 

 

 403 

Figure 3 Rates of Forest loss a) The stand-replacing Fire Return Interval (FRISR) calculated using HansenGFC-MAF (Krylov et 404 

al., 2014); b) the Disturbance Return Interval (DRI) calculated using HansenGFC (Hansen et al., 2013); c) The percentage of 405 

fires that are stand-replacing calculated by dividing the FireCCI5.1 mean annual burn fraction with the HansenGFC-MAF 406 

mean annual burn fraction. Note:  Percentage is shown on a log scale.   407 
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Looking at the proportion of fires that are stand-replacing (Figure 3c), we find that in 40% of areas 408 

100% of the observed fires were stand replacing, with an area weighted mean stand replacing fire 409 

percentage of 69% across the entire domain. The fraction of fires that are stand replacing varies 410 

considerably for each dominant tree species (Supplementary Figure 4).  In the pine, larch and spruce 411 

forests, which dominate in the eastern half of the continent, the only fires detected were stand-412 

replacing in more than 40% of areas, with only a small fraction of areas having a high proportion of 413 

non-stand-replacing fires. By contrast, Fir, Birch and Aspen, as well as the Maple, Linden, Beech and 414 

Oak which make up the other category, all have large proportions of their areas with low rates of 415 

stand replacing fires (Supplementary Figure 4).   416 

3.3 Current risk of RF induced forest loss 417 

In total there are 64 858 km2 of forests that are at extreme risk of fire driven permanent forest loss, 418 

92, 403 km2 at high risk, 1.86 M km2 at moderate risk, and 8.85 M km2 at low risk based on the 419 

criteria outlined in section 2.4 and Table 2.   The largest areas at high or extreme risk are found in 420 

the eastern half of the continent (Figure 4).  421 

 422 

Figure 4 Current Risk of Forest Loss. The risk of permanent forest loss using FRI, FRISR and DRI over the period 2001 to 2018. 423 

Criteria are shown in Table 2. 424 

 425 

3.4 FRI and Climatology 426 

Over Eurasia the mean maximum monthly temperature decreases from south to north, while the 427 

mean annual rainfall shows a decrease from west to east (Figure 5a-b). The regions with the lowest 428 

mean annual rainfall are along the forest-steppe boundary as well as in Eastern Siberia. Broadly, this 429 

tracks with FRI estimates shown in Figure 2 with short FRI’s found in hotter and drier areas.  We find 430 

that between 1985 and 2015, climate change has driven a median increase in temperature over the 431 
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Eurasian Forest zone of 0.04oC per year, with the largest increases in temperature coming in winter 432 

and spring (Supplementary Figure 5). Interestingly, while the climate change-driven trends in 433 

precipitation are mixed, only regions with negative trends (Figure 5) are statistically significant (αFDR 434 

= 0.10). This pattern holds when considering the seasonal trends as well which is shown in the 435 

seasonal breakdown of the trends and the climatology included in Supplementary Figure 5 and 6 436 

respectively. 437 

 438 

Figure 5 Climatology, climate trends and land cover. Panels show a) the mean annual precipitation (1985 to 2015), b) the 439 

mean of the maximum monthly temperature (1985 to 2015), c) climate change-driven trend in mean annual precipitation 440 

(1985 to 2015), d) climate change-driven trend in the mean annual temperature (1985 to 2015).  Non-boreal forest 441 

ecosystems are masked in grey, and, for panels c and d, the stippling indicates statistical significance (αFDR = 0.10). Data: 442 

TerraClimate (Abatzoglou et al., 2018). 443 

Over the Eurasian boreal forest, there is a strong link between FRI and climatology, with the XGBoost 444 

ML regression models generated using the four BA datasets and seasonal climatology having an out 445 

of sample FRI R2 of 0.60 for GFED4, 0.54 for MCD64A1, 0.53 for CGLS-BA and 0.47 for FireCCI51. 446 

Despite having the lowest overall R2, the FireCCI51 model has the best skill when predicting areas 447 

with FRI < 60 years and is the only model to have any skill at predicting regions with an FRI of <15 448 

years (Figure 6a-d).  All models do well in the 30 to 60, 60 to 120, and the 120 to 500 years groups 449 

but have poor performance for all FRI’s > 500. Overall, we find that temperature variables have more 450 

model importance than precipitation variables, with summer temperatures being the strongest 451 

explanatory variable (Figure 6).  452 



20 

 

 453 

Figure 6 Modelling Landscape FRI using XGBoost. Panels a-d show heatmaps of the observed FRI vs predicted FRI for four 454 

XGBoost models trained using a) GFED4, b) MCD64A1, c) FireCCI51, and d) CGLS-BA burned area data. The results have 455 

been binned using the same categories as Figure 2 and then normalised by dividing the number of points in the Observed 456 

FRI category so that each column sums to 1. The black line represents the 1 to 1 line where all values would fall in a perfect 457 

model.  Panels e and f show the importance of different predictor variables determined using a e) Permutation Importance 458 

test, and f) Feature Importance test, where ppt is mean precipitation and tmean is mean temperature for the different 459 

meteorological seasons (DJF, MAM, JJA and SON) (Abatzoglou et al., 2018). treecover2000 is the fractional treecover in the 460 

year 2000 (Hansen et al., 2013).  461 
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3.5 FRI under future climate condition  462 

Using the XGBoost machine learning model fitted between FRI and observed climatology, applied to 463 

the five future climatology scenarios, we found that the climate change will drive a widespread 464 

shortening of the FRI over the next century (Figure 7). Given current trends in climatology and the 465 

FireCCI51 model, we find that areas with a modelled FRI <30 years will increase from 0.55 M km2 466 

over the observed period (1985-2015) (Figure 7a) to 2.99 M km2 by the end of the century (2085 to 467 

2115) (Figure 7d). This result also holds when our machine learning model is applied to the CMIP-5 468 

based Terraclimate future climate dataset (TCfut) as shown in Figure 7e (2.64 M km2 for 2085 to 469 

2115). Both the trend and TCfut models show these increases occurring almost entirely in the 470 

coniferous forests of eastern Siberia, much of which is already at some level of permanent forest 471 

loss risk (Figure 4). This suggests that >25 % of all Eurasian boreal forests would be at high risk of 472 

fire-driven forest loss by the end of the century. We only report the results of the FireCCI model in 473 

this section because the models derived from other datasets could not reproduce FRI <30 years over 474 

the observed period in a fully withheld testing dataset (Figure 6). The results of the other BA dataset 475 

are shown in Supplementary Figure 7-9 and the results using multivariate linear regression instead of 476 

XGBoost are shown in Supplementary Figure 10-13.   477 
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 478 

Figure 7 Maps of the predicted FRI a-d) based on current climate trend, XGBoost and FireCCI51 FRI data. e) TCpred is the 479 

TerraClimate prediction for a 40C warmer world, which approximates SSP3-7.0 2085 – 2115 480 

 481 

3.6 Future risk of RF induced forest loss 482 

Using the future based estimate of FRI (Figure 7d) and the criteria outlined in section 2.4 to predict 483 

the future of RF induced forest loss, we find that the area at high or extreme risk will rise rapidly 484 

over the coming century with a 5 fold increase predicted from the 2015 to 2045 window compared 485 

to the 1985 to 2015 baseline (Table 3).  486 

Table 3 Total areas at risk of RF induced forest loss over the next century. TCpred refers to the future predictions that use 487 
the Terrclimate future climate dataset based on CMIP-5 models.   488 

 
1985-2015 2015-2045 2045-2075 2085-2115 2085-2115 TCpred 

Low Risk 9 096 172 6 774 806 5 268 266 4 140 387 4 992 808 

Moderate risk 1 661 365 3 555 590 4 107 291 4 198 496 3 465 230 

High Risk 53 098 158 719 185 048 199 835 140 234 

Extreme Risk 48 078 369 593 1 298 134 2 320 026 2 260 526 
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Looking to the end of the century (2085 to 2115), we predict a 25-fold increase in high and extreme 489 

risk areas using a XGBoost model trained on trend based climate estimates and a 24-fold increase 490 

using the CMIP based Terraclimate future data. As shown in Figure 8, almost all of this increased risk 491 

is predicted to occur in the eastern half of the continent.   492 

 493 

Figure 8 Risk of Forest Loss by 2085 to 2115. The risk of permanent forest loss using future FRI estimated using XGBoost 494 

and FireCCI51, assuming that the fraction of fires that are stand-replacing remains constant through time. Criteria are 495 

shown in Table 2.  496 

4. Discussion 497 

4.1 The patterns and drivers of the observed FRI 498 

Broadly speaking, all datasets showed a shortening of the FRI from north to south and from west to 499 

east, which is consistent with previous research and fire ecology for the region (Kharuk et al., 2021; 500 

Kharuk and Ponomarev, 2017; Ponomarev et al., 2016). However, we find higher annual burn 501 

fractions and shorter FRI’s than previous studies (Kharuk et al., 2021, 2016; Ponomarev et al., 2016) 502 

likely because of omission bias present in the AVHRR and MODIS BA datasets used in those studies 503 

(Humber et al., 2019; Lizundia-Loiola et al., 2020; Mouillot et al., 2014; Potapov et al., 2008). Both 504 

our accuracy assessment (Supplementary text 1.2) and larger assessments of BA accuracy suggest 505 

that, despite significant improvements in the recent versions of the MCD64A1 and FireCCI51, all BA 506 

datasets tested have a net omission bias because BA products often fail to identify small surface fires 507 

(Humber et al., 2019; Lizundia-Loiola et al., 2020). A recent high resolution regional study in Siberia 508 

found FRI’s that were far shorter than had been previously reported (Sizov et al., 2021). This 509 

suggests that even FireCCI51, the dataset with the shortest median FRI, is likely underestimating the 510 

actual annual burned fraction.  511 
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The strong link between climatology and FRI over the Eurasian boreal zone shown in Figure 6 is 512 

consistent with previous studies that used both remotely sensed and paleo reconstructions of the 513 

fire dynamics and found that they are strongly associated with climatology (Feurdean et al., 2020; 514 

Forkel et al., 2012; Gaboriau et al., 2020; Kharuk et al., 2021; Kharuk and Ponomarev, 2017; 515 

Ponomarev et al., 2016). The summer temperature is the strongest predictor of landscape FRI 516 

(Figure 6), which is consistent with previous studies (Natole et al., 2021; Tomshin and Solovyev, 517 

2021). This is alarming because most of eastern Eurasia is experiencing a summer warming rate of 518 

>0.04oC per year (Supplementary Figure 2).  The results of this study support previous findings that 519 

hotter and drier conditions are resulting in more frequent, and higher severity, fires (Feurdean et al., 520 

2020; IPCC, 2021; Natole et al., 2021).  521 

Looking at the proportion of stand replacing fires, Supplementary Figure 4 shows that the likelihood 522 

of a fire being stand replacing varies considerably with dominant tree species. In the larch and pine-523 

dominated forests of Eastern Siberia (Bartalev et al., 2004), the DRI and FRISR are extremely 524 

consistent with each other and close to 100% of fires detected are stand replacing (Figure 3c and 525 

Supplementary Figure 4), which suggests that fire is the dominant driver of stand dynamics. This 526 

matches with the findings of previous studies that suggest Siberian conifer species such as Pinus 527 

sylvestris experience a FRISR of >~150 years (Feurdean et al., 2020).  The stand-replacing fire 528 

percentage in these areas is higher than would be expected considering the prevalence of low stand 529 

mortality surface fires observed in previous studies that used AVHRR and MODIS BA data (Kharuk et 530 

al., 2021; Ponomarev et al., 2016). For example, Krylov et al. (2014) found that larch, pine and fir 531 

species have stand-replacing fire percentages in the 40 to 70% range.  The discrepancy between our 532 

findings and existing studies can be explained by the BA omission bias discussed above and supports 533 

the conclusions that the BA products are omitting a large portion of the low stand mortality surface 534 

fires.   535 

In contrast, forests in Western Siberia and in the Russian Far East along the Russia-China border 536 

north of Vladivostok, do not have a stand-replacing fire dynamic with stand-replacing fires making 537 

up <1% of BA (Figure 3c). In Western Siberia, the boreal and steppe biomes are separated by a strip 538 

of birch-dominated temperate continental forest (FAO, 2000; Feurdean et al., 2020). In these regions 539 

we find FRISR of >1000 years despite FRI’s of <30 years. These findings are consistent with previous 540 

work that found short FRI’s but very low stand mortality (Feurdean et al., 2020; Shuman et al., 2017) 541 

and suggest that these areas are at lower risk of permanent forest loss. 542 
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4.2 Current forest loss risk 543 

 In total, our framework for characterising the risk of RF induced permanent forest loss identified 544 

155,261 km2 of forests that are at high or extreme risk (Figure 4). When examining the Zabaikal 545 

region, located to the east of Lake Baikal near Chita in southern Siberia (Figure 5e), which is a known 546 

hotspot of post-fire recruitment failure (Barrett et al., 2020; Kukavskaya et al., 2016; Shvetsov et al., 547 

2019), all MODIS-derived BA products have large areas with FRI’s of <30 years as well as both DRI’s 548 

and FRISR‘s of <120 years. In this region the risk framework identifies large areas with high and 549 

extreme fire risk. This supports the use of this framework to identify other potential hotspots.  550 

Similar patterns to the ones found in the Zabaikal region are apparent between Krasnoyarsk and 551 

Irkutsk, as well as in the forests west of Yakutsk. As such, these regions are probable hotspots of 552 

post-fire recruitment failure and forest loss. Field-based studies, most of which are published only in 553 

Russian, have found post-fire deforestation in the ribbon-like Scots pine forests grown in the zone of 554 

dry forest-steppe in the Altai region, Minusinsk stands of the Krasnoyarsk krai and the Balgazynsky 555 

pine forests of the Tyva Republic (Buryak et al., 2011; Ishutin, 2004; Kupriyanov et al., 2003; 556 

Paramonov and Ishutin, 1999). All three areas are found between Krasnoyarsk and the Russia-557 

Mongolia border. At time of writing, the authors of this study are aware of no studies looking at 558 

postfire RF in Yakutia and the Far East.  559 

In the Zabaikal and Yakutia regions, the risk framework shown in Figure 4 identified high or extreme 560 

disturbance-driven risk. The link between DRI and permanent forest loss is more nuanced than the 561 

link with FRI. When a short DRI is coincident with a short FRI, it can drive forest loss by increasing the 562 

“resilience debt” (Burrell et al., 2021; Johnstone et al., 2016). Previous studies have shown that 563 

repeat disturbances, especially post-fire salvage logging which is a common practice in many 564 

regions, contributes to recruitment failure in Siberia (Burrell et al., 2021; Kukavskaya et al., 2016). 565 

Logging can also replace the initial stand-replacing fire in the RF regime.  In Russia, it is standard 566 

practice to replant trees after logging, but ~50% of the areas replanted in the most fire-prone parts 567 

of southern Siberia burn again within 15 years (Kukavskaya et al., 2016), which is likely to result in RF 568 

and forest loss. By contrast, in Scandinavia, where there is a <120 year DRI as the result of the 569 

widespread managed forestry (Curtis et al., 2018; Hansen et al., 2013) but a FRI of > 10,000 years, 570 

there is likely low risk of permanent forest loss. Interestingly, DRI’s over central and western Eurasia 571 

are considerably shorter than the FRISR, which indicates forest loss is still prevalent, even if it is not 572 

being caused by fires (Figure 3b) (Curtis et al., 2018). Given this nuanced relationship, areas with a 573 

short FRI and short DRI’s, but much longer FRISR
 (Mod. Risk and High Risk (dist) in Figure 3c), are 574 

arguably still at higher risk of forest loss and should be the focus of future research.  575 
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4.3 Future forest loss risk 576 

Our modelling results predict that Eurasia will experience a large and consistent increase in the area 577 

with a predicted FRI <30 years throughout the next century as the earth warms (Figure 7) which has 578 

large impact of the risk of RF induced forest loss. We estimate that area of forest at high or extreme 579 

risk during the 2015 to 2045 window will grow to 530, 000 km2, which is more than double the 580 

amount of area predicted for the 1985-2015 reference period. While no comparable estimates exists 581 

for comparison, both the 2020 and 2021 fire seasons, which are not included in the data used in this 582 

study, have been exceptionally large with some of the most extensive burns occurring in Yakutia 583 

(Ponomarev et al., 2021) where we predict large changes in FRI. Looking forward to the end of the 584 

century, both the trend-based and CMIP model-based estimates of future risk predict more than 585 

2.5M km2 (>20%) will have high or extreme risk of forest loss, with almost all of this increase in the 586 

risk of future fire-driven forest loss occurring over the pine and larch forests of Eastern Eurasia.  587 

Current Earth System Models (ESMs), Land Surface Models, and even ecosystem-scale forest 588 

models, predict or assume gains or stability in the extent of boreal tree cover (Friend et al., 2014; 589 

Shuman et al., 2017). These models often underestimate the FRI (Shuman et al., 2017), if complex 590 

fire-vegetation interactions are modelled at all. There are only four models included in CMIP-6 that 591 

can model fire prognostically with future coupled projections (EC-Earth3-Veg, CESM2, CNRM-ESM2-1 592 

and MPI-ESM1-2-LR) (Sanderson and Fisher, 2020). Even the state of the art fire models assessed in 593 

Fire Model Intercomparison Project use vegetation type as an input (Hantson et al., 2020) and are 594 

therefore not currently suited to modelling the possibility of fire-induced changes in vegetation type 595 

caused by post-fire RF. Currently, the best prediction of ecosystem change in the Eurasian boreal 596 

zone use Species Distribution Models (SDMs) in combination with ESMs to investigate changes in 597 

habitat suitability (Noce et al., 2019).  This modelling approach predicts significant changes in the 598 

dominant species across Eurasia, but no major shift in the extent of forest zone itself.  However, this 599 

approach does not consider fire and cannot account for post-fire RF (Noce et al., 2019). The most 600 

recent IPCC report, however, identified uncertainties around indirect CO2 emissions from things like 601 

forest fires as a key limitation that can greatly impact our ability to predict the changes that will 602 

occur over the next 100 years (IPCC, 2021) suggesting an urgent need for coupled climate vegetation 603 

models including realistic disturbance dynamics. 604 

Eastern Eurasia contains some of the largest areas of unmanaged primary forest in the world 605 

(Potapov et al., 2017) and the widespread loss of forest in this region will accelerate the loss of 606 

habitats and associated biodiversity that is already occurring at an alarming rate (Brondizio et al., 607 

2019; Dinerstein et al., 2017). The Eurasian boreal zone contains globally significant amounts of 608 
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carbon stored in both the above ground biomass and the soil (Brondizio et al., 2019; Kharuk et al., 609 

2021). Previous studies have shown that increases in the frequency of fires will drive widespread 610 

carbon loss and amplify the impacts of climate change (de Groot et al., 2013; Kharuk et al., 2021). In 611 

addition to the global impacts, an increase in fire frequency will likely worsen air quality problems 612 

and associated health issues that already occur in cities like Novosibirsk, Krasnoyarsk and Yakutsk 613 

during large fire years (Kharuk et al., 2021). The loss of forest goods and commercially valuable tree 614 

species is likely to negatively impact upon the economic and social well-being of the local population 615 

which is reliant on the forestry industry (Leskinen et al., 2020) and could contribute to the further 616 

loss of indigenous culture and language in the region (Brondizio et al., 2019).   617 

4.4 The limitations of future predictions of forest loss 618 

The main limitation of our FRI prediction approach is that we are unable to consider secondary 619 

effects and feedback loops. For example, increases in drought severity and summer temperatures 620 

may lead to a large increase in the portion of fires that are stand-replacing (de Groot et al., 2013; 621 

Tepley et al., 2018). At the same time, heatwave and drought events which are increasing with 622 

climate change are potentially greatly reducing the survivability of seedling and saplings (Boucher et 623 

al., 2019; Sannikov et al., 2020). Our modelling approach assumes a constant tree cover, but there is 624 

strong evidence that forest fragmentation results in an increase in the frequency of fires as a result 625 

of increased human access which lead to significantly more ignitions (Driscoll et al., 2021; Shvetsov 626 

et al., 2021), as well as forest edge effects that increase the flammability of the forest (Driscoll et al., 627 

2021). Also, our approach does not consider distance to seed source which is an important predictor 628 

of recruitment failure in many regions, with sites adjacent to mature forest having a lower risk of RF 629 

(Hansen et al., 2018).  However, we expect that this will not significantly change our risk 630 

categorisation because we considered dynamics at a spatial scale 3 to 4 orders of magnitude larger 631 

than the distance over which seed sources can offer a protective effect (Hansen et al., 2018). Areas 632 

with higher or extreme risk experience stand replacing fires and forest fragmentation at a scale that 633 

will greatly limit the protective effect of adjacent seed sources, though further research on this point 634 

is needed.    635 

One feedback loop that might act to mitigate the risk of fire induced forest loss is the species 636 

balance shift from conifers to broadleaf tree species such as trembling aspen (Populus tremuloides) 637 

(Gill et al., 2017; Johnstone and Chapin, 2006; Whitman et al., 2019). This transition has been widely 638 

observed in boreal North America (Gill et al., 2017; Johnstone and Chapin, 2006; Whitman et al., 639 

2019), and has been described as a potential strategy to mitigate the impact of an increase in forest 640 

fires (Astrup et al., 2018). Whilst this dynamic has also been observed in Eurasia (Kharuk et al., 641 
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2021), it is highly unlikely to be able to offset the forest loss predicted by this study.  In Eurasia, 642 

temperature, and to a lesser extent, water availability, is the key limiting factor in reshaping species 643 

ranges (Noce et al., 2019). This means that while models currently predict a significant expansion in 644 

the range of Aspen throughout this century (Noce et al., 2019), almost all this expansion is predicted 645 

to occur in western Eurasia, with almost none occurring in areas where we predict fire-induced 646 

forest loss risk increases. Another feedback loop that might act to mitigate the risk of fire induced 647 

forest loss is that increased burning may have a long-term negative feedback on fire frequency 648 

because of reductions in fuel availability (Bernier et al., 2016), though evidence from throughout the 649 

boreal zone suggests that the effect can be completely offset by the establishment of flammable 650 

grasses (Kukavskaya et al., 2014; Stralberg et al., 2018). 651 

When the potential increase in stand-replacing fires (de Groot et al., 2013; Tepley et al., 2018), the 652 

reduced survivability of seedlings (Boucher et al., 2019; Sannikov et al., 2020) and the increase in fire 653 

frequency (Driscoll et al., 2021; Kukavskaya et al., 2014) are considered together, a strong likelihood 654 

of a positive feedback mechanism emerges which, in turn, raises the concerning possibility that the 655 

predictions shown in Figure 7 may actually underestimate the risk of future fire driven RF induced 656 

forest loss. Unlike boreal North America, species balance shifts are much less likely to mitigate the 657 

risk of increased fires.   658 

5. Conclusions 659 

Understanding the processes that may drive significant changes to the  extent of the boreal forest 660 

biome is essential for understanding the impacts of climate change on the biosphere and feedbacks 661 

to future climate change (Kharuk et al., 2021). Our results show that 1.2 % of the Eurasian boreal 662 

zone is already at high or extreme risk of fire induced forest loss with a further 11 % of areas at 663 

moderate risk. Given current warming rates, >20 % of the Eurasian forest zone is likely to be at high 664 

risk by the end of the century. This poses a substantial risk to the forestry industry in the region and 665 

has the potential to dampen, and potentially, even reverse, the boreal carbon sink. As such, there is 666 

an urgent need for more research to examine this critical dynamic in the field and to include it in 667 

models of vegetation and climate feedbacks.  668 
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