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Abstract 11 

Climate change and land use are driving large changes in forest ecosystems around the globe. In the boreal 12 

biome it is likely that increases in temperature and the associated lengthening of the growing season will cause 13 

the forest to expand into the northern tundra and upwards in elevation, whilst potentially contracting at its 14 

southern limits. This increase in temperature is also driving an increase in the frequency and severity of boreal 15 

forest fires. A growing number of studies have observed the failure of forest species to re-establish after a stand 16 

replacing fire event which results in the shift to a non-forested ecosystem. In this chapter, this process is 17 

referred to as post-fire recruitment failure. We provide multiple lines of evidence for boreal forests, and more 18 

specifically for southern Siberia forests, that a possible regional tipping point is unfolding which could lead to 19 

the rapid replacement of large areas of forest ecosystems with low-stature non forest ecosystems. This change 20 

would come with significant consequences for the carbon balance, surface albedo, and the resulting altered 21 

energy balance. 22 

1.  Introduction  23 

The boreal forest biome, also known in some regions as taiga, covers the high-latitude regions of Canada, 24 

Russia, China, Fennoscandia, as well as the United States, accounting for ~30% of all of the world’s forested 25 

area (Gauthier et al., 2015) and ~20% of the world’s terrestrial carbon sink (Bradshaw and Warkentin, 2015; 26 

Pan et al., 2011). These regions also have some of the largest areas of intact and unmanaged forest in the world 27 

(Potapov et al., 2017) and changes in this ecosystem can result in large-scale climate feedbacks (Chen and 28 

Loboda, 2018; Helbig et al., 2016; Liu et al., 2019). Boreal forests are dominated by a small number of slow 29 

growing tree species from four main genera, pine (Pinus), aspen (Populus), larch (Larix) and spruce (Picea.) (de 30 

Groot et al., 2013; Rogers et al., 2015).  Tree growth in boreal forests is strongly limited by air temperature with 31 

most growth occurring in the spring and summer months (Huang et al., 2010; Kauppi et al., 2014; Xu et al., 32 

2013). 33 

Over the last 100 years anthropogenic climate change has caused the boreal forest zone to warm at a much 34 

faster rate than most other terrestrial biomes (D’Orangeville et al., 2018) with this pattern expected to continue 35 



over the next century (IPCC, 2013). The warmer temperatures resulting from climate change have already 36 

resulted in increased vegetation productivity (Chen et al., 2016; Goetz et al., 2005; Kauppi et al., 2014; Keenan 37 

and Riley, 2018; Liu et al., 2015) and have driven the expansion of woody vegetation north into the tundra 38 

(Brodie et al., 2019; Forbes et al., 2010; Mekonnen et al., 2019; Myers-Smith et al., 2011; Suarez et al., 1999).  39 

 40 

Figure 1 Mean annual precipitation (mm) for the period 1958-2017 over the boreal forest. Non-boreal forest 41 
ecosystems are masked in grey. Data: TerraClimate (Abatzoglou et al., 2018a),the boreal forest mask (Potapov et 42 
al., 2008) 43 

While climate change is causing boreal forests to expand northward and upward, there is growing evidence 44 

that it is driving a contraction along the southern edge (Guay et al., 2014; Huang et al., 2010; Koven, 2013; 45 

Lapointe-Garant et al., 2010; Payette and Delwaide, 2003). It remains an open question as to whether the extent 46 

of the boreal forest zone will increase or decrease due to future climate change (Brown and Johnstone, 2012; 47 

Camill and Clark, 2000; Guay et al., 2014; Lapointe-Garant et al., 2010; Walker et al., 2019). Growth in southern 48 

boreal regions is often strongly limited by water availability, with parts of Siberia receiving less than 200 mm of 49 

rainfall per year (Figure 1).  Droughts (Allen et al., 2010; Hogg et al., 2008; McDowell and Allen, 2015; 50 

Michaelian et al., 2011; Worrall et al., 2013), changes in fire regimes (Curtis et al., 2018) and direct human 51 

impacts (Svensson et al., 2019) have all been implicated in catastrophic forest loss (Achard et al., 2006) and the 52 

expansion of steppe vegetation especially in the southern boreal regions (Kukavskaya et al., 2016). Of 53 

particular concern is the change in fire regime, with some studies suggesting that increases in the frequency 54 

and severity of fires  resulting in the permanent shift from forests to non-forested ecosystems which could in 55 

turn lead to a reversal of the boreal carbon sink (Bradshaw and Warkentin, 2015; Flanagan et al., 2016; Koven, 56 

2013; Scheffer et al., 2012).  57 

There is strong evidence that the boreal zone is experiencing large gains and losses in forested area (Hansen et 58 

al., 2013; Keenan et al., 2015). There is an urgent need to understand whether post-fire recruitment failure will 59 

cause ecosystem collapse in large parts of the boreal forest and its permanent replacement with grassland 60 

ecosystems. This chapter is broken down into three sections. The first discusses the important role that fire 61 

plays in boreal forests and the growing evidence for post-fire recruitment failure. The second section describes 62 

how climate change and forest management are driving changes in the boreal zone. The third discusses the 63 

difficult of quantifying the scale of post-fire recruitment failure and why this may be impairing our ability to 64 

predict future climate change. The final section outlines the management options.  65 

2.  Role of Fire in Boreal Forests  66 

Forest disturbance can be defined as any period where the total amount of carbon in an ecosystem decreases 67 

beyond the normal interannual variability (Brazhnik et al., 2017). Wildfires are the dominant cause of 68 



disturbance in boreal forests (Bond-Lamberty et al., 2007; Curtis et al., 2018; de Groot et al., 2013; Goldammer 69 

and Furyaev, 2013; Hansen et al., 2013) with stand‐replacing fire in particular shaping forest extent, 70 

composition, structure, and floristic diversity (Bonan and Shugart, 1989; Hart et al., 2019; Rowe and Scotter, 71 

1973).  Fire is a natural part of the boreal ecosystem (Johnstone et al., 2010) with palaeoecological 72 

reconstruction indicating that variations in fire frequency have been shaping species composition over the 73 

Holocene (El-Guellab et al., 2015; MacDonald et al., 1991; Novenko et al., 2016; Rolstad et al., 2017). Boreal 74 

forest fires are characterised by large areas of forest burnt in a single year followed by a gradual recovery 75 

(Curtis et al., 2018).   76 

Globally, an average of between 10 and 20 million hectares of boreal forest burn annually, though there is 77 

considerable uncertainty around this estimate especially within Siberia (Brazhnik et al., 2017; Conard et al., 78 

2002; de Groot et al., 2013; Flannigan et al., 2009, 2009; Kukavskaya et al., 2012; Rogers et al., 2020). There is 79 

also considerable interannual variability in the extent and severity of wildfires (Abatzoglou et al., 2018b; Beurs 80 

et al., 2018; de Groot et al., 2013; Kasischke and Turetsky, 2006), with the largest and most severe fire years 81 

associated with large-scale climate modes including the El Niño Southern Oscillation (ENSO), the Pacific 82 

Decadal Oscillation (PDO) and the Artic Oscillation (AO) (Balzter et al., 2007; Macias Fauria and Johnson, 2008; 83 

Monks et al., 2012; Ward et al., 2016). While decadal climate variability does lead to larger fire yeares, is should 84 

be noted that the source of ignition of almost 90% of fires is anthropogenic (Mollicone et al., 2006). 85 

Fire intensity, size and mean fire return interval (FRI) vary considerably among different parts of the boreal 86 

zone (Archibald et al., 2018; Kharuk et al., 2011; Parisien et al., 2011; Sannikov and Goldammer, 1996). For 87 

example, in Siberia FRI decreases along a north-south gradient and more gradually from west to east 88 

(Abatzoglou et al., 2018b; Soja et al., 2006) whilst within North America, the FRI is shortest in central Canada and 89 

longer near coastlines and on the northern boundary of the boreal zone (Potter et al., 2020; Rogers et al., 2013). 90 

In the colder and wetter boreal regions, the FRI ranges from between 100 and >1000 years (Balshi et al., 2007; 91 

Kharuk et al., 2016; Kim et al., 2020; Mollicone et al., 2002; Schulze et al., 2005; Shuman et al., 2017). This 92 

follows a gradient through the warmer and drier parts of the southern boreal forest where the FRI is between 93 

25 and 75 years (Chu et al., 2016; Rolstad et al., 2017) to the grassland and steppe vegetation that border the 94 

boreal forest, which have FRI of less than 17 years (Frelich et al., 2017). Similar patterns are apparent in the 95 

fraction of forest burnt each year (Abatzoglou et al., 2018b).  96 

2.1 Post-fire recruitment dynamics 97 

Given a stable climate and a time scale of centuries to millennia, boreal forests reach an equilibrium state 98 

where the amount of biomass lost to wildfire disturbances is balanced by the rate of recovery (Brazhnik et al., 99 

2017) and where the species composition is adapted to the fire regime (Johnstone et al., 2010). In the colder 100 

and wetter parts of the boreal zone, the long FRI allows sufficient time for relay succession (Kurkowski et al., 101 

2008; Ott et al., 2006). In these regions, the initial post-fire recruitment is dominated by broadleaf deciduous 102 

trees and then the ecosystem is overtaken by conifers over the course of centuries (Bergeron and Fenton, 2012; 103 

Kurkowski et al., 2008). In the warmer and drier parts of the boreal zone the seedlings that establish in the 1-5 104 

year recruitment window after a stand-replacing fire event determine future canopy composition because the 105 

FRI’s are too short to allow for relay succession (Johnstone et al., 2010; Moser et al., 2010).  106 



Increases in the frequency and/or severity of the disturbance regime, or a decrease in an ecosystem’s resilience 107 

to that disturbance, can trigger a tipping point that leads to complete state change in that ecological system 108 

(Brazhnik et al., 2017; Hart et al., 2019; Héon et al., 2014; Johnstone et al., 2010; Walker et al., 2019).  There is 109 

growing evidence that the frequency, extent and severity of fires are increasing (Brazhnik et al., 2017; de Groot 110 

et al., 2013; Malevsky-Malevich et al., 2008; Rogers et al., 2020; Turetsky et al., 2011; Young et al., 2017) and 111 

that tree regeneration is decreasing (Stevens‐Rumann et al., 2018) within the boreal zone.  In some regions, this 112 

is resulting in a species composition shift from conifers to deciduous trees, as a result of intense fires 113 

destroying the aerial seed banks that conifers rely upon for rapid post-fire establishment as well as the shorter 114 

FRI which favours faster-maturing species (Hart et al., 2019; Héon et al., 2014; Johnstone et al., 2010; Johnstone 115 

and Chapin, 2006). These fire-induced species balance shifts have been observed in sites across the boreal zone 116 

(Héon et al., 2014; Johnstone et al., 2010; Johnstone and Chapin, 2006; Lara et al., 2016).      117 

2.2 Post-fire recruitment failure 118 

In the warmer and drier parts of the boreal zone, there is growing evidence of post-fire recruitment failure, 119 

with tree species failing to re-establish entirely (Stevens‐Rumann et al., 2018).  Whilst the window of 120 

opportunity for seedling establishment varies between regions, it is generally short (1–5 years) and the canopy 121 

composition is determined by the seedlings established during this period (Moser et al., 2010). Given the 122 

importance of this 5 year window (Johnstone et al., 2010), it is generally assumed that if tree species fail to 123 

establish in this time it will result in permanent forest loss and the expansion of non-forested ecosystems 124 

(Enright et al., 2015; Scheffer et al., 2012; Seidl et al., 2017). Whilst a documented lack of large-scale, very long 125 

term (>20 years), post-fire vegetation studies (Gitas et al., 2012) make the assumption difficult to confirm, it is 126 

consistent with some regional data.  127 

A study of vegetation 30 years post-fire along the Canadian Alaskan border region found that the vast majority 128 

of recruitment occurred “in the first 5 years after fire, and additional net establishment was not observed after 10 129 

years” (Johnstone et al., 2004). Similarly, an unpublished 2019 field survey of tree demographics at 16 long 130 

term (greater than 20 years) burn sites in Siberia found that >90% of Scots pine trees present at the sites 131 

established within 5 years of the burn (authors, unpublished).  There is also evidence that analysis of existing 132 

canopy gaps in jack pine forests are driven by early poor regeneration density (Pacé et al., 2019), which 133 

supports the conclusion that recruitment failure in the first 5 years will result in permanent forest loss.  134 

Assuming that the 5 year establishment window is consistent in all regions, then post-fire recruitment failure 135 

and its associated permanent forest cover loss has been observed in Siberia (Barrett et al., 2020; Kukavskaya et 136 

al., 2016; Shvetsov et al., 2019), Europe (Moser et al., 2010), Canada (Payette and Delwaide, 2003; Splawinski et 137 

al., 2019; Whitman et al., 2018) and the United States (Frelich et al., 2017; Hansen et al., 2018; Stevens‐Rumann 138 

et al., 2018). Whilst recruitment failure has been observed in multiple studies throughout the boreal zone, 139 

almost all of the existing literature (including the studies cited above) is focused upon understanding and 140 

quantifying species balance shifts between forest types rather than on a shift to non-forested ecosystem types. 141 

This means that empirical quantification of post-fire recruitment failure are “scarce, and their underlying 142 

processes are not well understood” (Boucher et al., 2019). 143 



Despite the above, it is known that there are some factors that cause recruitment failure that have hard 144 

thresholds beyond which recruitment failure is almost certain (Hansen et al., 2018; Kukavskaya et al., 2016). 145 

These factors include post-fire water availability, the FRI, the disturbance history and the distance to seed 146 

source. The most common of these is FRI, with multiple studies from throughout the boreal zone finding that a 147 

short interval between stand-replacing fires (≤20 years) will almost guarantee recruitment failure (Brown and 148 

Johnstone, 2012; Kukavskaya et al., 2016; Whitman et al., 2018). However, in other regions the cause of post-149 

fire recruitment is multifaceted and related to a “resilience debt” (Johnstone et al., 2016) which makes it difficult 150 

to ascribe attribution in the absence of extensive site histories.  An excellent example of this issue comes from a 151 

study of managed forests in Canada (Perrault-Hébert et al., 2017).  The latter authors found that a site had a 152 

~50% chance of experiencing post-fire recruitment failure if it had had undergone logging at any point in the 153 

previous 50 years, which is almost double the rate of non-logged sites.  The lack of data means that many of the 154 

recent attribution studies have used modelling to determine the causes of post-fire recruitment failure 155 

(Boucher et al., 2019; Splawinski et al., 2019; Stevens‐Rumann et al., 2018).   156 

Post-fire recruitment failure is also under-studied, poorly quantified (Boucher et al., 2019) and extremely 157 

difficult to quantify at a large scale given existing data (see section 4. ). In possibly the most extensive study of 158 

post-fire recruitment failure in a pine and aspen dominated ecosystem in the US alpine region, Stevens‐Rumann 159 

et al. (2018) found that shifts in climate had resulted in a significant increase in the rate of recruitment failure 160 

since 2000. If similar increases in recruitment failure are occurring throughout the boreal zone, these 161 

particular findings may indicate an imminent risk of a widespread state change from boreal forest to a non-162 

forested ecosystem. This increase in the rate of post-fire recruitment failure, combined with both the growing 163 

number of studies that have observed it (Barrett et al., 2020), as well as the observed and projected increases in 164 

fires frequency and severity (see section 3.1.1) raises the alarming possibility of the ecological collapse of large 165 

parts of the boreal ecosystem, leading to the reversal of the boreal carbon sink (Bradshaw and Warkentin, 166 

2015).  167 

2.3 A case study of post-fire recruitment failure in southern Siberia 168 

Southern Siberia is one of the driest and hottest parts of the boreal forest with an average annual precipitation 169 

of ~200-300 mm (Figure 1) and is among the fastest warming parts of the boreal zone (See section 3.1). As 170 

such, it is expected to be the most vulnerable to climate change and the changes currently observed in this 171 

region may be indicative of the future of the boreal zone as the climate warms. This region has already 172 

experienced an increase in the length of the fire season and a shortening of the FRI that is expected to continue 173 

with climate change (Malevsky-Malevich et al., 2008; Shvetsov et al., 2016) as is considered a hotspot of global 174 

forest loss (Achard et al., 2006). A number of recently published studies have looked at long-term post-fire 175 

recruitment failure in the southern Eurasian boreal forest range, in the Zabaikalsky Krai and the Republic of 176 

Buryatia, immediately southeast of Lake Baikal (Barrett et al., 2020; Kukavskaya et al., 2016; Shvetsov et al., 177 

2019, 2016). In the early 2000s, this region experienced a number of severe fire seasons and in the almost two 178 

decades since these fires, it has become apparent that widespread recruitment failure has caused large areas to 179 

transition abruptly to grassland ecosystem types (Barrett et al., 2020; Kukavskaya et al., 2016; Shvetsov et al., 180 

2019). 181 



 182 

Figure 2  Photos and map of Siberian field sites. Top: landscape photo showing both the grassland and forest 183 
ecosystems present in the study region. Middle: Map of the field sites with recruitment failure (RF), intermediate 184 
recruitment (IR) and abundant recruitment (AR) marked. The black dotted line is the Russian-Mongolian border 185 
Bottom: Examples of sites with AR (left, IR (middle) and RF (right).   186 

There is currently no automated method that can be applied to remotely sensed data to identify the different 187 

recruitment trajectories in the first 5-10 years after fire, and even 20 years after fire, discriminating 188 

recruitment trajectories reliably is difficult (See section 4). Whilst some indicators do show promise, with initial 189 

differences in greenness and moisture among sites characterized by abundant recruitment, intermediate recruitment 190 

and recruitment failure becoming larger over the 10 years post-fire (Barrett et al., 2020), further work is needed to 191 

be able to use them to quantify recruitment trajectories.  This means it is currently impossible to do a 192 

systematic large-scale assessment of post-fire recruitment failure.   193 

All these recent studies use a combination of field observations to determine the recruitment trajectory and 194 

remotely sensed data to determine the impact of factors such as burn severity (Barrett et al., 2020; Kukavskaya 195 

et al., 2016; Shvetsov et al., 2019). Barrett et al,. (2020) observed complete recruitment failure in 13 of 64 sites, 196 

with a further 37 sites showing less than optimal recruitment (Figure 2). This is nearly double the ~11% 197 

recruitment failure observed in the sites examined by Shvetsov et al. (2016).  It should be noted that these sites 198 

used in all three studies were chosen for accessibility and the ability to clearly see fire impacts in remotely 199 



sensed data. As such, they may not be a representative sample of the post-fire recruitment trajectories across 200 

the entire region.      201 

 202 

Figure 3 Maps of the Theil-sen slope in annual NDVImax for a) GIMMS (1982-2017), b) MODIS Terra (2000-2018), 203 
MODIS Aqua (2002-2018) and d) Hansen forest loss (2000-2018).  The yellow-orange patches are areas of forest 204 
loss.   205 

The regional trend in NDVI, as well as the loss of forest cover since 2000, are shown in Figure 3.  Between 1982 206 

and 2017 the region had an average change in NDVImax of -0.0002 ± 0.0015 with 9.2% showing a significant 207 

(αFDR = 0.10) positive trend and 13.1% a significant negative trend (αFDR = 0.10). Large hotspots of negative 208 

trend can also been seen in the shorter MODIS Terra and MODIS aqua trend (Figure 3b-c).  This region has also 209 

seen a loss of ~15.9% of the forest cover over the same period (Figure 3d).  Whilst these negative trends in 210 

NDVI and the widespread forest loss cannot be used to directly quantify the extent of recruitment failure (see 211 

section 4. ), the fact that they are occurring in the same regions where recruitment failure is being observed in 212 

field observations, does provide some degree of corroboration.  213 



Even in areas where post-fire recruitment failure has been identified, determining the exact cause is difficult 214 

because vegetation recovery is controlled by complex interactions of multiple factors, including pre- and post-215 

fire climate condition, the FRI, the distance to a seed source, as well as successive disturbances (Liu, 2016; 216 

Payette and Delwaide, 2003).  All of these factors have been found to play a role in recruitment failure in this 217 

region, with multiple fire events being especially predictive of total recruitment failure (Barrett et al., 2020; 218 

Kukavskaya et al., 2016; Shvetsov et al., 2019).  The importance of these factors has also been observed across 219 

the border in northern Mongolia (Otoda et al., 2013). 220 

Barrett et al,. (2020) also found evidence of a possible snow feedback mechanism that would act to reinforce 221 

initial differences in recruitment over the intermediate and long term. In the first year after fire, the winter 222 

snow coverage as measured by the Normalized Difference Snow Index (NDSI), showed no difference between  223 

abundantly recruiting sites and those experiencing recruitment failure (Figure 4).  However, 3-4 years after the 224 

fire, NDSI values at abundantly recruiting sites were substantially higher than at the recruitment failure sites. 225 

Snow cover in winter provides seedlings insulation from cold temperatures (Myers-Smith et al., 2011) plus 226 

protection from wind shear and herbivory (Barrett et al., 2020; Myers-Smith et al., 2011; Tape et al., 2010). 227 

Snowmelt also acts as an important source of water in spring (Buermann et al., 2018).  These results suggest 228 

the possibility of a snow-seedling feedback mechanism whereby a greater density of seedlings traps more 229 

snow, which in turn protects seedlings from cold temperatures and wind.  230 

 231 

Figure 4 Winter NDSI values for all assessment periods. Values for AR and RF are significantly different in the 232 
intermediate period. Figure adapted from Barrett et al., (2020). 233 



Whilst the findings of these studies are interesting, they are not definitive and require significant further 234 

research for two main reasons. The first is that the field observations took place almost two decades after the 235 

stand replacing fires (Barrett et al., 2020). As such, information about factors known to cause recruitment 236 

failure such as the fire history and the land management post fire (e.g. salvage logging) is dependent upon the 237 

somewhat incomplete satellite record and the memories of individual foresters, if it exists at all. This is 238 

especially problematic in the case of salvage logging as successive disturbances are strongly linked to 239 

recruitment failure (Kukavskaya et al., 2016, 2016). The practice is widespread in this region (Kukavskaya et 240 

al., 2013) and it varies greatly in impact depending upon the exact method used.  Post-fire logging is also linked 241 

with increased soil erosion, a reduction in the seed bank and a shortening of the FRI (Kukavskaya et al., 2013), 242 

which can all cause recruitment failure in their own right.   243 

The second reason further study is needed is that evidence from other regions suggest that multiple drivers are 244 

often required for regeneration to fail, which is complicated further by the fact that interactions between 245 

drivers are often non-linear and non-independent (Hansen et al., 2018; Payette and Delwaide, 2003).  For 246 

example, it has been shown that sites adjacent to the edge of a mature forest do better because of much greater 247 

seed availability (Kukavskaya et al., 2016, 2016). Forests can also act as wind-breaks which can result it in the 248 

deposition of more snow from lowered wind speeds.  As such, it is possible, though unlikely, that some, or all, 249 

the effect shown in Figure 4 is a secondary impact of distance to forest.  250 

Despite the uncertainty regarding the exact extent and precise combination of the drivers leading to 251 

recruitment failure in this region, current evidence from both field studies (Barrett et al., 2020; Kukavskaya et 252 

al., 2016; Shvetsov et al., 2019), and remotely-sensed data (Figure 3), suggest that it is widespread. Given that 253 

southern Siberia is currently experiencing rapid warming, which will increase in the future, and the growing 254 

number of observations of recruitment failure in Europe (Moser et al., 2010), Canada (Payette and Delwaide, 255 

2003) and the United States (Frelich et al., 2017; Hansen et al., 2018; Stevens‐Rumann et al., 2018), there is a 256 

real possibility that we are seeing the rolling of  a regional tipping point leading to the rapid replacement of 257 

forest with grasslands with significant consequences for the carbon balance, surface albedo, and the resulting 258 

altered energy balance.  259 

3.  Drivers of change in the boreal forest zone 260 

The drivers of change in boreal forests can be divided into two broad categories: climate change and land-use; 261 

both of which have a range of direct and indirect effects. Though discussed separately, the processes described 262 

below are strongly interlinked with a range of positive and negative feedbacks that act to amplify or mitigate 263 

the problem.   264 

3.1 Climate change 265 

Over the last 100 years the boreal forest zone has been one of the fastest warming regions in the world 266 

(D’Orangeville et al., 2018). The change in temperature and precipitation resulting from climate change over 267 

the boreal region is shown in Figure 5a and b respectively. Over the period 1982 to 2017, all the boreal forests 268 

experienced significant increases in mean annual temperature, with an average increase of 0.04°C yr-1. Some 269 



regions, including northern Canada and southern Siberia, experienced rates as high as 0.06°C yr-1.   For 270 

comparison, the global mean warming observed over land was 0.03°C yr-1.   271 

 272 

Figure 5 Trend in a) mean annual temperature for the period 1982-2017 and b) annual precipitation (mm). To 273 
control for the impacts of large-scale climate oscillations, a 20 year moving window smoothing was applied and 274 
then the trend was estimated using the theil-sen (Theil, 1950). P-values were calculated using a non-parametric 275 
Spearman Rho test and then adjusted for multiple comparisons using the Benjamini–Hochberg procedure with a 276 
False Discovery Rate of 0.10. Stippling indicates statistical significance and non-boreal forest ecosystems are 277 
masked in grey.  Data: TerraClimate (Abatzoglou et al., 2018a) 278 

The global trends in precipitation are more complex than temperature, with 15.9% of boreal forests 279 

experiencing significant decreases in rainfall, compared to 64.9% increasing and 19.2% with no significant 280 

trend (Figure 5b). Whilst not the largest negative trends, the decreases in rainfall over southern Siberia are of 281 

particular importance because they are occurring in an area that already experiences the lowest annual 282 

precipitation of the boreal zone (see Figure 1). 283 

3.1.1 Climate Change and increases in the fire regime  284 

In the boreal forest zone, there are strong empirical and conceptual links between burnt area and climate 285 

variables such as precipitation and temperature; hotter and drier years generally having larger and more 286 

severe fires, with an increase in the frequency of hot dry years linked to shorter FRI’s (de Groot et al., 2013; 287 

Hanes et al., 2018; Héon et al., 2014; Rogers et al., 2020; Young et al., 2017). Climate change is also linked to 288 

increases in the number of lightning strikes, which are the primary source of ignition for many boreal forests 289 

(Krawchuk et al., 2009; Veraverbeke et al., 2017). Increases in both the frequency and severity of the fire 290 

regime associated with the observed boreal warming have been seen in continental North America (Abatzoglou 291 

and Williams, 2016; Turetsky et al., 2015), Canada (Coops et al., 2018; Gillett et al., 2004), Alaska (Beck et al., 292 

2011; Hoecker and Higuera, 2019), China (Liu et al., 2012), Fennoscandia (Aakala et al., 2018) and Siberia 293 

(Ponomarev et al., 2016; Stephens et al., 2014). Climate change may also be leading to an increase in the 294 

frequency and/or severity of droughts (Pachauri et al., 2014) which are also strongly linked with fires (Aakala 295 

et al., 2018; Héon et al., 2014) and with higher fire-induced tree mortality (Ferster et al., 2016).  296 

Increases in fire size and severity, as well as shortening of the FRI, are linked with recruitment failure and 297 

forest loss (Hansen et al., 2018; Moser et al., 2010).  In the steppe and grassland ecosystems that border boreal 298 

forests the FRI is less than 17 years (Frelich et al., 2017), which is less than the ~20 years it takes for the 299 

dominant tree species in the drier parts of the boreal forest to reach sexual maturity. In a study of recruitment 300 

failure in the alpine region of the continental USA, the regeneration of serotinous lodgepole pine only failed 301 

when fire return intervals were <20 yr and stands were far (1 km) from a seed source (Hansen et al., 2018).  302 



3.1.2 Climate change and decreased ecosystem resilience  303 

In addition to increasing the frequency and/or severity of the fire disturbance regime, climate change is also 304 

reducing ecosystem resilience (Reich et al., 2018; Stevens‐Rumann et al., 2018). Studies have observed an 305 

increase in the mortality of mature boreal forest trees, which are the source of seed for post fire recruitment 306 

(Hansen et al., 2018). This increased mortality has been linked to direct climate effects such as drought and 307 

extreme temperature, as well as indirect effects including increased insect predation (Kharuk et al., 2013) (see 308 

(Allen et al., 2010) for a summary of literature by region).   Climate can also directly impact post-fire 309 

recruitment, with drought in the 1-2 years after a fire decreasing tree recruitment and greatly increasing the 310 

likelihood of recruitment failure (Moser et al., 2010; Whitman et al., 2019).   311 

It should be noted that, whilst this section is focused on the challenges climate change presents to boreal 312 

forests, there is strong evidence of a greening of large parts of the boreal forest, resulting from the increased 313 

temperature in conjunction with CO2 fertilisation and nitrogen deposition (Chae et al., 2015; Forbes et al., 2010; 314 

Keenan and Riley, 2018; Zhu et al., 2016).  In the CMIP-5 ensemble results, global greening is projected across 315 

the boreal zone for the next century (Piao et al., 2020).  However these models have serious limitations in the 316 

way they represent vegetation because they cannot capture ecosystem change driven by a range of processes 317 

including land-use or changes in the fire regime (Arneth et al., 2017; Bayer et al., 2017; Piao et al., 2020; Zhu et 318 

al., 2016).   The results of a recent modelling study which used more advanced ecosystem dynamics suggest 319 

that large parts of the boreal zone, mostly southern Siberia and central Canada, will see reductions in tree cover 320 

by 2050 under all of the IPCC emissions scenarios (Bastin et al., 2019). Ecosystem models have also found 321 

similar reductions in regional studies (Mokhov and Chernokulsky, 2010; Stralberg et al., 2018). 322 

3.2 Management and human influence  323 

Nearly two thirds of boreal forests are managed with even unmanged forest being by tourists, fishermen, 324 

hunters and beekepers.  (Gauthier et al., 2015). After fire, the largest cause of boreal forest disturbance comes 325 

from timber harvesting (Brandt et al., 2013; Potapov et al., 2017). In contrast to the deforestation observed in 326 

tropical forests, the aim of forest management is a sustainable long-term harvest of timber (Burton et al., 2003). 327 

However, forest management reduces the extent of older forests, which can result in lower biological, genetic 328 

and structural diversity (Cyr et al., 2009; Gauthier et al., 2015; Melvin et al., 2018).  This has the potential to 329 

reduce forest resilience to disturbance, especially considering that the ecological impacts of many management 330 

strategies remain poorly understood (Melvin et al., 2018; Perrault-Hébert et al., 2017).  331 

3.2.1 Forest Management and the Fire Regime  332 

Whilst there is a widely held belief that logging reduces fuel loads thereby resulting in less severe and less 333 

frequent fires (Bradley et al., 2016), studies in boreal regions have found that managed forests experience more 334 

fires (Achard et al., 2008; Kukavskaya et al., 2013). This increase has been attributed to two main causes: firstly 335 

that logging debris can lead to much higher surface and ground fuel loads (Kukavskaya et al., 2013).  Secondly, 336 

that humans are the main source of ignition (Achard et al., 2008; Campos-Ruiz et al., 2018; Liu et al., 2012) with 337 

more than 80% of fires in some regions being anthropogenic in origin (Brazhnik et al., 2017; Mollicone et al., 338 

2006). 339 



Forest management may also be a factor in post-fire recruitment failure.  A common practice in managed 340 

forests is to log dead trees after a fire event (Taboada et al., 2018; Thorn et al., 2018).  Whilst fires can occur in 341 

a forest of any age, structure and composition data (Brazhnik et al., 2017) suggest that the probability of fire is 342 

lower in the initial decade after fire (Hart et al., 2019).  Post-fire logging offsets this reduced risk and has been 343 

linked to increased fire frequency (Donato et al., 2006; Taboada et al., 2018) which has been linked to post-fire 344 

recruitment failure (Hansen et al., 2018; Moser et al., 2010).  Post-fire logging has been found to hinder the 345 

regeneration of forests (Donato et al., 2006), increase soil compaction and erosion (Malvar et al., 2017) and to 346 

increase the number of open habitat plant species (Thorn et al., 2018). The negative impact of salvage logging 347 

may be especially high in Scots pine ecosystems, such as those found in southern Siberia, as dead standing trees 348 

provide a source of seeds in the 1-5 year recruitment window and continue to play a vital role in the ecosystem 349 

for up to 200 years after the stand replacing fire occurs (Kuuluvainen et al., 2017).  Most studies that assess 350 

post-fire logging only look at the first 5 years after the fire event (Boucher et al., 2014; Taboada et al., 2018; 351 

Thorn et al., 2018) and further research is needed to examine the link between post-fire recruitment failure 352 

and logging after fires.  353 

4.  Measuring the scale of the problem 354 

Due to the size of the boreal forest zone, the only way to directly measure large-scale changes is to use remote 355 

sensing (Marchand et al., 2018).  Remote sensing is being used in two ways: direct disturbance detection 356 

(Hansen et al., 2013) and long-term vegetation trend analysis (Marchand et al., 2018).  The results have been 357 

inconsistent these various approaches, with significant divergence in the estimates of boreal forest gain and 358 

loss (Myers-Smith et al., 2020; Piao et al., 2020; Polar Research Board et al., 2019). For example, a recent review 359 

of the published studies of trends in productivity of the Canadian boreal forest found that about half the studies 360 

identified increasing trends while the other half showed negative trends (Marchand et al., 2018).  The authors 361 

of that review attributed this discrepancy in the estimates as resulting primarily from differences in the 362 

methodology used and the spatial scale of the study.   363 

4.1 Disturbance detection  364 

There have been two approaches to disturbance detection in boreal forests.  The first assesses forest loss 365 

regardless of the type of disturbance and the second measures parameters specific to fire disturbances.  Forest 366 

loss detection generally uses Landsat or other medium to high spatial resolution remotely-sensed data along 367 

with some form of classification algorithms to measure the extent of forest at specific times, with the 368 

differences between observed dates indicating areas of forest loss and gain (Hansen et al., 2013; Potapov et al., 369 

2011, 2008; Schroeder et al., 2011).  In ecosystems where there is also large interannual variability in the 370 

natural disturbance regime, as is the case with fire in the boreal zone (Beurs et al., 2018), this is especially 371 

problematic because different study periods can result in opposing apparent trends.   372 

Even when the data are produced annually, such as the widely used Global Forest Change (GFC) product 373 

(Hansen et al., 2013), there are limitations that prevent assessment of the long-term trends in disturbance. The 374 

GFC data currently covers the period 2000 to 2018 but, at the time of writing, an improvement to the algorithm 375 



implemented in v1.6 to improve the detection of boreal forest loss due to fire, means that the period 2000-2010 376 

is not directly comparable to the results from 2011-2018.   In addition to the issues with temporal resolution, 377 

there are considerable inconsistencies in the results of different datasets (Li et al., 2017). Despite these 378 

limitations, these forest loss datasets offer the best insight into the recent changes in forest extent over the 379 

boreal region. In a 2013 study of global forest loss, Hansen et al., (2013) found that boreal forests had both the 380 

largest gains of any forest zone and the second largest area of forest lost in both absolute and proportional 381 

terms (Figure 6). This finding is consistent with the results of the 2015 Global Forest Resources Assessment 382 

performed by the Food and Agriculture Organization of the United Nations (Keenan et al., 2015).  383 

 384 

Figure 6 Global Forest extent (dark green for low tree cover, light green for high tree cover), gain (Blue) (2000–385 
2012), loss (red) (2000-2018) and both loss and gain (purple) determined using the Google Earth Engine and v1.6 386 
of the Hansen et al., (2013) Global forest change dataset. 387 

The second disturbance detection remote sensing approach focuses on the detection of forest fires.  A diverse 388 

range of methods have been developed to measure the extent and characteristics of active fires, the area burnt 389 

(Humber et al., 2019), the burn severity and the recovery of vegetation after the fire event (Chu and Guo, 2014).  390 

The strengths and weakness of these approaches have been addressed in review articles (Chu and Guo, 2014; 391 

Mouillot et al., 2014) and dataset comparison studies (Giglio et al., 2010; Humber et al., 2019; Moreno-Ruiz et 392 

al., 2019).  These articles found that global annual estimates are consistent but there are considerable 393 

differences between datasets at regional or biome scales (Humber et al., 2019; Padilla et al., 2014).  394 

Despite the limitations and uncertainties, fire disturbance detection products are more reliable in the boreal 395 

zone than in other biomes (Humber et al., 2019; Zhu et al., 2017) with one study finding that MODIS burned 396 

area product only under-estimated the extent of the burnt area by 27% compared to a global average of 48% 397 

(Padilla et al., 2014).  By combining forest loss and fire detection data, recent studies have been able to detect 398 

and attribute forest loss (Liu et al., 2019).  399 

4.2 Large scale trends in vegetation  400 

The other way to examine long term changes in boreal forest is to look at trends in vegetation indexes (VI),  401 

with the VI is the Normalised Difference Vegetation Index (NDVI) being the most widely used. NDVI is a proxy 402 

for Net Primary Production (NPP) (Burrell et al., 2020; Polar Research Board et al., 2019; Prince and Tucker, 403 

1986; Tucker et al., 1985; Wessels et al., 2006; Yang et al., 2017).   In the boreal zone, positive changes in NDVI 404 

have been linked to field observations of temperature driven increases in NPP whilst browning trends have 405 



been linked with fire and climate disturbance (Beck et al., 2011; Myers-Smith et al., 2020; Polar Research Board 406 

et al., 2019; Yang et al., 2017).  407 

The main advantage of a trend detection approach is that it is easy to replicate and there are range of datasets 408 

available with larger temporal ranges and different resolutions.  For example, there are currently four datasets 409 

providing global sub-monthly NDVI with more than 17 years of continuous records (GIMMS3.1g, MODIS terra, 410 

MODIS aqua and Copernicus). These data sets use the same NDVI formula, enabling researchers to identify and 411 

quantify the uncertainties that comes from sensor and scale differences (Burrell et al., 2018), which is difficult 412 

with the more direct disturbance quantification approaches. An intercomparison of commonly used NDVI 413 

datasets is shown in Figure 7.  414 

 415 

Figure 7 Slope in Annual Maximum NDVI (1982-2017) determined using the Theil-sen Slope estimator with a) 416 
GIMMS3gv1.1 (1982-2017), b)MODIS TERRA (MOD13C1) (2000-2018), c) MODIS AQUA ( MYDD13C1)(2002-2018)  417 
data. P-values were calculated using a non-parametric Spearman Rho test the adjusted for multiple comparisons 418 
using the Benjamini–Hochberg procedure with a False Discovery Rate of 0.10. Stippling indicates statistical 419 
significance.   420 

In general, the NDVI datasets shown in Figure 7 have similar largescale trends, with the boreal zone having 421 

greened by an average of 0.00056 ± 0.000003 in the GIMMS dataset (1982-2017), 0.001288 ± 0.000004 in the 422 

MODIS TERRA data (2000-2018) and 0.000758 ± 0.000006 in the MODIS Aqua (2002-2018).  These findings 423 

are consistent with the observed trends in existing studies (Guo et al., 2018; Marchand et al., 2018; Myers-424 



Smith et al., 2020; Sulla-Menashe et al., 2018). In a study of vegetation trends in the Canadian boreal forest, it 425 

was found that greening and browning not caused by the disturbance/recovery regime was primarily located 426 

near boundaries of the boreal forest zone, with browning in the dry regions and greening in the wet regions 427 

(Sulla-Menashe et al., 2018). Whilst overall vegetation trends are consistent between datasets, regional 428 

patterns vary considerably (Figure 7a-c)and this difference can be attributed to differences in the start and end 429 

dates, it may also result from errors and uncertainties in the data itself (Burrell et al., 2018).  An example of this 430 

problem is shown in Figure 7d.  The Copernicus NDVI produce is a 1km global NDVI product that covers 1999 431 

to present.  In 2013 this dataset changes from SPOT data to the newer high resolution PROBA-V.  It is apparent 432 

that, for the boreal forest region, the cross-sensor calibration has not worked. All datasets have uncertainties 433 

and errors and even small errors can produce contradictory trends in some cases (Burrell et al., 2018).  These 434 

difference may account for some of the ongoing debate about the arctic and boreal green trends (Duncan et al., 435 

2020; Polar Research Board et al., 2019).   436 

4.3 Detecting post-fire recruitment failure  437 

The threat facing boreal forests is that post-fire recruitment failure will cause large parts of the boreal forest 438 

ecosystem to collapse with climate change-driven increases in the fire regime (Walker et al., 2019).   Trend 439 

analysis alone cannot be used to separate out normal fire loss and recovery from recruitment failure. This is 440 

especially problematic because a recent study found that disturbance recovery dynamics account for the 441 

majority of NDVI trends in boreal forest (Sulla-Menashe et al., 2018).  442 

This limitation is compounded by the fact that trend detection approaches can be unreliable in any ecosystem 443 

where productivity is impacted by natural interannual variability in climate, especially when that variability is 444 

linked with decadal time-scale climate oscillation (Burrell et al., 2017). This is the case in the parts of the boreal 445 

forest most at risk of collapse due to post fire recruitment failure (Bradshaw and Warkentin, 2015). Similarly, 446 

direct disturbance detection methods measure forest loss but not recruitment failure (Hansen et al., 2013) and 447 

consequently cannot distinguish natural disturbance recovery cycles from a state change.    448 

In reviewing remote sensing of fire impacts, Chu and Guo (2014) argued that methods for evaluating post-fire 449 

vegetation recovery has received “little effort” and that considerable further research is required (Chu and Guo, 450 

2014).  The authors of this chapter are aware of no study published to date that has estimated the extent of 451 

recruitment failure at a large spatial scale.  However, a number of studies have shown promising results by 452 

combining disturbance detection and NDVI or other vegetation index trends to monitor post-fire vegetation 453 

recovery dynamics (Cai et al., 2018; Chu et al., 2016; Liu, 2016; Yang et al., 2017). In addition, it may be possible 454 

to use methods developed in other ecosystems that improve trend detection by accounting for climate 455 

variability and ecosystem disturbance (Abel et al., 2019; Burrell et al., 2019) though validiating and improving 456 

on these methods remains difficult without largescle gridbased inventories currently lacking in Siberia.     457 

4.4 Post-fire recruitment failure and the prediction of future climate 458 

The boreal forest has a large impact upon regional and global climate (Chen and Loboda, 2018; Helbig et al., 459 

2016; Liu et al., 2019).   If post-fire recruitment failure results in the collapse of large parts of the boreal forest 460 



it may potentially have a large impact upon global climate that is not currently integrated into many of the 461 

models used to predict climate change.   462 

Over the next 100 years, global circulation models (GCM) predict that the boreal region will experience the 463 

largest increase in temperatures of any forest biomes (Gauthier et al., 2015). This, along with the associated 464 

lengthening of the growing season, is predicted to result in the continued expansion of boreal forests into the 465 

tundra region (Forbes et al., 2010; Rocha et al., 2018). GCM’s incorporate vegetation in necessarily simplistic 466 

ways and there is growing evidence for rapid and non-linear response to changes in climate that are poorly 467 

understood, not incorporated into current models and may be leading to significant overestimations of the 468 

long-term benefits of warming in the boreal zone (Chen et al., 2016; D’Orangeville et al., 2018; Reich et al., 469 

2018; Soja et al., 2007; Thurner et al., 2017)  470 

One current limit of GCM’s and their associated global vegetation models (GVM’s) is that, while these models 471 

include fire in the carbon cycle, they only consider fire frequency and do not incorporate feedbacks between 472 

fire, vegetation, and climate  (Harris et al., 2016; Syphard et al., 2018). Consequently, forest loss caused by 473 

processes such as post-fire recruitment, cannot be captured. This is problematic because studies predict large 474 

increases in fire frequency over the next century (Lehtonen et al., 2016; Wotton et al., 2017, 2010). Given the 475 

complex feedbacks that exist between the boreal forest zone and the global climate (Chen and Loboda, 2018; 476 

Helbig et al., 2016; Johnstone et al., 2011; Liu et al., 2019; Zhang et al., 2011) widespread collapse of the boreal 477 

forest ecosystem due to post-fire recruitment failure may change the regional albedo as well as releasing 478 

significant amounts of CO2 and aerosols into the atmosphere.  While some of these issues may be addressed 479 

with the development of dynamic global vegetation models (DGVMs) that more accurately represent vegetation 480 

processes and fire dynamics (Harris et al., 2016; Syphard et al., 2018), significant further research into forest 481 

loss due to post-fire recruitment failure is needed.   482 

5.  Future Management 483 

Given that negative impacts of climate change will continue to increase for at least the next century, even under 484 

the lowest emissions scenarios, it is necessary to implement management strategies to prevent widespread 485 

forest loss or facilitate more desirable transitions. Without knowing the scale of the problem, it is difficult to 486 

formulate effective management practices.  With increasing fire activity, forests become more vulnerable to 487 

changes in species composition and structure (Shvetsov et al., 2019) and monitoring of post-fire recovery is 488 

necessary to determine appropriate management approaches. Several forest management and adaptation 489 

strategies have been proposed to mitigate the negative impacts of climate change which can be can be grouped 490 

into three broad categories: 1) societal adaptation (e.g., forest policy to encourage adaptation, revision of 491 

conservation objectives, changes in expectations), 2) adaptation of the forest (e.g., species selection, tree 492 

breeding, stand management), and 3) adaptation to the forest (e.g. changes in forestry rotation age, use more 493 

salvage wood, modify wood processing technology)(Spittlehouse, 2005).  494 

There is a documented lack of published forest management and restoration research from the Siberian region, 495 

with almost all the published literature coming from North America, Finland and Sweden (Bernes et al., 2015). 496 



In southern Siberia, a range of different management strategies are being tested by the regional forestry 497 

organizations but they remain mostly unstudied and so their effectiveness is unknown. Most of the strategies 498 

employed in this region are focused heavily upon salvage logging immediately after the fire (Kukavskaya et al., 499 

2013) followed by replanting in areas where recruitment failure has been observed. A recent study on global 500 

forest regeneration potential found that Russia has about 150 million ha of land suitable for forest restoration, 501 

the largest amount of any country (Bastin et al., 2019).  By comparison, the annual rate of reforestation in 502 

Russia over the last 15 years has been 800-950 thousand ha with forest plantations averaged 22% 503 

(http://rosleshoz.gov.ru/). Furthermore, the effectiveness of these measures in reducing the risk of permanent 504 

forest loss is dubious due to the usage of low-quality seeds and seedlings, the lack or absence of subsequent 505 

measures for protection of seedlings from diseases, insects, and fires as well as a lack of erosion mitigation. 506 

Most problematic of all is that ~50% of the areas replanted in the most fire prone parts of Siberia burn again 507 

within 15 years (Kukavskaya et al., 2016).   508 

In order to stimulate natural reforestation and to decrease recruitment failure following management 509 

intervention, a recent Decree published by the Ministry on Natural Resources and Ecology of the Russian 510 

Federation suggested the following measures: preservation of seedlings during harvesting, maintenance of 511 

seed sources, enclosing regenerating areas (e.g. cattle fencing), sanitation thinning, seedlings care (e.g., tree 512 

setting, fertilizer application, herbicide treatment), mechanical or fire soil mineralization (Decree 188, 2019, p. 513 

139).  These measures can be carried out both separately and in combination with each other. For example, to 514 

enhance the reforestation effect, thinning of stands and undergrowth, along with increased light input to the 515 

crowns (increased seed production) and under the canopy (improved light conditions for regeneration) could 516 

be supplemented by soil mineralization. This Decree also provides guidance for forest management on the 517 

number of seedlings required for successful regeneration, depending upon the forest zone, dominant tree 518 

species, soil type and moisture.  519 

It should be noted that many of the strategies outlined above are already implemented over the extensive areas 520 

of Russian boreal forest, despite which, the rate of re-burning and then subsequent recruitment failure remains 521 

high (Kukavskaya et al., 2016). As such, the improvement of reforestation management should include 522 

strengthening of fire prevention measures, including education of local communities to decrease number of 523 

ignitions, as well as construction and maintenance of a fuel break system (prioritizing nearby settlements and 524 

tree plantations) to inhibit development of large fires and to decrease the negative impact of fires on forests. 525 

Active replanting of forests in western North America following salvage logging of burnt forest may make them 526 

more susceptible to re-burning due to high density of saplings. Lindenmayer et al. (2017) therefore suggested 527 

reducing the numbers of planted seedlings and increasing the spacing between trees to reduce the risk of 528 

recurrent high-severity fire. Other appropriate actions to improve seedling survival after replanting are to 529 

modify seed transfer zones and to introduce more fire-resistant and drought-tolerant species, to change 530 

replanting methodology and techniques (e.g. shading of planted seedlings on the overheated sites), to conduct 531 

sanitation thinning.   532 

Even if all of these strategies are implemented, they may prove ineffective because they are predicated on the 533 

assumption that direct management of an ecosystem post-fire is an effective strategy for ecosystem recovery. A 534 

http://rosleshoz.gov.ru/


recent global multi ecosystem assessment of management interventions in the wake of natural disturbance 535 

events like fires found that active management actually worsened long-term outcomes (Lindenmayer et al., 536 

2017). There is good reason to think this may be the case in Siberia, with salvage logging linked to shorter FRI 537 

and recruitment failure (Kukavskaya et al., 2013; Shvetsov et al., 2019) and recent field observations finding 538 

extensive soil erosion at some recent replanting sites.   539 

In summary, the current a lack of knowledge about the exact scale and mechanisms of boreal forest recruitment 540 

failure as well as the effectiveness of measures being implemented to address it means that developing an 541 

effective long-term strategy to prevent widespread boreal forest collapse is extremely difficult. There is a need 542 

to reconsider our human response to natural disturbances and to reduce the risks of forest degradation by 543 

implementing appropriate forest management strategies based upon the local climate and ecological conditions 544 

as well as disturbance levels. Without these improvements, there is a risk that the increasing number of 545 

disturbed ecosystems and recruitment failure worldwide will lead to irreversible negative consequences 546 

affecting both the environment and human wellbeing.  547 
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