2,191 research outputs found

    Excavaciones en el abrigo de Peña Larga (Cripán-Álava)

    Get PDF
    Reseña bibliográfica de la obra "Excavaciones en el abrigo de Peña Larga (Cripán-Alava)", de Javier Fernández Eraso

    Dipole-dipole interaction between a quantum dot and graphene nanodisk

    Get PDF
    We study theoretically the dipole-dipole interaction and energy transfer in a hybrid system consisting of a quantum dot and graphene nanodisk embedded in a nonlinear photonic crystal. In our model a probe laser field is applied to measure the energy transfer between the quantum dot and graphene nanodisk while a control field manipulates the energy transfer process. These fields create excitons in the quantum dot and surface plasmon polaritons in the graphene nanodisk which interact via the dipole-dipole interaction. Here the nonlinear photonic crystal acts as a tunable photonic reservoir for the quantum dot, and is used to control the energy transfer. We have found that the spectrum of power absorption in the quantum dot has two peaks due to the creation of two dressed excitons in the presence of the dipole-dipole interaction. The energy transfer rate spectrum of the graphene nanodisk also has two peaks due to the absorption of these two dressed excitons. Additionally, energy transfer between the quantum dot and the graphene nanodisk can be switched on and off by applying a pump laser to the photonic crystal or by adjusting the strength of the dipole-dipole interaction. We show that the intensity and frequencies of the peaks in the energy transfer rate spectra can be modified by changing the number of graphene monolayers in the nanodisk or the separation between the quantum dot and graphene. Our results agree with existing experiments on a qualitative basis. The principle of our system can be employed to fabricate nano-biosensors, optical nano-switches, and energy transfer devices

    On super free fall.

    Get PDF
    Villermaux & Pomeau (J. Fluid Mech., vol. 642, 2010, p. 147) analysed the motion of the interface of an inviscid liquid column released from rest in a vertical tube whose area expands gradually downwards, with application to an inverted conical container for which experimental measurements were carried out. An error in the analysis is found and corrected in the present investigation, which provides the new governing equation for the super-accelerated interface motion down gradually varying tubes in general, and integrated results for interface trajectories, velocities and accelerations down a conical tube in particular. Interestingly, the error does not affect any of the conclusions given in the 2010 paper. Further new results are reported here such as the equation governing the centre of mass and proof that the end point acceleration is exactly that of gravit

    Quasi-cylindrical approximation to the swirling flow in an atomizer chamber

    Get PDF
    A quasi-cylindrical approximation is used to analyse the axisymmetric swirling flow of a liquid with a hollow air core in the chamber of a pressure swirl atomizer. The liquid is injected into the chamber with an azimuthal velocity component through a number of slots at the periphery of one end of the chamber, and flows out as an anular sheet through a central orifice at the other end, following a conical convergence of the chamber wall. An effective inlet condition is used to model the effects of the slots and the boundary layer that develops at the nearby endwall of the chamber. An analysis is presented of the structure of the liquid sheet at the end of the exit orifice, where the flow becomes critical in the sense that upstream propagation of long-wave perturbations ceases to be possible. This nalysis leads to a boundary condition at the end of the orifice that is an extension of the condition of maximum flux used with irrotational models of the flow. As is well known, the radial pressure gradient induced by the swirling flow in the bulk of the chamber causes the overpressure that drives the liquid towards the exit orifice, and also leads to Ekman pumping in the boundary layers of reduced azimuthal velocity at the convergent wall of the chamber and at the wall opposite to the exit orifice. The numerical results confirm the important role played by the boundary layers. They make the thickness of the liquid sheet at the end of the orifice larger than predicted by rrotational models, and at the same time tend to decrease the overpressure required to pass a given flow rate through the chamber, because the large axial velocity in the boundary layers takes care of part of the flow rate. The thickness of the boundary layers increases when the atomizer constant (the inverse of a swirl number, proportional to the flow rate scaled with the radius of the exit orifice and the circulation around the air core) decreases. A minimum value of this parameter is found below which the layer of reduced azimuthal velocity around the air core prevents the pressure from increasing and steadily driving the flow through the exit orifice. The effects of other parameters not accounted for by irrotational models are also analysed in terms of their influence on the boundary layers

    Relativistic Magnetohydrodynamics: Renormalized eigenvectors and full wave decomposition Riemann solver

    Full text link
    We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wavefront in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However its relative efficiency increases in multidimensional simulations.Comment: 50 pages, 17 figures (2 in color). Submitted to ApJ Suppl. Se

    The future of the indigenous freshwater crayfish Austropotamobius italicus in Basque Country streams: Is it possible to survive being an inconvenient species?

    Get PDF
    The white-clawed freshwater crayfish Austropotamobius italicus is listed as “vulnerable” in the Spanish Red List of threatened species, but local legislation varies among Spanish regions. Thus, while in some places the species is classified as “in risk of extinction” and various plans of conservation and restoration have been implemented, in the Basque Country and other regions the species is not listed. The distribution of the white-clawed crayfish in the province of Biscay (Basque Country) was studied from 1993 to 2007 at more than 600 sampling locations. Results show that 108 streams were inhabited by the native crayfish species A. italicus while 137 streams were inhabited by non-native signal crayfish Pacifastacus leniusculus or red-swamp crayfish Procambarus clarkii. The spread of non-native crayfish is not the only threat to the native species whose survival is also closely dependent on how watersheds are managed. Most A. italicus populations inhabit headwaters, where forestry activities are very important. The presence of native crayfish in heavily forested areas results in a conflict of interests and makes its conservation particularly difficult. We employed a SWOT analysis – an assessment and decision tool commonly used in marketing and business – to evaluate the situation of the native white-clawed crayfish in Biscay, a province characterized by very high demographic pressure. SWOT analysis has proved to be a useful diagnostic tool and can help develop better and more accurate management strategies for the conservation of native crayfish threatened by multiple stressors
    corecore