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Villermaux & Pomeau (/. Fluid Meek, vol. 642, 2010, p. 147) analysed the motion of 
the interface of an inviscid liquid column released from rest in a vertical tube whose 
area expands gradually downwards, with application to an inverted conical container 
for which experimental measurements were carried out. An error in the analysis is 
found and corrected in the present investigation, which provides the new governing 
equation for the super-accelerated interface motion down gradually varying tubes in 
general, and integrated results for interface trajectories, velocities and accelerations 
down a conical tube in particular. Interestingly, the error does not affect any of the 
conclusions given in the 2010 paper. Further new results are reported here such as 
the equation governing the centre of mass and proof that the end point acceleration is 
exactly that of gravity. 
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1. Introduction 
The super free fall work of Villermaux & Pomeau (2010, hereafter often simply 

V&P) is revisited. The problem is as follows. Taking z as the upward coordinate, a 
tube of cross-sectional area a(z) slowly increasing downwards is capped at the bottom, 
where z = 0, and filled with a low-viscosity liquid to height z = h(0) with interface 
exposed to the atmosphere. At t = 0 the cap vanishes and liquid flows out the end of 
the tube into the ambient atmosphere. 

V&P rederived the equation of Paterson (1983): 

Here g is gravity and z = h(t) is the height of the downward-moving upper free 
surface. 

The equation reported by Paterson (1983) was formulated for unsteady potential 
flow in a tube composed of a long section of uniform cross-sectional area Ax, which at 
some low level gently varies to fixed cross-sectional area A0. Paterson assumed that the 
level of the upper interface always remained in the section of uniform area A\, but this 
restriction can be easily removed. 
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The equation for the area-averaged vertical velocity in the tube used by both 
Paterson (1983) and Villermaux & Pomeau (2010) is w(z, t) = a(h)h/a(z), where an 
overdot represents differentiation with respect to time. The evolution equation for the 
height of the liquid is obtained by carrying this velocity to the momentum equation for 
an inviscid liquid, dw/dt + 3(w2/2 + p/p + gz)/dz = 0, and integrating along the tube 
from z = 0 to z = h. The time derivative of w required in the momentum equation is 

dw a(h) •• 1 daQi), 2 
— = h-\ h, (1.2) 
dt a(z) a(z) ah 

and the momentum equation integrated along the tube gives the generalized Paterson 
equation: 

a(h) / — /, + - ^ / —~h2 + r 1 - - ^ h = Sh. (1.3) 
J0 a(z)J Ah J0 a(z) 2 \ a(0yj 

The second term on the right-hand side of (1.2), which leads to the middle term on the 
left-hand side of (1.3), was neglected by V&P This term is necessary to account for 
the acceleration in variable-area sections of a tube and, for that reason, we denote it as 
the variable-area temporal acceleration, or VAT acceleration for short. 

A rough order-of-magnitude estimate shows that the coefficient of h2 in the 
middle term on the left-hand side of (1.3) is (da/dh) J0 dz/a = 0[(Aa/hc)(hc/ac)] = 
0(Aa/ac), where ac and Aa are characteristic values of the cross-sectional area of the 
tube and of its variation along the tube, say from the bottom to the initial height of the 
interface, and hc is a characteristic value of that interface height. Therefore, the second 
and third terms on the left-hand side of (1.3) are both of the same order when the 
variation of a in the region of the tube containing the liquid interface is of the order of 
a itself. 

Equation (1.3) takes a simple form when the tube is a vertical cone of height 
L with a small opening angle, a < 1. In this case a(z) = Jta2 (L — z)2, giving 
/*dz/a = (h/L)(L - h)/a(h) and, upon introducing the dimensionless variables 

f = l - T and r = \l^t, (1.4) 

the governing initial-value problem 

l + § + §2 .. 1 1 f-2 t , f(0)=f„, f(0) = 0 (1.5) 

is obtained. Initial liquid heights 0 < h(0) < L correspond to initial values 1 > §0 > 0. 
Using Paterson's 1983 equation (1.1), Villermaux & Pomeau (2010) obtained 

fundamental results for the motion of a liquid surface descending in an expanding 
cone. These include determination of the initial acceleration and pressure gradient 
at the free surface, and demonstration that the acceleration of the centre of mass 
is initially less than gravity. V&P also presented an analysis of how the super-
acceleration triggers a Rayleigh instability of the free surface leading to the formation 
of a nipple and a drop, and the relevance of this to wave breaking. We note at 
the outset that none of these results are affected by neglect of the VAT acceleration. 
However, as will be shown in the sequel, the position, velocity and acceleration of the 
interface change significantly when this acceleration is retained. 



Following Villermaux & Pomeau (2010), the goal of the present investigation is 
to determine the motion of the upper free surface in a slender, downward-opening 
cone. In addition, we derive the equation governing the motion of the centre of the 
decreasing liquid mass in the tube and prove that the accelerations of the interface and 
centre of mass both tend to — g at the terminal moment when all liquid is exhausted 
from the tube. 

We begin in §2 with new analytic results and numerical integrations for the 
interface position, velocity and acceleration. This section ends with a detailed study 
of the influence of the VAT acceleration on interface trajectory and acceleration. The 
results of a laboratory experiment are compared with theory in §3, and a discussion 
and concluding remarks are given in § 4. 

2. Analysis and numerical results 
Equation (1.5) for the dimensionless position of the liquid interface f(r) is 

autonomous and thus a reduction of order is ensured. In this manner a linear first-
order equation for | 2 as a function § is obtained. Solution of this equation with the 
condition §2 = 0 at § = §o gives 

§ W - £ T 
f0 rjf(ri) 

1/2 j / £2 £3 

f^) = -cxV^ + ^- + j ) , (2.1) 

which can be integrated again to obtain r = r(f, f0)- However, numerical integration 
of (1.5) using a fourth-order Runge-Kutta method is more appropriate for our 
purposes here. Before presenting numerical solutions in § 2.4, further analysis of the 
super free fall motion will now be given. 

2.1. Singular behaviour for £0 = 0 
The evolution of the free surface displays two distinct stages for small values of f0-
The velocity first increases from 0 to (2/3)1/2 in a short stage r = 0(fo) where the 
acceleration is f = O^Q1). Equation (2.1) can be simplified in this stage using the 
approximation /(£) ~ §~3, which gives | = (2/3)1/2 (1 — §0

3/§3) and, upon further 
integration, 

/•f/fo y 3 / 2 A 

T = (3/2)1 / 2§0 /(^o), / (£/&)= / , \ *1/2- (2.2) 
•h (x3 ~ 1) ' 

This is followed by a longer stage r = 0(1) where the evolution is given by solution 
of the equation in (1.5) with the modified conditions §(0) = 0 and £(0) = (2/3)1/2, 
obtained from asymptotic matching with the first stage in the limit §o -> 0. The 
terminal time t/ at which f (t/) = 1 is t/ ~ 1.083 for this singular case. 

2.2. Centre-of-mass motion 
The height hcm and velocity wcm of the centre of mass of the liquid in the tube are 
given by 

Vhcm = / zdQ = / za(z)dz, Vwcm= / wdQ= / wa(z)dz = a(h)hh, (2.3a,b) 
Jv Jo Jv Jo 

where V is the volume of liquid in the tube. The last equality, obtained from 
the equation of continuity a(z)w(z, t) = a(h)h, was found by Villermaux & Pomeau 
(2010). 



The acceleration of the centre of mass is not simply dwcm/dt because V is not a 
constant. To compute this acceleration, here denoted as acm, we consider the material 
volume Vf enclosing the liquid mass m that is in the tube at a given instant t. This 
mass is a constant. As time goes on, part of the liquid flows out of the tube, but not 
out of the material volume Vf. The velocity of the centre of mass of the liquid in Vf is 
given by mwcm = Jv pw dfi at time t, and since m is a constant, 

mac, 
d 

At 
pwdQ 

d 

dt 
pwdQ pw da, (2.4) 

where Eb is the cross-section at the bottom of the tube and the last equality follows 
from Reynolds' transport theorem. Evaluation of the volume integral on the right-hand 
side of (2.4) gives pa(h)hh and the surface integral is pa(Q)w (0, if 
so that 

\ 2 2 ,2 , pa(hyh2/a(0), 

mar dt 
(pa(h)hh) 

a Qi) .2 
p h 

a(0) 
pa(h)hh + p a(h) + h 

da(h) a Qi) 

dh o(O) 
h2. (2.5) 

Using (1.3) to eliminate h we find 

gh2 

adz 

1 - a(h)/a(0) 

adz 

dz/a 

1 + 
a(h) 

a(0) 
a(h) 

dz/a 
ti. (2.6) 

Since initially h = 0, it is clear that the first term of (2.6) gives the early-time centre-
of-mass acceleration, in agreement with the result reported as (3.17) in Villermaux & 
Pomeau (2010). 

2.3. Terminal acceleration 

A simple analysis gives the interface acceleration at the terminal time tf, just when the 
liquid in the tube is exhausted. This is achieved using the integral form of the vertical 
momentum equation for the liquid in the tube (see e.g. Batchelor 1967, p. 138) 

mar 
pnzdcr pgdtt, (2.7) 

where macm is given by (2.5), p is the pressure of the liquid referred to the 
atmospheric pressure outside the tube, Ew is the surface of the tube wall in contact 
with the liquid, and nz is the vertical component of the unit normal to this surface 
(nz = a for a conical tube). The factor in square brackets in (2.5) is of 0(h2) for small 
h, as can be seen by Taylor-expanding a(h). The first term on the right-hand side 
of (2.7) is the force the tube wall exerts on the liquid. Since the acceleration of the 
liquid is finite, as must be the pressure gradient inside the liquid, dp/dz = O(pg) < oo, 
so that p = O(pgh) and therefore — j s pnzdo = O(pgnza(0)1/2h2). Finally, the body 

force for small h is — Jv pg dfi ~ —pga(0)h. Therefore the dominant terms in (2.7) 

are proportional to h and the h ->- 0 balance gives h(tf) = —g. 
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FIGURE 1. Evolution of the interface position % — £0 for selected initial values £0- The 
singular perturbation position for £0 = 0 is shown by the dot-dashed line and the pure free fall 
trajectory given in (2.8) is displayed by the dashed line. 

A similar small-/* analysis of the centre-of-mass acceleration given in (2.6) can be 
used to show that acm(tf) = —g. Thus both the free surface and the centre of mass 
experience Earth's gravity at the moment when all liquid is discharged from the tube. 
These results are independent of the cross-sectional variation of the tube area as long 
as this area is a slowly varying function of z. 

2.4. Numerical results 
Numerical integrations of the initial-value problem (1.5) are now presented for initial 
values §0 = 0.2, 0.4, 0.6, 0.8. Integrations are carried out to the terminal time rf 

when all liquid is exhausted from the tube, corresponding to § = 1. Interface positions, 
velocities and accelerations will be compared with pure free fall results, which, in 
non-dimensional coordinates, are given by 

§ = y + §o, | = r, | = 1. (2.8) 

Figure 1 shows the time evolution of the free surface, § — f0> at the selected values 
fo- Each curve ends at the terminal time rf defined by f (iy) = 1. The results show that 
the interface in the slowly expanding cone falls more rapidly than fluid in pure free 
fall shown by the dashed line. The outer singular solution for §0 = 0 is also displayed 
as the dot-dashed line. It is evident that trajectories for smaller initial values §0 cover 
distances faster than for larger f0-

The time evolution of interface velocities plotted up to the terminal time rf in 
figure 2 confirms, at each value f0> that the free surface velocities are always greater 
than those for pure free fall indicated by the dashed line. Also included in this figure 
is the outer singular solution for §0 = 0 plotted as the dot-dashed line. Higher liquid 
fills (smaller f0) exhibit higher velocities at the early stages, but the situation may 
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FIGURE 2. Evolution of the interface velocity | for selected initial values £0- The singular 
perturbation velocity for £0 = 0 is shown by the dot-dashed line and the pure free fall velocity 
given in (2.8) is displayed by the dashed line. 

reverse at later times, as illustrated by the intersection of the curve for §0 = 0.2 with 
that for §0 = 0.4 at r « 0.87. 

This curious feature may be understood by comparing the evolution of free surface 
accelerations presented in figure 3. Here again the constant pure gravity acceleration 
is displayed as the dashed line and the outer singular solution for §0 = 0 is plotted as 
the dot-dashed line. All curves in figure 3 begin with a super-gravitational acceleration 
equal to l/f0, cross the dashed free fall line to sub-gravitational accelerations, and 
then turn back to terminate at exactly gravitational acceleration as required (cf. § 2.3). 
In particular, it is seen that, while the initial acceleration for §0 = 0.2 is high ( | = 5), 
it attains significant sub-gravitational acceleration over a major portion of its evolution. 
Since the range and intensity of the sub-gravitational acceleration for §0 = 0.4 are 
small compared to those for §0 = 0.2, the velocity for §0 = 0.4 in figure 2 eventually 
surpasses that for §0 = 0.2 before the §o = 0.4 curve attains its terminal time. 

We conclude this section by showing the variation of rf with §0 in figure 4. The 
numerical results plotted by the solid dots are connected by straight lines, the lowest 
and highest values of §0 being 0.01 and 0.995, respectively. The small terminal times 
have been extrapolated to the obvious result rf = 0 at §0 = 1- The large terminal 
times are seen to merge smoothly to the value rf ~ 1.083 at §0 = 0 obtained from the 
singular analysis given in §2.1. 

2.5. Influence of the VAT acceleration 

The goal in this section is to compare results obtained from (1.1) and (1.3) for 
conditions of the inverted cone experiment presented in table 1 of Villermaux & 
Pomeau (2010) and, at the suggestion of a referee, to assess the relative importance 
of the acceleration terms proportional to A2. The exit radius is R(0) and the initial 
height of the upper free surface is h(0), where the radius is R(h(0)). The cone for their 



FIGURE 3. Evolution of the interface acceleration \ for selected initial values £0- The 
singular perturbation acceleration for £0 = 0 is shown by the dot-dashed line and the pure 
free fall acceleration given in (2.8) is displayed by the dashed line. 
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FIGURE 4. Emptying time xf as a function of £0- The computed values shown as solid dots 
are connected by straight line sections and the result xf «» 1.083 obtained from the singular 
analysis for £0 = 0 is shown by the open circle. 

experiment has the geometrical properties 

W 0 ) ) 
tana = 0.03, R(0) = 0.033 m, ft = 1 - = 0 . 3 3 , 

(2.9) 



0.35 

0.30 
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FIGURE 5. Trajectories hi and h2 computed from (2.10) for conditions of the V&P 
experiment with and without the VAT acceleration straddle the trajectory obtained by 
evolving the motion at constant super-acceleration /i(0) plotted as the short dashed line. Also 
included is the centre-of-mass trajectory hcm. The arrow t2 marks the upper limit of the V&P 
experimental data and the arrow t\ is the upper limit for which V&P compared their data to 
the /i(0) trajectory in a log-log plot. 

which are used to determine the initial fill height h(0) = 0.363 m and the height 
L = 2.75 m to the apex. The dimensional equation governing interface motion obtained 
from (1.3) may be written as 

h{\ - kh)h - 2khh2 + \(\ - (1 - khf)h -gh, (2.10) 

wherein k = \/L. The term —2khh2 in (2.10) is the contribution from the VAT 
acceleration. Integrations of this equation with and without the VAT acceleration have 
been carried out for the experimental value k = 0.9091 m_ 1 using g = 9.81 m s~2. We 
denote the trajectories and accelerations obtained from (2.10) as hi and hi and those 
with the VAT acceleration missing as h2 and h2. The hi and h2 trajectories plotted 
in figure 5 straddle the trajectory obtained assuming that the acceleration is uniform, 
fixed at its initial value h(0) = — g/(\ — fi) = —14.642 m s~2 shown as the short dashed 
line. The computed terminal time tf is shortest for the h2 trajectory (0.207 s), increases 
for the constant-/*(0) trajectory (0.223 s), and is longest for the hi trajectory (0.240 s). 
The vertical arrow at t2 = 0.16 s marks the upper limit over which Villermaux & 
Pomeau (2010) reported data, and the arrow at t\ = 0.10 s is the upper limit for which 
these data were compared to the constant-/* (0) trajectory. The centre-of-mass trajectory 
hcm and its initial value for a cone computed from (2.3a), 

llcm\}) 

2j»2 6 - &kh + 3k2h 

3-3kh + k2h2 hcm(0) = 
A(0) / 6 — 8/S + 3yS: 

3 — 3>S + /S2 (2.11) 

are also plotted in figure 5. 
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FIGURE 6. Accelerations hi and /J2 computed from (2.10) for the V&P experiment with 
and without the VAT acceleration straddle the initial acceleration h(0). Also shown is the 
centre-of-mass acceleration acm. Arrows mark extrema points in the evolution of acm and hi. 
The inset shows the ratio 'h\/h2 as well as the ratio \N\/N2\ of the nonlinear terms defined 
in (2.13). 

Several things may be observed from the trajectories plotted in figure 5. First, the 
(shifted) centre-of-mass trajectory starts with zero slope and increases to merge, as 
required from the analysis in §2.3, with the hi trajectory at the terminal time. Second, 
the percentage deviation between the hi and h2 trajectories increases uniformly over 
all time and attains the value 6.6% at t\. Since the constant-acceleration trajectory lies 
even closer to h\ than does h2, it is not surprising that Villermaux & Pomeau's 2010 
experimental data compare very favourably with the constant-acceleration trajectory in 
the region 0.01 s < t < h over which their comparison was made. Consequently, for 
this 0.363 m liquid fill level, one may take the 6.6% deviation at t = h = 0.10 s as 
the short-time limit for which the data of V&P are accurate; note at this point that 
the liquid has descended only 20 % of its distance to the bottom of the tube. At later 
stages in the free fall, interface deviations increase to 17 % at 12 and on to a maximum 
value slightly over 31 % at the largest time tf = 0.207 s for which this comparison can 
be made. 

The third observation concerns the remark of Villermaux & Pomeau (2010) that the 
nonlinear term proportional to h2 in (1.1) increases the super-acceleration relative to 
the initial acceleration at late stages. The acceleration h2 plotted in figure 6 (introduced 
in the following paragraph) indeed confirms this result. V&P also noted that their 
experimental data exhibit a slowdown probably ' . . . attributable to the friction of the 
engulfed air at the upper tube opening . . . ' . Figure 5 shows that the 'slowdown' is 
a real effect predicted by the hi trajectory that includes the VAT acceleration and, 
consequently, the above caveat about air entrainment is not necessary. 

Now consider the evolution of interface accelerations hi and h2. These accelerations 
plotted in figure 6 are seen to be respectively higher and lower than the initial 
acceleration value h(Q) plotted as the short dashed line. In addition, the centre-of-mass 



acceleration and its initial value determined from (2.6) for a cone, 

\_-kh 
U'cmSJ) 

&cm \\*J 

l-kh+ -k2h2 

( l - j 8 ) g 

l - 0 + ^82 

g + k5hz [\ + -kh)hl 

(2.12) 

are plotted as the long dashed line. For the Villermaux & Pomeau (2010) value 
P = 0.33, acm(Q) = —9.306 m s~2, only 5 % smaller in absolute value than g. Both h\ 
and acm achieve an extremum at late stages. The minimum value acm = —9.828 m s~2 

occurs at t = 0.189 s whilst the maximum value hi = —9.317 m s~2 occurs at 
t = 0.203 s. In the inset of figure 6 the evolution of the ratio h\/h2 is plotted 
beginning with its value of unity at t = 0. Since h\ fh2 < 1, the trajectory hi with 
the VAT acceleration markedly slows down relative to the trajectory h2 with the VAT 
acceleration omitted, as observed in figure 5. 

Finally, we compare the relative magnitude of the nonlinear terms in (2.10) 
proportional to A2. For the cone experiment of Villermaux & Pomeau (2010), these 
are denoted 

Ni(t) = -Ikhti, N2(t) = | (1 - (1 - kh)A)ti. (2.13) 

The ratio \Ni/N2\, shown in the inset of figure 6 as the dashed line, decreases from its 
initial value 1.654 to the dot at the terminal time tf = 0.240 s. One must bear in mind, 
however, that N\ < 0 and N2 > 0 for all 0 < t < tf and thus the VAT term N\ acts 
opposite to N2. It is recognized that both these terms are initially zero. Nevertheless, 
since \N\ /N21 > 1, the influence of the nonlinear VAT term dominates for all t > 0. 

3. Experiments 
A series of experiments on the super-accelerated flow down inverted cones were 

undertaken using three conical glass tubes. Though more than five experiments were 
performed, and observations of the nipple formation were recorded, for the sake of 
brevity we report here only one experimental result. The tube for this experiment had 
lower diameter Dx = 2.5 cm, upper diameter D2 = 4.7 cm and length 22.0 cm, from 
which we calculate a = 2.85° and L = 47.0 cm. The working liquid was ethanol of 
density p = 810 kg m~3 and kinematic viscosity v = 1.52 x 10~6 m2 s_1. The value of 
gravity at Azcapotzalco where the experiments were conducted is g = 9.779 m s~2. 

Using silicone rubber cement, the tube was securely mounted on top of a horizontal 
clear acrylic plate 1 cm thick, the tube being aligned with a hole of diameter £>i 
drilled in the plate centre. A balloon inflated to near bursting pressed against the 
bottom surface of the plate using a scissor jack. After pouring liquid into the cone 
from above, application of pressure by the scissor jack forced the balloon to spread 
evenly over the bottom plate surface. The experiment was initiated by pricking the 
balloon with a sharp object. 

One side of the glass cone was marked at 1 cm intervals with an indelible black 
ink pen. The movement of the upper free surface was recorded with a Red Lake 
model HG-100K7HG-LE high-speed camera at 500 frames per second. Experiments 
showed that the time for balloon rupture is less than 0.002 s. The location of the 
bottom of the curved ethanol interface was measured at selected times, interpolating to 
the nearest 1 mm between the 1 cm marks. The initial time was taken to be that for 
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FIGURE 7. Experimental data for the interface trajectory at £0 = 0.7 are compared with the 
trajectories obtained from integration of (2.10) with (solid line) and without (dot-dashed line) 
the VAT acceleration. The trajectory for pure free fall is shown as the dashed line. The 
experimental data measured by two of the present authors (A.T and P.D.W.) are shown by the 
solid and open circles, respectively. 

which the data best fit theory. Figure 7 shows a comparison of measurements obtained 
from the same video by different investigators with theoretical trajectories computed 
using (2.10) with (solid line) and without (dot-dashed line) the VAT acceleration term 
—2khh2. The results are also compared with the trajectory obtained for pure gravity 
given by the dashed line. While the trajectories with and without the VAT acceleration 
term are in good agreement up to t ~ 0.06 s, the results diverge considerably at late 
times as indicated in figure 7. 

4. Discussion and conclusion 

The theoretical model developed here corrects a peccadillo in the work of 
Villermaux & Pomeau (2010) who used equation (1.1) of Paterson (1983), which 
neglects the VAT acceleration. The generalized Paterson equation (1.3) presented 
here applies to potential flow down a vertical tube when the upper free surface 
traverses gradually varying tube sections, be they expanding or contracting. The 
interface trajectories for an inverted cone exhibit qualitative differences when the 
VAT acceleration is retained: trajectories with (without) the VAT acceleration for a 
cone evolve more slowly (rapidly) than trajectories obtained where the acceleration is 
uniform, fixed at its initial super-accelerated value h(0) = —g/(\ — ji). 

Experiments on the evolution of free surface trajectories in inverted cones verified 
the formation of a nipple on the liquid interface. The results displayed in figure 7 
comparing trajectories obtained from (1.1) and (1.3) for a cone show that inclusion of 
the VAT acceleration gives results in essential agreement with experiment. Fortunately, 
the oversight of Villermaux & Pomeau (2010) in applying Paterson's equation to an 
inverted cone does not affect the fundamental results they report, only the details 
of the time evolution of the free surface. Thus their results for the initial pressure 



gradient at, and acceleration of, the upper free surface remain correct, as does the 
elegant proof that the initial acceleration of the centre of mass is less (in absolute 
value) than gravity. Moreover, their analysis of the Rayleigh-Taylor instability of the 
upper free surface and the evolution to drop formation also remains intact. 

In addition to the parametric study obtained from integration of the generalized 
Paterson equation for a cone given in figures 1-3, the new results presented in this 
study are: (i) a determination of the singular solution for §0 = 0; (ii) analysis of the 
centre-of-mass motion for tubes of arbitrary slowly varying cross-section; (iii) analysis 
of the terminal accelerations of the liquid interface and the centre of mass showing 
that they both tend to — g as t -> tf, and (iv) a comparison of the effects of interface 
motion with and without the VAT acceleration. 
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