1,757 research outputs found
Bamboo trusses with low cost and high ductility joints
Innovative solutions of joints for bamboo trusses are presented. Experimental tests show the performances and the high level of ductility of the proposed technique, joined with simplicity in the concept of the joints, low level of technology and low cost of all used materials. It can permit a proper dissemination and a sustainable maintenance in developing countries
Draft tube discharge fluctuation during self-sustained pressure surge: fluorescent particle image velocimetry in two-phase flow
Hydraulic machines play an increasingly important role in providing a secondary energy reserve for the integration of renewable energy sources in the existing power grid. This requires a significant extension of their usual operating range, involving the presence of cavitating flow regimes in the draft tube. At overload conditions, the self-sustained oscillation of a large cavity at the runner outlet, called vortex rope, generates violent periodic pressure pulsations. In an effort to better understand the nature of this unstable behavior and its interaction with the surrounding hydraulic and mechanical system, the flow leaving the runner is investigated by means of particle image velocimetry. The measurements are performed in the draft tube cone of a reduced scale model of a Francis turbine. A cost-effective method for the in-house production of fluorescent seeding material is developed and described, based on off-the-shelf polyamide particles and Rhodamine B dye. Velocity profiles are obtained at three streamwise positions in the draft tube cone, and the corresponding discharge variation in presence of the vortex rope is calculated. The results suggest that 5-10% of the discharge in the draft tube cone is passing inside the vortex rop
Preferential Paths of Air-water Two-phase Flow in Porous Structures with Special Consideration of Channel Thickness Effects.
Accurate understanding and predicting the flow paths of immiscible two-phase flow in rocky porous structures are of critical importance for the evaluation of oil or gas recovery and prediction of rock slides caused by gas-liquid flow. A 2D phase field model was established for compressible air-water two-phase flow in heterogenous porous structures. The dynamic characteristics of air-water two-phase interface and preferential paths in porous structures were simulated. The factors affecting the path selection of two-phase flow in porous structures were analyzed. Transparent physical models of complex porous structures were prepared using 3D printing technology. Tracer dye was used to visually observe the flow characteristics and path selection in air-water two-phase displacement experiments. The experimental observations agree with the numerical results used to validate the accuracy of phase field model. The effects of channel thickness on the air-water two-phase flow behavior and paths in porous structures were also analyzed. The results indicate that thick channels can induce secondary air flow paths due to the increase in flow resistance; consequently, the flow distribution is different from that in narrow channels. This study provides a new reference for quantitatively analyzing multi-phase flow and predicting the preferential paths of immiscible fluids in porous structures
The compositional and evolutionary logic of metabolism
Metabolism displays striking and robust regularities in the forms of
modularity and hierarchy, whose composition may be compactly described. This
renders metabolic architecture comprehensible as a system, and suggests the
order in which layers of that system emerged. Metabolism also serves as the
foundation in other hierarchies, at least up to cellular integration including
bioenergetics and molecular replication, and trophic ecology. The
recapitulation of patterns first seen in metabolism, in these higher levels,
suggests metabolism as a source of causation or constraint on many forms of
organization in the biosphere.
We identify as modules widely reused subsets of chemicals, reactions, or
functions, each with a conserved internal structure. At the small molecule
substrate level, module boundaries are generally associated with the most
complex reaction mechanisms and the most conserved enzymes. Cofactors form a
structurally and functionally distinctive control layer over the small-molecule
substrate. Complex cofactors are often used at module boundaries of the
substrate level, while simpler ones participate in widely used reactions.
Cofactor functions thus act as "keys" that incorporate classes of organic
reactions within biochemistry.
The same modules that organize the compositional diversity of metabolism are
argued to have governed long-term evolution. Early evolution of core
metabolism, especially carbon-fixation, appears to have required few
innovations among a small number of conserved modules, to produce adaptations
to simple biogeochemical changes of environment. We demonstrate these features
of metabolism at several levels of hierarchy, beginning with the small-molecule
substrate and network architecture, continuing with cofactors and key conserved
reactions, and culminating in the aggregation of multiple diverse physical and
biochemical processes in cells.Comment: 56 pages, 28 figure
Clinical risk factors and atherosclerotic plaque extent to define risk for major events in patients without obstructive coronary artery disease: the long-term coronary computed tomography angiography CONFIRM registry.
AimsIn patients without obstructive coronary artery disease (CAD), we examined the prognostic value of risk factors and atherosclerotic extent.Methods and resultsPatients from the long-term CONFIRM registry without prior CAD and without obstructive (≥50%) stenosis were included. Within the groups of normal coronary computed tomography angiography (CCTA) (N = 1849) and non-obstructive CAD (N = 1698), the prognostic value of traditional clinical risk factors and atherosclerotic extent (segment involvement score, SIS) was assessed with Cox models. Major adverse cardiac events (MACE) were defined as all-cause mortality, non-fatal myocardial infarction, or late revascularization. In total, 3547 patients were included (age 57.9 ± 12.1 years, 57.8% male), experiencing 460 MACE during 5.4 years of follow-up. Age, body mass index, hypertension, and diabetes were the clinical variables associated with increased MACE risk, but the magnitude of risk was higher for CCTA defined atherosclerotic extent; adjusted hazard ratio (HR) for SIS >5 was 3.4 (95% confidence interval [CI] 2.3-4.9) while HR for diabetes and hypertension were 1.7 (95% CI 1.3-2.2) and 1.4 (95% CI 1.1-1.7), respectively. Exclusion of revascularization as endpoint did not modify the results. In normal CCTA, presence of ≥1 traditional risk factors did not worsen prognosis (log-rank P = 0.248), while it did in non-obstructive CAD (log-rank P = 0.025). Adjusted for SIS, hypertension and diabetes predicted MACE risk in non-obstructive CAD, while diabetes did not increase risk in absence of CAD (P-interaction = 0.004).ConclusionAmong patients without obstructive CAD, the extent of CAD provides more prognostic information for MACE than traditional cardiovascular risk factors. An interaction was observed between risk factors and CAD burden, suggesting synergistic effects of both
LES investigation of a swirl stabilized technically premixed hydrogen flame with FGM and TFM models
Small multi-purpose reservoir ensemble planning
People living in arid areas with highly variable rainfall, experience droughts and floods and often have insecure livelihoods. Small multi-purpose reservoirs are a widely used form of infrastructure for the provision of water. They supply water for domestic use, livestock watering, small scale irrigation, and other beneficial uses. The reservoirs are hydrologically linked by the streams that have been dammed. Although reservoirs store a large quantity of water and have a significant effect on downstream flows, they have rarely been considered as systems, with synergies and tradeoffs resulting from the number and density of their structures. Often reservoirs were constructed in a series of projects funded by different agencies, at different times, with little or no coordination among the implementing partners. A significant number are functioning sub-optimally and/or are falling into disrepair. This indicates that there is room for improvement in the planning, operation, and maintenance of small reservoirs. The water management institutions in Volta, Limpopo, and Sao Francisco Basins are being revamped to better serve their constituencies. We have an opportunity to collaborate with government officials, stakeholders, and farmers who are actively looking for ways to improve the planning process.
The Small Reservoir Project team developed a tool kit to support the planning, development, and management of small reservoir ensembles on the basin level and the use of small multi-purpose reservoirs that are properly located, well designed, operated and maintained in sustainable fashion, and economically viable on the local/community level. There are tools to improve intervention planning, storage estimation and the analysis of the hydrology, ecology and health of small reservoirs. There ara also tools for the analysis of institutional and economic aspects of the reservoirs. The toolkit not only includes the necessary analytical instruments, but also a set of process oriented tools for improved participatory decision making. The Tool Kit is meant to be a living “document” with additional tools and experiences to be added as they are developed
Recommended from our members
Machine Learning Framework to Identify Individuals at Risk of Rapid Progression of Coronary Atherosclerosis: From the PARADIGM Registry.
Background Rapid coronary plaque progression (RPP) is associated with incident cardiovascular events. To date, no method exists for the identification of individuals at risk of RPP at a single point in time. This study integrated coronary computed tomography angiography-determined qualitative and quantitative plaque features within a machine learning (ML) framework to determine its performance for predicting RPP. Methods and Results Qualitative and quantitative coronary computed tomography angiography plaque characterization was performed in 1083 patients who underwent serial coronary computed tomography angiography from the PARADIGM (Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging) registry. RPP was defined as an annual progression of percentage atheroma volume ≥1.0%. We employed the following ML models: model 1, clinical variables; model 2, model 1 plus qualitative plaque features; model 3, model 2 plus quantitative plaque features. ML models were compared with the atherosclerotic cardiovascular disease risk score, Duke coronary artery disease score, and a logistic regression statistical model. 224 patients (21%) were identified as RPP. Feature selection in ML identifies that quantitative computed tomography variables were higher-ranking features, followed by qualitative computed tomography variables and clinical/laboratory variables. ML model 3 exhibited the highest discriminatory performance to identify individuals who would experience RPP when compared with atherosclerotic cardiovascular disease risk score, the other ML models, and the statistical model (area under the receiver operating characteristic curve in ML model 3, 0.83 [95% CI 0.78-0.89], versus atherosclerotic cardiovascular disease risk score, 0.60 [0.52-0.67]; Duke coronary artery disease score, 0.74 [0.68-0.79]; ML model 1, 0.62 [0.55-0.69]; ML model 2, 0.73 [0.67-0.80]; all P<0.001; statistical model, 0.81 [0.75-0.87], P=0.128). Conclusions Based on a ML framework, quantitative atherosclerosis characterization has been shown to be the most important feature when compared with clinical, laboratory, and qualitative measures in identifying patients at risk of RPP
- …
