2,185 research outputs found

    Electrostatic analogy for integrable pairing force Hamiltonians

    Full text link
    For the exactly solved reduced BCS model an electrostatic analogy exists; in particular it served to obtain the exact thermodynamic limit of the model from the Richardson Bethe ansatz equations. We present an electrostatic analogy for a wider class of integrable Hamiltonians with pairing force interactions. We apply it to obtain the exact thermodynamic limit of this class of models. To verify the analytical results, we compare them with numerical solutions of the Bethe ansatz equations for finite systems at half-filling for the ground state.Comment: 14 pages, 6 figures, revtex4. Minor change

    Topology induced anomalous defect production by crossing a quantum critical point

    Full text link
    We study the influence of topology on the quench dynamics of a system driven across a quantum critical point. We show how the appearance of certain edge states, which fully characterise the topology of the system, dramatically modifies the process of defect production during the crossing of the critical point. Interestingly enough, the density of defects is no longer described by the Kibble-Zurek scaling, but determined instead by the non-universal topological features of the system. Edge states are shown to be robust against defect production, which highlights their topological nature.Comment: Phys. Rev. Lett. (to be published

    Optimal correlations in many-body quantum systems

    Get PDF
    Information and correlations in a quantum system are closely related through the process of measurement. We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology and condensed matter physics. To this aim we adopt the information-theory view of correlations, and study the amount of correlations after certain classes of Positive-Operator-Valued Measurements are locally performed. As many-body system we consider a one-dimensional array of interacting two-level systems (a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between local interactions and coherence.Comment: 5 pages, 5 figures + supplementary material. To be published in PR

    Topology induced anomalous defect production by crossing a quantum critical point

    Full text link
    We study the influence of topology on the quench dynamics of a system driven across a quantum critical point. We show how the appearance of certain edge states, which fully characterise the topology of the system, dramatically modifies the process of defect production during the crossing of the critical point. Interestingly enough, the density of defects is no longer described by the Kibble-Zurek scaling, but determined instead by the non-universal topological features of the system. Edge states are shown to be robust against defect production, which highlights their topological nature.Comment: Phys. Rev. Lett. (to be published

    Exploring the ferromagnetic behaviour of a repulsive Fermi gas via spin dynamics

    Full text link
    Ferromagnetism is a manifestation of strong repulsive interactions between itinerant fermions in condensed matter. Whether short-ranged repulsion alone is sufficient to stabilize ferromagnetic correlations in the absence of other effects, like peculiar band dispersions or orbital couplings, is however unclear. Here, we investigate ferromagnetism in the minimal framework of an ultracold Fermi gas with short-range repulsive interactions tuned via a Feshbach resonance. While fermion pairing characterises the ground state, our experiments provide signatures suggestive of a metastable Stoner-like ferromagnetic phase supported by strong repulsion in excited scattering states. We probe the collective spin response of a two-spin mixture engineered in a magnetic domain-wall-like configuration, and reveal a substantial increase of spin susceptibility while approaching a critical repulsion strength. Beyond this value, we observe the emergence of a time-window of domain immiscibility, indicating the metastability of the initial ferromagnetic state. Our findings establish an important connection between dynamical and equilibrium properties of strongly-correlated Fermi gases, pointing to the existence of a ferromagnetic instability.Comment: 8 + 17 pages, 4 + 8 figures, 44 + 19 reference

    Connecting dissipation and phase slips in a Josephson junction between fermionic superfluids

    Full text link
    We study the emergence of dissipation in an atomic Josephson junction between weakly-coupled superfluid Fermi gases. We find that vortex-induced phase slippage is the dominant microscopic source of dissipation across the BEC-BCS crossover. We explore different dynamical regimes by tuning the bias chemical potential between the two superfluid reservoirs. For small excitations, we observe dissipation and phase coherence to coexist, with a resistive current followed by well-defined Josephson oscillations. We link the junction transport properties to the phase-slippage mechanism, finding that vortex nucleation is primarily responsible for the observed trends of conductance and critical current. For large excitations, we observe the irreversible loss of coherence between the two superfluids, and transport cannot be described only within an uncorrelated phase-slip picture. Our findings open new directions for investigating the interplay between dissipative and superfluid transport in strongly correlated Fermi systems, and general concepts in out-of-equlibrium quantum systems.Comment: 6 pages, 4 figures + Supplemental Materia

    Bethe Ansatz solution of a new class of Hubbard-type models

    Get PDF
    We define one-dimensional particles with generalized exchange statistics. The exact solution of a Hubbard-type Hamiltonian constructed with such particles is achieved using the Coordinate Bethe Ansatz. The chosen deformation of the statistics is equivalent to the presence of a magnetic field produced by the particles themselves, which is present also in a ``free gas'' of these particles.Comment: 4 pages, revtex. Essentially modified versio

    Networked volunteering during the 2013 Sardinian floods

    Get PDF
    The article describes how ordinary citizens used Twitter as an emergency-management tool during the heavy floods that occurred in Sardinia, Italy, in November 2013. The case study constitutes an example of digital volunteering in the aftermath of a disaster event. The article applies the connective action framework (Bennet & Segerberg, 2012) for a deeper understanding of the dynamics of self-organized disaster communication activities on social media. Utilizing a dataset of 93,091 tweets that used the hashtag #allertameteoSAR (weather alert in Sardinia), the analysis focuses on: 1) the roles and patterns of influence among the main actors; and 2) the strategies for a peer ‘curation’ and sharing of a disaster-recovery oriented communication. The article highlights the role of Twitter celebrities and engaged ordinary users as digital volunteers and explains how they succeeded in activating bottom-up disaster-relief oriented communication

    Out of equilibrium correlation functions of quantum anisotropic XY models: one-particle excitations

    Full text link
    We calculate exactly matrix elements between states that are not eigenstates of the quantum XY model for general anisotropy. Such quantities therefore describe non equilibrium properties of the system; the Hamiltonian does not contain any time dependence. These matrix elements are expressed as a sum of Pfaffians. For single particle excitations on the ground state the Pfaffians in the sum simplify to determinants.Comment: 11 pages, no figures; revtex. Minor changes in the text; list of refs. modifie
    corecore