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Information and correlations in a quantum system are closely related through the process of measurement.

We explore such relation in a many-body quantum setting, effectively bridging between quantum metrology

and condensed matter physics. To this aim we adopt the information-theory view of correlations and study

the amount of correlations after certain classes of positive-operator-valued measurements are locally

performed. As many-body systems, we consider a one-dimensional array of interacting two-level systems

(a spin chain) at zero temperature, where quantum effects are most pronounced. We demonstrate how the

optimal strategy to extract the correlations depends on the quantum phase through a subtle interplay between

local interactions and coherence.
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The relation between correlations and measurement is
well known in quantum metrology, where the optimal
measurement strategy to extract information has been
thoroughly investigated [1,2]. In that context positive-
operator-valued measurements (POVMs) and information-
ally complete (IC) measurements are of particular
importance since, contrary to simple projective measure-
ments, they allow a complete tomography of the quantum
state [3]. They have been playing an important role also in
foundational aspects of quantum mechanics and quantum
information science, as well as in the physics of dissipative
systems [4–7].

In this Letter we aim at establishing a bridge between
quantum metrology and quantum many-particles physics.
We consider subsystems A and B in a many-body ground
state and analyze the correlations resulting from POVMs
performed on one of them, say B. Emphasis will be devoted
to the optimal correlations, namely the maximal amount of
correlations established between A and B. We observe that
performing a POVM on a given physical system is equiva-
lent to performing a projective measurement on an enlarged
system where the original one is coupled with a given
‘‘ancilla’’ (Naimark’s theorem). Such an ancilla can be an
appropriate subsystem, and then analyzing correlations in-
duced by a POVM on a local degree of freedom, say B, is an
effective way to study correlations of higher order
(spin-block correlations). Equivalently, the ancilla can be a
suitable environment entangled to the system, and then
correlations can give precious information on the decoher-
ence of the state of the local constituent A.

The total amount of correlations in any bipartite
(mixed) quantum state �̂AB is given by the mutual infor-
mation: IAB � Sð�̂AÞ þ Sð�̂BÞ � Sð�̂ABÞ, where Sð�̂Þ ¼
�Tr½�̂log2�̂� is the von Neumann entropy. A central

quantity we will address below is the quantum conditional
entropy SC, quantifying the ignorance about the compos-
ite system AB, once subsystem B has been measured with

a generic POVM fB̂kg,
S Cð�̂ABjfB̂kgÞ ¼

X
k

pkSð�̂ðkÞ
ABÞ: (1)

Here �̂ðkÞ
AB denotes the state of the composite system

AB, conditioned to a given outcome of B̂k: �̂ðkÞ
AB ¼

1
pk
½ðÎ � B̂kÞ�̂AB� with Î denoting the identity operator on

the subsystem A and pk ¼ Tr½ðÎ � B̂kÞ�̂AB�. The global
amount CAB of optimal (classical) correlations between
constituents A and B is established after applying a set of
measurements on B that least disturbs part A,

C AB ¼ max
fB̂kg

½Sð�̂AÞ � SCð�̂ABjfB̂kgÞ�; (2)

where the maximization is with respect to the measure-
ment strategy. The quantum discord [8] quantifies the
amount of quantum correlations and is defined as the
difference between total and classical ones: QAB ¼
IAB � CAB. The maximization in Eq. (2) is generally a
daunting task, since the optimization procedure has to be
performed on the whole set of possible POVMs.
We apply the above notions to the case where A and B

are individual spins of a quantum spin chain and consider

both von Neumann projective measurements M̂proj and

generalized POVMs M̂POVM [9]. We design a strategy to
exploit the information input given by the physical system
hosting the two spins. Namely, we assume that the sym-
metry of the POVM is fixed by the symmetry of the local
interactions occurring in the physical system. However, we
shall see this is not enough to optimize correlations, as the
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coherence of the many-body system is going to play a
major role.

Models and measurements.—As many-body systems,
we consider a one-dimensional array of spins 1=2 interact-
ing anisotropically along the three spatial directions with
interaction strengths Jx, Jy, and Jz, and subjected to a

uniform external field h. The Hamiltonian reads

Ĥ ¼ X
i

ðJx�̂x
i �̂

x
iþ1 þ Jy�̂

y
i �̂

y
iþ1 þ Jz�̂

z
i �̂

z
iþ1Þ � h

X
i

�̂z
i ;

(3)

where �̂�
i (� ¼ x, y, z) are the Pauli matrices on site i.

Hereafter we set jJxj ¼ 1 as the energy scale and work in
units of @ ¼ 1. At zero temperature, different quantum
phases can exist, separated by quantum phase transitions
(QPTs) [12]. Moreover, a completely factorized ground
state may occur at a specific value of the field hf [13].

For xyz spin chains of Eq. (3), this is given by hf ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� JzÞðJy � JzÞ

q
[14].

We will discuss Eq. (3) in the following cases: (I) The
ferromagnetic Ising chain (Jy ¼ Jz ¼ 0, Jx ¼ �1), which

undergoes a QPT at hc ¼ 1, and factorization at hf ¼ 0.

It can be experimentally realized with the magnetic com-
poundCoNb2O6 [15]. (II) The nonintegrable antiferromag-
netic xyx model (Jx ¼ Jz ¼ 1), with Jy ¼ 1=4 (this is the

case experimentally realized with Cs2CoCl4 [16]). Such
model displays a QPT at hc ’ 3:21 and factorization at
hf ’ 3:16. (III) The antiferromagnetic anisotropic xxz

Heisenberg chain (Jx ¼ Jy ¼ 1) with Jz ¼ 1=2. At zero

field it presents a critical xy phase with quasi-long-range
order (quasi-LRO) for jJzj< 1; this is separated by two
classical phases with QPTs at Jz ¼ �1. For h � 0, the xy
phase is a strip in the phase diagram, eventually turning
into polarized phases for sufficiently strong magnetic field
(the factorization phenomenon degenerates in the satura-
tion occurring as a first-order transition). Despite local
interactions being clearly different, both the quantum
Ising and xyx models display an Ising-like QPT with
Z2-symmetry breaking; the xxz model, instead, is charac-
terized by a critical phase without order parameter.

We first deal with standard projective measurements

M̂proj ¼ fB̂�g along the field direction, defined by B̂� ¼
1
2 ðÎ� �̂zÞ. Then we engineer a more sophisticated set of

POVMs, such that the symmetry of the measurement keeps
track of local interactions between the spins. Specifically,
we look at the interactions Jx, Jy, Jz entering Eq. (3), and

design the following M̂POVM ¼ fB̂kg:

B̂ k ¼ 1

4
ðÎþ ~ak � ~̂�Þ; k ¼ 1; . . . ; 4; (4)

where ~̂� ¼ ð�̂x; �̂y; �̂zÞ and ~ak is such that ~a1¼
�ðJx;Jy;JzÞ, ~a2¼�ðJx;�Jy;�JzÞ, ~a3¼�ð�Jx;Jy;�JzÞ,

~a4¼�ð�Jx;�Jy;JzÞ, and ��1¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2xþJ2yþJ2z

q
(see

Fig. 1). For generic J�, M̂POVM will be denoted as
coupling-oriented informationally complete (CIC) POVM.
The choice of the vectors ~ak in Eq. (4) reflects the symmetry

of the Hamiltonian by changing J� ! �J� by Û Ĥ Ûy,
with Û� ¼ Q

i�̂
�
2iþ1. In the isotropic case Jx ¼ Jy ¼ Jz, the

POVM in Eq. (4) degenerates in a symmetric information-

ally complete (SIC) POVM [5]. We comment that all the B̂k

do not depend on the external field explicitly. We shall see
that such a dependence enters in a subtle way related to the
macroscopic order of the system.
In order to compute the amount of correlations between

any two spins at distance r � jA� Bj, one needs to access
the single- and two-spin reduced density matrices �̂A and
�̂AB. Hereafter, we focus on the symmetry-broken ground
states of the Hamiltonian in Eq. (3), which is symmetric
under a global phase flip along the z-axis [17]. We observe
that the generic two-site reduced density matrices of such
states are beyond the so called ‘‘X-state’’ structure (emerging
in symmetric states, and for which expressions for quantum
and classical correlations are known [18]). Therefore, in the
present case, in principle the optimal correlations might be
achieved beyond projectivemeasurements [11]. To access all
the required two-point correlators, we resort to the density
matrix renormalization group approach with open boundary
conditions [19].We consider sufficiently long chains, such to
reduce unwanted edge effects and to approach the ideal
thermodynamic limit. For the Ising and the xyx model, we
add a small longitudinal field hx � 10�6 along the xy plane
to ensure the Z2-symmetry breaking.
Comparison between different measurement strat-

egies.—We start our analysis by presenting results obtained

for the quantum conditional entropy SðrÞ
C in Eq. (1), probing

how the local interactions affect the measurement, without

any further optimization. Figure 2 displays Sð1Þ
C for two

neighboring spins respectively for the Ising model, the xyx
model and the xxz model in a transverse field h. The total
amount of correlations reflects the main properties of the
ground state: in particular the peaks denote QPT points that
are associated to a divergence in their first derivative, while
factorization fields are marked by the vanishing of all
correlations. In all the three considered spin systems,

Jy

Jx

Jz

FIG. 1 (color online). The four vectors entering the POVM
measurement of Eq. (4). They point from the center to non-
adjacent corners of a parallelepiped with edges fixed by the
anisotropic interaction occurring into the system.
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measurement performances decrease from the CIC POVM
to the SIC POVM and to the projective measurement along
the computational basis z.

Much larger amounts of correlations can be achieved by
performing suitable optimization strategies on the mea-
surements considered above. In the following, we apply
two different kinds of optimization: (I) We rotate the

direction of the elements B̂k of the projective measurement

M̂proj and of the POVM M̂POVM on the Bloch sphere, by

keeping the angles between the vectors ~aj constant (this

corresponds to a rigid rotation of the experimental appara-
tus); optimal correlations are thus obtained by maximizing
over the angles (�, �) entering the rotation. (II) In the case
of CIC POVM, we independently vary the three parameters
Jx, Jy, and Jz, defining the direction of the vectors ~ak in

M̂POVM (see Fig. 1) [20].
In Fig. 3 we display the classical correlations between

two neighboring spins for the three considered models by
adopting the optimizations discussed above. Similarly to

the quantum conditional entropy, Cðr¼1Þ displays a notice-
able dependence on the model and on the magnetic field.
While in the Ising model the CIC angle-dependent POVM
and projective measurement give the same answer, for the
xyx and xxz model the angle-dependent strategy is not
optimal and is outperformed by the projective measure-
ments. The three-parameter (3P) POVM optimizations
provide the same correlations of the projective measure-
ments in the disordered regions and in xxzmodel; however,
where the order parameter h�xi � 0, they are still worse
than the projective measurement.

A similar analysis of correlations for r > 1 strongly
suggests that the effect of different measurement strategies
at long ranges vanishes everywhere but close to the quan-
tum critical points, where the correlation functions decay
algebraically with r (Fig. 4).
In the disordered phase of the Ising and the xyx model,

where the order parameter h�̂xi ¼ 0, as well as in the xxz
model, �opt and �opt are fixed to a value independent by h

(see Table I). By analyzing the rotated measurements

B̂kð�;�Þ, it turns out that projective measurements can
achieve a local measurement along the eigenvectors jvi
of �̂loc ¼ Jx�̂

x þ Jy�̂
y þ Jz�̂

z, fixed by the system
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FIG. 2 (color online). Conditional entropy Sð1Þ
C for the three

cases: (I) Ising, (II) xyx, and (III) xxz model in an external field
[see Eq. (3)]. Correlations are considered between two nearest
neighbors at the center of the chain (r ¼ 1); the length of the
chain is L ¼ 200. The various curves correspond to different
measurement strategies on subsystem B: standard projective
measurement along the z direction (black circles), SIC POVM
(red squares), as well as IC POVM set by the specific interactions
of the model (blue diamonds).
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FIG. 3 (color online). Same as in Fig. 2, but for the classical
correlations Cð1Þ optimized over the given measurement strategy.
In the first three cases, projective measurement, SIC POVM and
IC POVM (see the symbol pattern of Fig. 2), the optimization in
Eq. (2) is performed on the rotation angles (�, �) of the Bloch
sphere of subsystem B. The green stars refer to IC POVM
optimized by varying the three parameters J� defining the
direction of the vectors ~ak.
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FIG. 4 (color online). Quadratic difference between the
optimal correlations obtained following the four different mea-
surement strategies M̂ described above (see also Fig. 3): �2 �P

M̂ðCðrÞ � hCðrÞiÞ2. Here hCðrÞi denotes the average correlation

with respect to the four M̂. Data are shown for the xyxmodel as a
function h and for different r ¼ jA� Bj.
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Hamiltonian. For both the xyx and Ising model, optimal
correlations are attained by using projective measurements

along the x axis: B̂�ð�=2; 0Þ ¼ 1
2 ðÎ� �̂xÞ. This reflects the

Z2-symmetry �x ! ��x of the paramagnetic phase.
On the other hand, the operators of each optimized

four-element POVM can be written as B̂kð�opt; �optÞ ¼
jc opt

k ihc opt
k j, where jc opt

k i is of the type jc opt
k i ¼

�k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� az

p
e2i�opt j "i þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ az
p j #i, with �k 2 C. It turns

out that jc opt
k i ¼ jvi with �opt ¼ 0 and �k ¼ �ðvÞ ¼

ei argðaxþiayÞ for projective measurements. For CICmeasure-

ments �k ¼ �ðvÞ, but� � 0; for SIC-POVM �k � �ðvÞ. We
note that for large h, where the state is nearly fully polar-
ized along z, correlations are vanishing and therefore mea-
surements along any direction are optimal. The CIC with
3P optimization leads to optimal correlations in the disor-
dered phase.

In the symmetry-broken phase, optimal angles (�opt,

�opt) for both Ising and xyx models display a nontrivial

dependence on the order parameter, as visible in Fig. 5.

Except for a region close to the QPT, we fitted our results

using the formula �opt ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B� h�̂xinp þ k, where the

parameters A, B, k are model-dependent, while we
imposed n ¼ 8, inspired by the linear variation of �opt
with h that we observed in the Ising model, and by the
characteristic exponent � ¼ 1=8 of its order parameter at
the QPT (see the upper inset of Fig. 5). In some cases we
found significant deviations from such dependence (see
Supplemental Material [21] for a detailed discussion of
the optimal parameters). Peculiar behaviors arise close to
the QPT, where dramatic changes appear, and to the facto-
rization points, where an extremal value is reached. Such
behavior is consistent with the interpretation of the facto-
rization phenomenon as a ‘‘correlation transition’’ result-
ing from a competition between parallel and antiparallel
entanglement [22,23]: Optimal correlations arise from the
balance of two optimizations involving the parallel and
antiparallel entangled components (both present in the
ground state). The two entanglement components switch
each other and an extremal optimal angle is reached at hf.

It is interesting to compare the optimal angles in the Z2

symmetry-broken phase with those in the xy gapless phase
of the xxzmodel, where the order parameter is vanishing in
a nontrivial way because correlations decay algebraically.
For both projective and CIC measurements, the optimiza-
tion in such phase is characterized by a fixed value of �opt,

8 �opt, thus indicating that, because of quasi-LRO, any

preferential measurement direction is not unique in the
phase. Such a scenario is confirmed by the 3P optimized
CIC POVM (last row of Table I).
Discussion.—We analyzed spin-spin correlations that are

established after performing a local measurement on one of
the two spins in the ground state of a quantum spin chain.
We considered projective measurements as well as symmet-
ric IC POVMs; furthermore, we engineered coupling-
oriented IC POVMs with the aim to shed light on how the
optimal measurement can be performed a priori, once a
certain knowledge on the system has been previously
acquired. The measurement protocols were first tested,
without regard for adjustable parameters, by looking at the
conditional entropy. Then we focused on the possibility to
adjust the measurement on the basis of local interactions.

TABLE I. Optimization angles �opt 2 ½0; �� and �opt 2 ½0; 2�Þ in the disordered phases with vanishing order parameter. k is any
integer positive number. In the last line: optimization directions J� for CIC measures.

Ising, h > hc xyx, h > hc xxz, quasi-LRO

Proj. �1 ¼ �=2; �1 ¼ 0 �1 ¼ �=2; �1 ¼ 0 � ¼ �=2; 8 �
�2 ¼ �1; �2 ¼ � �2 ¼ �1; �2 ¼ �

CIC �1 ¼ 0; 8 �1 �k ¼ � � ¼ 0; 8 �
�2 ¼ �; �2 ¼ 0, � �k � 1:478þ k�=2

8 �3; �3 ¼ �=2þ k�
SIC �k ¼ � �k ¼ � �k1 � 0:955; �k1 ¼ 3�=4þ k1�

�k � 0:393þ k�=2 �k � 1:152þ k�=2 �k2 � 2:185; �k2 � 3:92þ k2�
3P CIC Jx ¼ 1; Jy ¼ Jz ¼ 0 Jx ¼ 1; Jy ¼ Jz ¼ 0 Jz ¼ 0; 8 ðJx; JyÞ
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FIG. 5 (color online). Optimization parameters for the nearest-
neighbor correlations in the xyx model, after a projective mea-

surement. The fit in the upper inset (dashed blue line) is �opt ¼
0:824� 0:709

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0769� x8

p
. The other optimization strategies

are discussed in the Supplemental Material [21]. In the lower
inset we display the order parameter h�̂xi as a function of h, as
extracted from numerical simulations.

PRL 108, 240503 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending
15 JUNE 2012

240503-4



Interactions, coherence, and symmetry fix the ‘‘optimal
flow’’ of information; the optimal strategy to extract the
correlations eventually depends on the quantum phase.

Specifically, an analysis of the quantum Ising and the
xyx model, both sharing the same kind of Z2-symmetry-
breaking QPT (even if with very different local interac-
tions), showed that in the ordered phase, the optimal
correlation follows the global order, in the sense that the
parameters characterizing the optimal measurement strat-
egy vary with the exponent � of the order parameter. Such
a result also could be useful to heuristically dictate the
optimal measurement strategy for higher order correlations
(between spin-blocks), where the optimization protocol is
not practicable. On the contrary, in the disordered phase,
local interactions fix the optimal strategy, in the sense that
optimal correlations are attained by fulfilling a local re-
quirement of projecting along �loc. The results on the xxz
model further support this scenario: optimal correlations
are obtained for measurements respecting the in-plane
symmetry of the model for any fixed direction in the xy
plane (there is no preferential direction because of quasi-
LRO in the xy critical phase).

Finally, we analyzed correlations at long ranges showing
that, near the QPT, long-range correlations are strongly
affected by the measurement strategies (see Fig. 4). In the
gapped phase anymeasurement strategy produces the same
result, on a length-scale where the correlation functions
themselves are sensible.

Given the relation between optimal correlations and
quantum discord, our results could be important in many-
body implementations of quantum information protocols.
We also comment that, being a single-spin state fully acces-
sible through Eq. (4), our scheme provides an effective
strategy to perform state tomography of one of the two spins
(a notoriously challenging problem in quantum magnets).
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