83 research outputs found

    Mechanisms of Crustal Anatexis: a Geochemical Study of Partially Melted Metapelitic Enclaves and Host Dacite, SE Spain

    Get PDF
    To shed light on the mechanisms of crustal anatexis, a detailed geochemical study has been conducted on minerals and glasses of quenched anatectic metapelitic enclaves and their host peraluminous dacites at El Hoyazo, SE Spain. Anatectic enclaves, composed of plagioclase ĂŸ biotite ĂŸ sillimanite ĂŸ garnet ĂŸ glass K-feldspar cordierite ĂŸ graphite, formed during the rapid heating and overstepped melting of a greenschist-facies metapelite, and finally equilibrated at 850 508C and 5^7 kbar. Glass appears as melt inclusions within all mineral phases and in the matrix of the enclaves, and has a major element composition similar to that of peraluminous leucogranites. Melt inclusions and matrix glasses have normative quartz^orthoclase^albite compositions that plot in the vicinity of H2O-undersaturated haplogranite eutectics. Melt inclusions show some compositional variability, with high Li, Cs and B, low Y, first row transition elements (FRTE) and rare earth elements (REE), and zircon and monazite saturation temperatures of 665^7508C.They are interpreted as melts produced by muscovitebreakdown melting reactions at the onset of the process of rapid melting and mostly under H2O-undersaturated conditions. Compared with melt inclusions, matrix glasses show less compositional variability, lower large ion lithophile element contents, higher Y, FRTE and REE, and higher zircon and monazite saturation temperatures ( 695^8158C).They are interpreted as former melts recording the onset of biotite dehydration-melting. Matrix glasses in the dacite are compositionally different from glasses in the enclaves, hence the genetic connection between metasedimentary enclaves and dacite is not as straightforward as previous petrographic and bulk major element data suggest; this opens the possibility for some alternative interpretation. This study shows the following: (1) melt inclusions provide a window of information into the prograde evolution of anatexis in the enclaves; (2) melting occurred for the most part under H2O-undersaturated conditions even if, because of the rapid heating, the protolith preserved most of the structurally bound H2O contained at greenschist facies up to the beginning of anatexis, such that the excess H2O maximized the amount of H2O-undersaturated melt generated during anatexis; (3) although a large proportion of accessory minerals are currently shielded within major mineral phases, they have progressively dissolved to a considerable extent into the melt phase along the prograde anatectic path, as indicated by the relative clustering of accessory mineral saturation temperatures and closeness of these temperatures to those of potential melting reactions; (4) the dacite magma was probably produced by coalescence of melt

    Chemical Signatures of Melt–Rock Interaction in the Root of a Magmatic Arc

    Get PDF
    Identification of melt–rock interaction during melt flux through crustal rocks is limited to field relationships and microstructural evidence, with little consideration given to characterising the geochemical signatures of this process. We examine the mineral and whole-rock geochemistry of four distinct styles of melt–rock interaction during melt flux through the Pembroke Granulite, a gabbroic gneiss from the Fiordland magmatic arc root, New Zealand. Spatial distribution, time-integrated flux of melt and stress field vary between each melt flux style. Whole-rock metasomatism is not detected in three of the four melt flux styles. The mineral assemblage and major element mineral composition in modified rocks are dictated by inferred P–T conditions, as in sub-solidus metamorphic systems, and time-integrated volumes of melt flux. Heterogeneous mineral major and trace element compositions are linked to low time-integrated volumes of melt flux, which inhibits widespread modification and equilibration. Amphibole and clinozoisite in modified rocks have igneous-like REE patterns, formed by growth and/or recrystallisation in the presence of melt and large equilibration volumes provided by the grain boundary network of melt. Heterogeneities in mineral REE compositions are linked to localisation of melt flux by deformation and resulting smaller equilibration volumes and/or variation in the composition of the fluxing melt. When combined with microstructural evidence for the former presence of melt, the presence of igneous-like mineral REE chemical signatures in a metamorphic rock are proposed as powerful indicators of melt–rock interaction during melt flux

    On the stability of magmatic cordierite and new thermobarometric equations for cordierite-saturated liquids

    No full text
    In this work, we have reviewed a large compositional dataset (571 analyses) for natural and experimental glasses to understand the physico-chemical andcompositional conditions of magmatic cordierite crystallization. Cordierite crystallizes in peraluminous liquids (A/CNK ≄1) at temperatures ≄750 °C, pressures ≀700 MPa, variable H2O activity (0.1–1.0) and relatively low fO2 conditions (≀NNO - 0.5). In addition to A/CNK ratio ≄1, a required condition for cordierite crystallization is a Si + Al cation value of the rhyolite liquid of 4 p8O (i.e. calculated on the 8 oxygen anhydrous basis), which is consistent with low Fe3+ contents and the absence or low content of non-bridging oxygens (NBO). This geochemical condition is strongly supported by the rare, if not unique, structure of cordierite where the tetrahedral framework is composed almost exclusively of Si and Al cations the sum of which is equal to 4 p8O [i.e. (Mg,Fe)8/9 Al16/9 Si20/9 O8], indicating that aluminium (and cordierite) saturation is limited by rhyolite liquids with Al = 4 - Si. Indeed, synthetic or natural systems with Al > 4 - Si always show metastable glass-in-glass separation or crystallization of refractory minerals such as corundum (Al16/3 O8) and aluminosilicates (Al16/5 Si8/5 O8). Multivariate regression analyses of literature data for experimental glasses coexisting with magmatic cordierite produced two empirical equations to independently calculate the T (±13 °C; ME, maximum error = 29 °C) and P (±16 %; ME% = 27 %) conditions of cordierite saturation. The greatest influence on the two equations is exerted by H2Omelt and Al concentrations, respectively. Testing of these equations with other thermobarometric constraints (e.g. feldspar-liquid, GASP, Grt–Bt and Grt–Crd equilibria) and thermodynamic models (NCKFMASHTO and NCKFMASH systems) was successfully performed for Crd-bearing rhyolites and residual enclaves from San Vincenzo (Tuscany, Italy), Morococala Field (Bolivia) and El Hoyazo (Spain). The reliability of each calculated P–T pair was graphically evaluated using the minimum and maximum P–T–H2O relationships for peraluminous rhyolite liquids modified after the metaluminous relationships in this work. Both P–T calculations and checking can be easily performed with the attached user-friendly spreadsheet (i.e. Crd-sat_TB)

    Melt inclusions in migmatites and granulites.

    No full text
    Important advances have been made during the last 15 years in the study of melt inclusions in minerals from migmatites and granulites. Pioneer work on high temperature metapelitic anatectic enclaves in peraluminous dacites from SE Spain has shown that droplets of granitic melt can be trapped by minerals growing during incongruent melting reactions, and that the composition of such trapped melts can be representative of that of the bulk melt in the system during the anatexis of the rock. Therefore melt inclusions may represent samples of embryionic anatectic granite. In most cases, these melt inclusions define microstructures that are typical of primary entrapment, and show little or no evidence of melt crystallization upon cooling. Rather, the melt solidified to glass due to very fast cooling associated with the submarine extrusion of the dacites. Hence inclusions can readily be analyzed for major and trace elements by conventional methods such as the electron microprobe or by laser ablation-inductively coupled plasmamass spectrometry

    Constraining the P-T conditions of melting in stromatic migmatites from Ronda (S Spain).

    No full text
    none4noneL. Tajcmanova; O. Bartoli; B. Cesare; A. Acosta-VigilL., Tajcmanova; Bartoli, Omar; Cesare, Bernardo; A., Acosta Vigi

    Melt inclusions in migmatites and granulites

    No full text
    Important advances have been made during the last 15 years in the study of melt inclusions in minerals from migmatites and granulites. Pioneer work on high temperature metapelitic anatectic enclaves in peraluminous dacites from SE Spain has shown that droplets of granitic melt can be trapped by minerals growing during incongruent melting reactions, and that the composition of such trapped melts can be representative of that of the bulk melt in the system during the anatexis of the rock. Therefore melt inclusions may represent samples of embryionic anatectic granite. In most cases, these melt inclusions define microstructures that are typical of primary entrapment, and show little or no evidence of melt crystallization upon cooling. Rather, the melt solidified to glass due to very fast cooling associated with the submarine extrusion of the dacites. Hence inclusions can readily be analyzed for major and trace elements by conventional methods such as the electron microprobe or by laser ablation-inductively coupled plasmamass spectrometry. Based on the results from these quite unusual anatectic enclaves, one would expect similar melt inclusions to be present also in more conventional, slowly cooled, regionally metamorphosed migmatite and granulite terranes. As a matter of fact, recent investigations confirm this hypothesis. Tiny (<25 ÎŒm) inclusions containing a cryptocrystalline aggregate of quartz, feldpars, biotite and muscovite have been found in garnet from the metapelitic granulites of the Keraka Khondalite Belt, as well as in garnet and ilmenite from metapelitic and quartzo-feldspathic migmatites from the Alps, Ronda and the Himalayas. Due to the grain-size, texture and chemical/mineralogical composition, these inclusions are called "nanogranites" and are interpreted to represent a crystallized inclusion of anatectic melt. Exceptionally and spatially associated with the nanogranites, inclusions containing glass have also been observed. In general, the preparation of the samples and analysis of these inclusions in migmatites and granulites require more sophisticated techniques than those applied to inclusions in xenoliths and enclaves, but the information on the composition of crustal anatectic melts can also be obtained. Since its discovery, new occurrences of nanogranite are being reported, or can be inferred from re-assessment of literature data, from migmatites and granulites worldwide. These former melt inclusions open new perspectives both for the microstructural approach to partially melted rocks and for the chemical characterization of natural crustal melts

    Microstructures and composition of melt inclusions in a crustal anatectic environment, represented by metapelitic enclaves within El Hoyazo dacites, SE Spain

    No full text
    This article reports microstructures and compositions of melt inclusions in anatectic metapelites found as enclaves within El Hoyazo dacites, in the Neogene Volcanic Province of southeastern Spain. The enclaves represent fragments of continental crust partially melted at similar to 800-850 degrees C and 5-7 kbar, and brought to surface rapidly within the host volcanics while they still were in a molten state. Rapid cooling produced the solidification of silicate melt to glass in the rock matrix and in inclusions within minerals. Melt inclusions (MI) are present within nearly all mineral phases in the enclaves, and their associated microstructures indicate a primary or pseudo-secondary origin. The entrapment mechanisms of MI within plagioclase were associated with: (1) the presence of micron-sized solids (mostly graphite) on the surface of growing crystals; (2) partial resorption of crystals, generation of embayments, and later growth in the presence of melt; and (3) entrapment of melt during crystal growth within crystallographic-controlled planar structures, e.g. on crystal faces. Melt inclusions in garnet are commonly associated with regularly oriented planar discontinuities filled with glass, interpreted either as spaces left between adjacent mineral growth spirals or as crystallographic-controlled cracks generated in-between stages of mineral growth. Melt was trapped or percolated along these microstructures and, later on, necking down phenomena individualized inclusions with negative crystal shape. Melt inclusions in biotite are abundant, show negative crystal shape, and parallel cleavage planes. Melt inclusions in cordierite, alkali feldspar and ilmenite are isolated, sparse and sometimes rather large. The composition of glass from all MI is leucogranitic and peraluminous, with small differences among glasses in each mineral host. There is some variation in glass composition within each textural location as well. Compositional heterogeneity can be partially explained by a combination of processes such as generation of boundary layers during mineral growth, crystallization of daughter phases, and hydrogen loss via diffusion through the host. Mean glass compositions in the several textural locations, however, can be tentatively interpreted as reflecting the evolution of melt chemistry during the prograde low-to-medium pressure anatexis of quartz-poor metapelites. (c) 2006 Elsevier B.V. All rights reserved
    • 

    corecore