252 research outputs found

    Photovoltaic characterization of di-branched organic sensitizers for DSSCs.

    Get PDF
    In this work, the data on the effect of peripheral functionalization of a series of triphenylamine based di-branched dyes used as sensitizers in dye-sensitized solar cells are presented. The effect of different alkyl functionalities on the donor moiety upon the optical and photovoltaics parameters have been investigated in dye-sensitized solar cells (DSSCs) using a 10-μm TiO2 active layer. The absorption spectra, output efficiency, and incident photon to conversion efficiency of the DSSCs have been collected. The data can be exploited for properly designing efficient, stable, and industrially viable dyes for third generation solar devices

    Calix[4]arene-based molecular photosensitizers for sustainable hydrogen production and other solar applications

    Get PDF
    This review collects the most representative literature reports on the use of calix[4]arene-based molecules as components, namely photosensitizer dyes, in solar devices, including photovoltaics (dye-sensitized solar cells, DSSC), hydrogen photocatalytic and photoelectrochemical generation from water and sunlight, and CO2 photoreduction. Calix[4]arenes are versatile and easily obtainable scaffolds to be integrated with solar device molecular components either as electron donor groups in pi-conjugated dyes or as host-guest moieties to favor intermolecular interactions. Their beneficial role has been exploited to enhance photovoltaic, hydrogen production, and CO2 reduction performance, paving the way to a new class of molecular active components for next generation solar devices

    tuning optical properties of opal photonic crystals by structural defects engineering

    Get PDF
    We report on the preparation and optical characterization of three dimensional colloidal photonic crystal (PhC) containing an engineered planar defect embedding photoactive push-pull dyes. Free standing polystyrene films having thickness between 0.6 and 3 microns doped with different dipolar chromophores were prepared. These films were sandwiched between two artificial opals creating a PhC structure with planar defect. The system was characterized by reflectance at normal incidence angle (R), variable angle transmittance (T), and photoluminescence spectroscopy (PL). Clear evidence of defect states were observed in T and R spectra, which allow the light to propagate for selected frequencies within the pseudogap (stop band)

    Calix[4]arene-Based Sensitizers for Host-Guest Supramolecular Dyads for Solar Energy Conversion in Photoelectrochemical Cells

    Get PDF
    The photogeneration of electricity and solar fuels by solar irradiation in photoelectrochemical cells is one of the sectors with the highest growth potential in the decarbonised society. However, the use of different components, in particular photosensitizers and catalysts, can present problems of charge transfer efficiency at the interface, leading to lower final efficiencies. In this work we present novel integrated photosensitizer-catalyst dyads based on robust and, at the same time, flexible host-guest non-covalent interactions through the use of calix[4]arene cavities. Current photogeneration in photoelectrochemical cells showed twice greater efficiency in the integrated calixarene-based host-guest dyads compared to the traditional architecture based on the separate photosensitizer-catalyst pair. Molecular dynamics studies have shown that the enhanced performance originates from an optimization of the distances between the centres of the photosensitizer, catalyst and semiconductor involved in the charge transfer processes, thus allowing a higher final efficiency of the charge photogeneration process

    Multibranched Calix[4]arene-Based Sensitizers for Efficient Photocatalytic Hydrogen Production

    Get PDF
    In the field of direct production of hydrogen from solar energy and water, photocatalytic methods hold great potential especially when metal-free molecular components are preferred. In this work, we have developed a new class of calix[4]arene-based molecular photosensitizers to be used as antenna systems in the photocatalytic production of hydrogen. The structure of the dyes has a typical donor-π-acceptor molecular architecture where a calix[4]arene scaffold is used as an embedded donor. The new materials have been fully characterized in their optical, electrochemical, and photocatalytic properties. The properties conferred by the calix[4]arene donor afforded twice larger performances compared to the corresponding linear system though showing similar quantitative optical properties. The new molecular design paves the way to a new strategy for photocatalytic hydrogen production where the calix[4]arene scaffold can afford more efficient systems and can offer the potential for host-guest supramolecular effects

    Supramolecular interactions in clusters of polar and polarizable molecules

    Full text link
    We present a model for molecular materials made up of polar and polarizable molecular units. A simple two state model is adopted for each molecular site and only classical intermolecular interactions are accounted for, neglecting any intermolecular overlap. The complex and interesting physics driven by interactions among polar and polarizable molecules becomes fairly transparent in the adopted model. Collective effects are recognized in the large variation of the molecular polarity with supramolecular interactions, and cooperative behavior shows up with the appearance, in attractive lattices, of discontinuous charge crossovers. The mean-field approximation proves fairly accurate in the description of the gs properties of MM, including static linear and non-linear optical susceptibilities, apart from the region in the close proximity of the discontinuous charge crossover. Sizeable deviations from the excitonic description are recognized both in the excitation spectrum and in linear and non-linear optical responses. New and interesting phenomena are recognized near the discontinuous charge crossover for non-centrosymmetric clusters, where the primary photoexcitation event corresponds to a multielectron transfer.Comment: 14 pages, including 11 figure

    Diquat Derivatives: Highly Active, Two-Dimensional Nonlinear Optical Chromophores with Potential Redox Switchability

    Get PDF
    In this article, we present a detailed study of structure−activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF_6^− salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π^* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β_0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E_(1/2) values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β_0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by ‘off-diagonal’ β_(zyy) components. The most significant findings of these studies are: (i) β_0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4-stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior

    What difference does a thiophene make? Evaluation of a 4,4′-bis(thiophene) functionalised 2,2′-bipyridyl copper(I) complex in a dye-sensitized solar cell

    Get PDF
    AbstractThe synthesis of a 4,4′-bis(2-thienyl-5-carboxylic acid) functionalised 2,2′-bipyridine ligand and corresponding copper(I) complex is described and its application in a dye-sensitized solar cell (DSSC) is studied. The positioning of the thiophene groups appears favourable from DFT analysis and a best efficiency of 1.41% was obtained with this dye, for a 0.3 cm2 cell area DSSC. Two absorbance bands are observed in the electronic absorption spectrum of the copper(I) complex at 316 nm and 506 nm, with ε values of 50,000 M−1 cm−1 and 9030 M−1 cm−1, respectively. Cyclic voltammetry and electrochemical impedance spectroscopy are also used to provide a detailed analysis of the dye and assess its functionality in a DSSC

    Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    Get PDF
    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is similar to 800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to similar to 1100 nm, and a photocurrent density exceeding 30 mA cm(-2) in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.open0
    corecore