21,576 research outputs found
Intentionality versus Constructive Empiricism
By focussing on the intentional character of observation in science, we argue that Constructive Empiricism – B.C. van Fraassen’s much debated and explored view of science – is inconsistent. We then argue there are at least two ways out of our Inconsistency Argument, one of which is more easily to square with Constructive Empiricism than the other
EIT and diffusion of atomic coherence
We study experimentally the effect of diffusion of Rb atoms on
Electromagnetically Induced Transparency (EIT) in a buffer gas vapor cell. In
particular, we find that diffusion of atomic coherence in-and-out of the laser
beam plays a crucial role in determining the EIT resonance lineshape and the
stored light lifetime.Comment: 5 pages, 8 figure
Lessons from crossing symmetry at large N
20 pages, v2: Assumptions stated more clearly, version published in JHEPWe consider the four-point correlator of the stress tensor multiplet in N=4 SYM. We construct all solutions consistent with crossing symmetry in the limit of large central charge c ~ N^2 and large g^2 N. While we find an infinite tower of solutions, we argue most of them are suppressed by an extra scale \Delta_{gap} and are consistent with the upper bounds for the scaling dimension of unprotected operators observed in the numerical superconformal bootstrap at large central charge. These solutions organize as a double expansion in 1/c and 1/\Delta_{gap}. Our solutions are valid to leading order in 1/c and to all orders in 1/\Delta_{gap} and reproduce, in particular, instanton corrections previously found. Furthermore, we find a connection between such upper bounds and positivity constraints arising from causality in flat space. Finally, we show that certain relations derived from causality constraints for scattering in AdS follow from crossing symmetry.Peer reviewe
Multiwavelength Observations of Pulsar Wind Nebulae
The extended nebulae formed as pulsar winds expand into their surroundings
provide information about the composition of the winds, the injection history
from the host pulsar, and the material into which the nebulae are expanding.
Observations from across the electromagnetic spectrum provide constraints on
the evolution of the nebulae, the density and composition of the surrounding
ejecta, the geometry of the central engines, and the long-term fate of the
energetic particles produced in these systems. Such observations reveal the
presence of jets and wind termination shocks, time-varying compact emission
structures, shocked supernova ejecta, and newly formed dust. Here I provide a
broad overview of the structure of pulsar wind nebulae, with specific examples
from observations extending from the radio band to very-high-energy gamma-rays
that demonstrate our ability to constrain the history and ultimate fate of the
energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the
inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their
Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space
Science series
A Variational Expansion for the Free Energy of a Bosonic System
In this paper, a variational perturbation scheme for nonrelativistic
many-Fermion systems is generalized to a Bosonic system. By calculating the
free energy of an anharmonic oscillator model, we investigated this variational
expansion scheme for its efficiency. Using the modified Feynman rules for the
diagrams, we obtained the analytical expression of the free energy up to the
fourth order. Our numerical results at various orders are compared with the
exact and other relevant results.Comment: 9 pages, 3 EPS figures. With a few typo errors corrected. to appear
in J. Phys.
Multi-scalar tachyon potential on non-BPS domain walls
We have considered the multi-scalar and multi-tachyon fields living on a 3d
domain wall embedded in a 5d dimensional Minkowski spacetime. The effective
action for such a domain wall can be found by integrating out the normal modes
as vibrating modes around the domain wall solution of a truncated 5d
supergravity action. The multi-scalar tachyon potential are good enough to
modeling assisted inflation scenario with multi-tachyon fields. The tachyon
condensation are also briefly addressed.Comment: version to appear in JHEP, 18 pages, 3 figure
Gaussian Wavefunctional Approach in Thermofield Dynamics
The Gaussian wavefunctional approach is developed in thermofield dynamics. We
manufacture thermal vacuum wavefunctional, its creation as well as annihilation
operators,and accordingly thermo-particle excited states. For a
(D+1)-dimensional scalar field system with an arbitrary potential whose Fourier
representation exists in a sense of tempered distributions, we calculate the
finite temperature Gaussian effective potential (FTGEP), one- and
two-thermo-particle-state energies. The zero-temperature limit of each of them
is just the corresponding result in quantum field theory, and the FTGEP can
lead to the same one of each of some concrete models as calculated by the
imaginary time Green function.Comment: the revised version of hep-th/9807025, with one equation being added,
a few sentences rewritten, and some spelling mistakes corrected. 7 page,
Revtex, no figur
Cryptosporidium, Enterocytozoon, and Cyclospora Infections in Pediatric and Adult Patients with Diarrhea in Tanzania.
Cryptosporidiosis, microsporidiosis, and cyclosporiasis were studied in four groups of Tanzanian inpatients: adults with AIDS-associated diarrhea, children with chronic diarrhea (of whom 23 of 59 were positive [+] for human immunodeficiency virus [HIV]), children with acute diarrhea (of whom 15 of 55 were HIV+), and HIV control children without diarrhea. Cryptosporidium was identified in specimens from 6/86 adults, 5/59 children with chronic diarrhea (3/5, HIV+), 7/55 children with acute diarrhea (0/7, HIV+), and 0/20 control children. Among children with acute diarrhea, 7/7 with cryptosporidiosis were malnourished, compared with 10/48 without cryptosporidiosis (P < .01). Enterocytozoon was identified in specimens from 3/86 adults, 2/59 children with chronic diarrhea (1 HIV+), 0/55 children with acute diarrhea, and 4/20 control children. All four controls were underweight (P < .01). Cyclospora was identified in specimens from one adult and one child with acute diarrhea (HIV-). Thus, Cryptosporidium was the most frequent and Cyclospora the least frequent pathogen identified. Cryptosporidium and Enterocytozoon were associated with malnutrition. Asymptomatic fecal shedding of Enterocytozoon in otherwise healthy, HIV children has not been described previously
Effective Conformal Theory and the Flat-Space Limit of AdS
We develop the idea of an effective conformal theory describing the low-lying
spectrum of the dilatation operator in a CFT. Such an effective theory is
useful when the spectrum contains a hierarchy in the dimension of operators,
and a small parameter whose role is similar to that of 1/N in a large N gauge
theory. These criteria insure that there is a regime where the dilatation
operator is modified perturbatively. Global AdS is the natural framework for
perturbations of the dilatation operator respecting conformal invariance, much
as Minkowski space naturally describes Lorentz invariant perturbations of the
Hamiltonian. Assuming that the lowest-dimension single-trace operator is a
scalar, O, we consider the anomalous dimensions, gamma(n,l), of the
double-trace operators of the form O (del^2)^n (del)^l O. Purely from the CFT
we find that perturbative unitarity places a bound on these dimensions of
|gamma(n,l)|<4. Non-renormalizable AdS interactions lead to violations of the
bound at large values of n. We also consider the case that these interactions
are generated by integrating out a heavy scalar field in AdS. We show that the
presence of the heavy field "unitarizes" the growth in the anomalous
dimensions, and leads to a resonance-like behavior in gamma(n,l) when n is
close to the dimension of the CFT operator dual to the heavy field. Finally, we
demonstrate that bulk flat-space S-matrix elements can be extracted from the
large n behavior of the anomalous dimensions. This leads to a direct connection
between the spectrum of anomalous dimensions in d-dimensional CFTs and
flat-space S-matrix elements in d+1 dimensions. We comment on the emergence of
flat-space locality from the CFT perspective.Comment: 46 pages, 2 figures. v2: JHEP published versio
Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions
Cubic couplings between a complex scalar field and a tower of symmetric
tensor gauge fields of all ranks are investigated on any constant curvature
spacetime of dimension d>2. Following Noether's method, the gauge fields
interact with the scalar field via minimal coupling to the conserved currents.
A symmetric conserved current, bilinear in the scalar field and containing up
to r derivatives, is obtained for any rank r from its flat spacetime
counterpart in dimension d+1, via a radial dimensional reduction valid
precisely for the mass-square domain of unitarity in (anti) de Sitter spacetime
of dimension d. The infinite collection of conserved currents and cubic
vertices are summarized in a compact form by making use of generating functions
and of the Weyl/Wigner quantization on constant curvature spaces.Comment: 35+1 pages, v2: two references added, typos corrected, enlarged
discussions in Subsection 5.2 and in Conclusion, to appear in JHE
- …
