21,576 research outputs found

    Intentionality versus Constructive Empiricism

    Get PDF
    By focussing on the intentional character of observation in science, we argue that Constructive Empiricism – B.C. van Fraassen’s much debated and explored view of science – is inconsistent. We then argue there are at least two ways out of our Inconsistency Argument, one of which is more easily to square with Constructive Empiricism than the other

    EIT and diffusion of atomic coherence

    Full text link
    We study experimentally the effect of diffusion of Rb atoms on Electromagnetically Induced Transparency (EIT) in a buffer gas vapor cell. In particular, we find that diffusion of atomic coherence in-and-out of the laser beam plays a crucial role in determining the EIT resonance lineshape and the stored light lifetime.Comment: 5 pages, 8 figure

    Lessons from crossing symmetry at large N

    Get PDF
    20 pages, v2: Assumptions stated more clearly, version published in JHEPWe consider the four-point correlator of the stress tensor multiplet in N=4 SYM. We construct all solutions consistent with crossing symmetry in the limit of large central charge c ~ N^2 and large g^2 N. While we find an infinite tower of solutions, we argue most of them are suppressed by an extra scale \Delta_{gap} and are consistent with the upper bounds for the scaling dimension of unprotected operators observed in the numerical superconformal bootstrap at large central charge. These solutions organize as a double expansion in 1/c and 1/\Delta_{gap}. Our solutions are valid to leading order in 1/c and to all orders in 1/\Delta_{gap} and reproduce, in particular, instanton corrections previously found. Furthermore, we find a connection between such upper bounds and positivity constraints arising from causality in flat space. Finally, we show that certain relations derived from causality constraints for scattering in AdS follow from crossing symmetry.Peer reviewe

    Multiwavelength Observations of Pulsar Wind Nebulae

    Full text link
    The extended nebulae formed as pulsar winds expand into their surroundings provide information about the composition of the winds, the injection history from the host pulsar, and the material into which the nebulae are expanding. Observations from across the electromagnetic spectrum provide constraints on the evolution of the nebulae, the density and composition of the surrounding ejecta, the geometry of the central engines, and the long-term fate of the energetic particles produced in these systems. Such observations reveal the presence of jets and wind termination shocks, time-varying compact emission structures, shocked supernova ejecta, and newly formed dust. Here I provide a broad overview of the structure of pulsar wind nebulae, with specific examples from observations extending from the radio band to very-high-energy gamma-rays that demonstrate our ability to constrain the history and ultimate fate of the energy released in the spin-down of young pulsars.Comment: 20 pages, 11 figures. Invited review to appear in Proc. of the inaugural ICREA Workshop on "The High-Energy Emission from Pulsars and their Systems" (2010), eds. N. Rea and D. Torres, (Springer Astrophysics and Space Science series

    A Variational Expansion for the Free Energy of a Bosonic System

    Full text link
    In this paper, a variational perturbation scheme for nonrelativistic many-Fermion systems is generalized to a Bosonic system. By calculating the free energy of an anharmonic oscillator model, we investigated this variational expansion scheme for its efficiency. Using the modified Feynman rules for the diagrams, we obtained the analytical expression of the free energy up to the fourth order. Our numerical results at various orders are compared with the exact and other relevant results.Comment: 9 pages, 3 EPS figures. With a few typo errors corrected. to appear in J. Phys.

    Multi-scalar tachyon potential on non-BPS domain walls

    Full text link
    We have considered the multi-scalar and multi-tachyon fields living on a 3d domain wall embedded in a 5d dimensional Minkowski spacetime. The effective action for such a domain wall can be found by integrating out the normal modes as vibrating modes around the domain wall solution of a truncated 5d supergravity action. The multi-scalar tachyon potential are good enough to modeling assisted inflation scenario with multi-tachyon fields. The tachyon condensation are also briefly addressed.Comment: version to appear in JHEP, 18 pages, 3 figure

    Gaussian Wavefunctional Approach in Thermofield Dynamics

    Full text link
    The Gaussian wavefunctional approach is developed in thermofield dynamics. We manufacture thermal vacuum wavefunctional, its creation as well as annihilation operators,and accordingly thermo-particle excited states. For a (D+1)-dimensional scalar field system with an arbitrary potential whose Fourier representation exists in a sense of tempered distributions, we calculate the finite temperature Gaussian effective potential (FTGEP), one- and two-thermo-particle-state energies. The zero-temperature limit of each of them is just the corresponding result in quantum field theory, and the FTGEP can lead to the same one of each of some concrete models as calculated by the imaginary time Green function.Comment: the revised version of hep-th/9807025, with one equation being added, a few sentences rewritten, and some spelling mistakes corrected. 7 page, Revtex, no figur

    Cryptosporidium, Enterocytozoon, and Cyclospora Infections in Pediatric and Adult Patients with Diarrhea in Tanzania.

    Get PDF
    Cryptosporidiosis, microsporidiosis, and cyclosporiasis were studied in four groups of Tanzanian inpatients: adults with AIDS-associated diarrhea, children with chronic diarrhea (of whom 23 of 59 were positive [+] for human immunodeficiency virus [HIV]), children with acute diarrhea (of whom 15 of 55 were HIV+), and HIV control children without diarrhea. Cryptosporidium was identified in specimens from 6/86 adults, 5/59 children with chronic diarrhea (3/5, HIV+), 7/55 children with acute diarrhea (0/7, HIV+), and 0/20 control children. Among children with acute diarrhea, 7/7 with cryptosporidiosis were malnourished, compared with 10/48 without cryptosporidiosis (P < .01). Enterocytozoon was identified in specimens from 3/86 adults, 2/59 children with chronic diarrhea (1 HIV+), 0/55 children with acute diarrhea, and 4/20 control children. All four controls were underweight (P < .01). Cyclospora was identified in specimens from one adult and one child with acute diarrhea (HIV-). Thus, Cryptosporidium was the most frequent and Cyclospora the least frequent pathogen identified. Cryptosporidium and Enterocytozoon were associated with malnutrition. Asymptomatic fecal shedding of Enterocytozoon in otherwise healthy, HIV children has not been described previously

    Effective Conformal Theory and the Flat-Space Limit of AdS

    Get PDF
    We develop the idea of an effective conformal theory describing the low-lying spectrum of the dilatation operator in a CFT. Such an effective theory is useful when the spectrum contains a hierarchy in the dimension of operators, and a small parameter whose role is similar to that of 1/N in a large N gauge theory. These criteria insure that there is a regime where the dilatation operator is modified perturbatively. Global AdS is the natural framework for perturbations of the dilatation operator respecting conformal invariance, much as Minkowski space naturally describes Lorentz invariant perturbations of the Hamiltonian. Assuming that the lowest-dimension single-trace operator is a scalar, O, we consider the anomalous dimensions, gamma(n,l), of the double-trace operators of the form O (del^2)^n (del)^l O. Purely from the CFT we find that perturbative unitarity places a bound on these dimensions of |gamma(n,l)|<4. Non-renormalizable AdS interactions lead to violations of the bound at large values of n. We also consider the case that these interactions are generated by integrating out a heavy scalar field in AdS. We show that the presence of the heavy field "unitarizes" the growth in the anomalous dimensions, and leads to a resonance-like behavior in gamma(n,l) when n is close to the dimension of the CFT operator dual to the heavy field. Finally, we demonstrate that bulk flat-space S-matrix elements can be extracted from the large n behavior of the anomalous dimensions. This leads to a direct connection between the spectrum of anomalous dimensions in d-dimensional CFTs and flat-space S-matrix elements in d+1 dimensions. We comment on the emergence of flat-space locality from the CFT perspective.Comment: 46 pages, 2 figures. v2: JHEP published versio

    Higher spin interactions with scalar matter on constant curvature spacetimes: conserved current and cubic coupling generating functions

    Get PDF
    Cubic couplings between a complex scalar field and a tower of symmetric tensor gauge fields of all ranks are investigated on any constant curvature spacetime of dimension d>2. Following Noether's method, the gauge fields interact with the scalar field via minimal coupling to the conserved currents. A symmetric conserved current, bilinear in the scalar field and containing up to r derivatives, is obtained for any rank r from its flat spacetime counterpart in dimension d+1, via a radial dimensional reduction valid precisely for the mass-square domain of unitarity in (anti) de Sitter spacetime of dimension d. The infinite collection of conserved currents and cubic vertices are summarized in a compact form by making use of generating functions and of the Weyl/Wigner quantization on constant curvature spaces.Comment: 35+1 pages, v2: two references added, typos corrected, enlarged discussions in Subsection 5.2 and in Conclusion, to appear in JHE
    corecore