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1 Introduction

Conformal field theories (CFT) are one of the pillars of theoretical physics. Important

motivations to study them are their role in phase transitions and their relation to renor-

malization group flows. Over the last two decades, it also became evident that they describe

quantum gravity in AdS space, through the AdS/CFT correspondence. The main ingre-

dient of a CFT is the set of local primary operators φ(x) and the main observables are

correlators of these operators

〈φ1(x1) · · ·φn(xn)〉 . (1.1)

A CFT is defined by its CFT data, namely, the list of scaling dimensions ∆i of all local

primary operators and the operator product expansion (OPE) coefficients cijk for any three

primaries. In a unitary CFT this data satisfies certain constraints. In particular the OPE

coefficients are real numbers and for the case to be studied in this paper

∆ ≥ ℓ+ 2 , (1.2)

for a primary operator of spin ℓ. Once the CFT data is given, the OPE allows to write, in

principle, any higher point correlator. The idea of the conformal bootstrap program is to

use crossing symmetry of correlation functions, together with unitarity and the structure

of the OPE, in order to constrain the CFT data. In the simplest setting, which is also
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the relevant for this paper, we consider the correlator of four identical operators of scaling

dimension ∆. Conformal symmetry implies

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

x2∆12 x
2∆
34

, (1.3)

where we have introduced the cross-ratios

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (1.4)

By using the OPE we can decompose the correlator (1.3) as a sum over intermediate states

φi along the (12)(34) channel

g(u, v) = 1 +
∑

φi

c2iGi(u, v). (1.5)

The sum runs over the conformal primary intermediate states appearing in the OPE of φ×φ.

The conformal blocks Gi(u, v) are completely fixed by conformal symmetry and depend

only on the dimension and spin of the intermediate state. They encode the contribution of

a given primary together with its tower of descendants. In the above expansion we have

also singled out the contribution from the identity operator, always present in the OPE

of two identical operators. We could have instead chosen to expand along the (13)(24)

channel, and the result should have been the same. Indeed, crossing symmetry of the

four-point function implies

v∆g(u, v) = u∆g(v, u), (1.6)

which results in the following non-trivial equation involving the CFT data
∑

i

c2i
(

v∆Gi(u, v)− u∆Gi(v, u)
)

= u∆ − v∆ . (1.7)

Note that the r.h.s. arose from the presence of the identity operator. Equation (1.7) is

called the conformal bootstrap equation.

So far the discussion has been pretty general. However, specific conformal field theories

often possess extra symmetries which impose extra constraints. An important example is

that of supersymmetric conformal field theories (SCFT). The subject of this paper will

be four-dimensional N = 4 super Yang-Mills (SYM). This is the maximally symmetric

four dimensional conformal field theory, and is particularly interesting since it describes

quantum gravity on AdS space.

In N = 4 super Yang-Mills the energy-momentum tensor lies in a half-BPS multiplet,

whose superconformal primary is a scalar operator O of protected dimension two and

which transforms in the 20′ representation of the SU(4) R-symmetry group.1 In [1], the

consequences of crossing-symmetry of the correlator 〈OOOO〉 were analyzed and were

written in the form of a (super)conformal bootstrap equation:
∑

∆,ℓ

a∆,ℓ (G∆,ℓ(u, v)−G∆,ℓ(v, u)) = Fshort(u, v, c). (1.8)

1In order to simplify the notation we will obviate the representation index.
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Although the derivation is conceptually similar to the previous case, there are important

differences. First, among the states in the OPE of O × O there is a rich spectrum of

protected operators, belonging to short or semi-short multiplets, which do not acquire

anomalous dimension and whose OPE coefficient is fixed due to superconformal Ward

identities [2]. The r.h.s. of (1.8) resums the contribution from all such operators, instead of

just the identity. The structure of Fshort(u, v, c) is very rich, but it is important to note that

it is only a function of the central charge, and not of the coupling constant of the theory,

and is explicitly known. Second, supersymmetry relates operators in different conformal

towers. Therefore, the sum runs only over unprotected superconformal primaries in long

multiplets and correspondingly G∆,ℓ(u, v) are the superconformal blocks [2], whose explicit

expression is given below. Finally, a∆,ℓ denote the square of the OPE coefficients and are

non-negative as a consequence of unitarity.

In spite of fitting in one line both (1.7) and (1.8) are formidable equations: they involve

a double infinite sum, over an unknown spectrum with unknown OPE coefficients. But

whatever these unknowns are, they should combine (at each value of the coupling constant!)

to give the explicitly known right hand side. In [3] it was understood how to efficiently

use these kind of equations. The idea is to propose a putative spectrum. For a given

spectrum, the r.h.s. of (1.8) will be a linear combination in terms of the basis of functions

(G∆,ℓ(u, v)−G∆,ℓ(v, u)). If either of the coefficients a∆,ℓ turns out to be negative, then

the putative spectrum is not consistent with unitarity and can be ruled out. In practice

this is done numerically, and only the support of the putative spectrum for each ℓ needs to

be specified. The positivity of a∆,ℓ is checked by acting on both sides of (1.8) with families

of linear operators. For a given spin ℓ, we define the twist as τ = ∆ − ℓ. The leading

twist operator for a given spin is the operator with the smallest twist. The method above

gives numeric upper bounds for the dimension of leading twist operators, see [3] for the

details. The authors of [1] carried out this analysis and found numerical bounds for the

dimension of unprotected leading twist operators of low spin ℓ = 0, 2, 4, for various values

of the central charge c = (N2 − 1)/4. At large values of the central charge, the upper

bounds found by [1] were consistent with

∆0 = 4− 16

N2
+ . . . , (1.9)

∆2 = 6− 4

N2
+ . . . , (1.10)

∆4 = 8− 48

25N2
+ . . . . (1.11)

These results are precisely the dimensions ∆ℓ at large N found from a holographic super-

gravity computation [4–6]!

The aim of this paper is to construct analytic solutions to the conformal bootstrap

equation (1.8) at large values of the central charge. Solutions at large N consistent with

crossing symmetry for non-supersymmetric four dimensional conformal field theories have

already been constructed in [7].2 We start section 2 by applying their methods to our case.

2Analytic studies of the crossing relations also include [8–10] but in these works the focus is on operators

with small twist but very high spin.
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In addition to a large central charge, we assume single trace operators acquire a paramet-

rically large dimension, which happens for large λ = g2N . As in [7], an infinite number

of solutions is found. We then consider these solutions in Mellin space, and show that

they take a remarkably simple form. The Mellin expressions allow to understand several

features of these solutions, which are useful for their interpretation carried out in section 3.

Unitarity requires the introduction of a gap scale ∆gap at which new operators enter into

the spectrum. We argue that the infinite tower of solutions is suppressed by powers of ∆gap

and the full solution takes the form of a double expansion. This is closely reminiscent of

the picture of [11]. Comparing our results with instanton contributions to the four point

function, previously computed in the literature, justifies this picture and sets ∆gap ∼ N1/4

for intermediate values of the coupling constant. At the end of section 3 we show that even

if the first two “extra” solutions are not suppressed, positivity constraints from causality in

flat space would still imply consistency with the upper bounds found by [1]. We find this

connection quite remarkable. Furthermore, we show that certain relations derived from

causality constraints for scattering in AdS found in [12] follow from crossing symmetry.

We end up with some conclusions.

2 Analytic solutions at large N

2.1 The superconformal bootstrap equation

As already mentioned in the introduction, the conformal bootstrap equations for N = 4

SYM takes the form
∑

∆,ℓ

a∆,ℓF∆,ℓ(u, v) = Fshort(u, v, c), (2.1)

where the sum runs over unprotected superconformal primaries, in the singlet represen-

tation of the R−symmetry group SU(4), with spin ℓ = 0, 2, 4, . . ., and with spectrum

satisfying the unitarity bound ∆ ≥ ℓ+ 2. For brevity, we have introduced

F∆,ℓ(u, v) = G∆,ℓ(u, v)−G∆,ℓ(v, u) . (2.2)

In order to write down the explicit expressions for the superconformal blocks it is convenient

to introduce variables z, z̄, with u = |z|2, v = |1− z|2. In terms of these3

G∆,l(z, z̄) = (1− z)2(1− z̄)2(zz̄)
1
2
(∆−l)g∆+4,l(z, z̄) (2.3)

with

g∆,l(z, z̄) =

(−1

2

)l 1

z − z̄

(

zl+1k∆+l(z)k∆−l−2(z̄)− (z̄)l+1k∆+l(z̄)k∆−l−2(z)
)

(2.4)

and

kβ(z) = 2F1

(

β

2
,
β

2
, β, z

)

. (2.5)

3We will use both sets, (u, v) and (z, z̄), interchangeably.
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Alternatively, we can also write

∑

∆,ℓ

a∆,ℓG∆,ℓ(u, v) = Gshort(u, v, c) +A(u, v) , (2.6)

where the function Gshort(u, v, c) is related to Fshort(u, v, c) by

Fshort(u, v, c) = Gshort(u, v, c)−Gshort(v, u, c) (2.7)

and its explicit form is given in appendix A. Then the conformal bootstrap equation (2.1)

is equivalent to the requirement

A(u, v) = A(v, u) . (2.8)

Let us emphasize that A(u, v) generally depends on the coupling constant and in order

to compute it one usually has to resort to explicit computations. The superconformal

bootstrap equation differs from the standard one in two aspects:

• It involves superconformal blocks, instead of conformal blocks. For the present case

they are proportional to the usual conformal blocks upon a shift ∆ → ∆+ 4.

• Fshort(u, v, c) has a much richer structure than its analogue in conformal field theories,

which usually contains only the identity operator.

2.2 Solutions at large N

We look for solutions consistent with crossing symmetry in the large N expansion up to

order 1/N2. We will assume that single trace operators acquire a parametrically large

dimension. More precisely, in addition to N large we are assuming λ = g2N is also large.

Hence the space of intermediate states is spanned by double trace operators of the form

On,ℓ = O∂µ1 . . . ∂µℓ
(∂.∂)nO, labelled by integers n = 0, 1, . . . and ℓ = 0, 2, . . ., of dimension

2n + ℓ + 4 at leading order, and spin ℓ. Higher trace operators will not contribute to the

order we are working at. The function Fshort(u, v, c) has a very simple expansion in 1/N2

or rather the inverse of the central charge c

Fshort(u, v, c) = F
(0)
short(u, v) +

1

c
F

(1)
short(u, v) . (2.9)

At leading order the conformal bootstrap equation reduces to

∞
∑

n=0

∞
∑

ℓ=0
even

a
(0)
n,ℓF4+2n+ℓ,ℓ(u, v) = F

(0)
short(u, v) . (2.10)

The set of function F4+2n+ℓ,ℓ(u, v) is a complete set, hence given F
(0)
short(u, v) we can fix the

structure constants at leading order. We obtain

a
(0)
n,ℓ =

2−7−ℓ−4nπ(1 + ℓ)(6 + ℓ+ 2n)Γ(3 + n)Γ(4 + ℓ+ n)

Γ(52 + n)Γ(72 + ℓ+ n)
. (2.11)
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In order to find solutions at the next order, we expand the ingredients of the conformal

bootstrap equation as follows

∆n,ℓ = 4 + 2n+ ℓ+
1

N2
γn,ℓ + . . . , (2.12)

an,ℓ = a
(0)
n,ℓ +

1

N2
a
(1)
n,ℓ + . . . , (2.13)

Gshort(u, v, c) = G
(0)
short(u, v) +

1

N2
G

(1)
short(u, v) + . . . , (2.14)

A(u, v) =
1

N2
A(u, v) + . . . . (2.15)

Then at order 1/N2 we obtain

∞
∑

n=0

∞
∑

ℓ=0
even

(

a
(1)
n,ℓG4+2n+ℓ,ℓ(z, z̄) + a

(0)
n,ℓγn,ℓ

1

2

∂

∂n
G4+2n+ℓ,ℓ(z, z̄)

)

= G
(1)
short(z, z̄) +A(z, z̄). (2.16)

We need to find sets
{

γn,ℓ, a
(1)
n,ℓ

}

which lead to a r.h.s. consistent with crossing symme-

try (2.8), namely A(z, z̄) = A(1− z, 1− z̄). It is easy to see that A(z, z̄) has to be different

from zero. Indeed, on the l.h.s. of (2.16) the operators of leading twist τ = ∆ − ℓ, have

twist four, which corresponds to n = 0, so an expansion of the l.h.s. in powers of u will

start with u2.4 On the other hand G
(1)
short(u, v) has the small u expansion

G
(1)
short(u, v) = 16u v

1− v2 + 2v log v

(1− v)3
+ . . . . (2.17)

Therefore A(z, z̄) has to cancel that contribution. The minimal choice is that given by the

supergravity result [13]

A(z, z̄) = −16u2v2D̄2422(z, z̄), (2.18)

where the definition of the D̄ functions is given in the appendix B. Performing the confor-

mal partial wave expansion, this leads to specific values for
{

γn,ℓ, a
(1)
n,ℓ

}

, which we denote
{

γsugran,ℓ , a
(1),sugra
n,ℓ

}

. In particular one obtains

γsugran,ℓ = −4(1 + n)(2 + n)(3 + n)(4 + n)

(1 + ℓ)(6 + ℓ+ 2n)
, (2.19)

a
(1),sugra
n,ℓ =

1

2

∂

∂n

(

a
(0)
n,ℓγ

sugra
n,ℓ

)

. (2.20)

Now the general solution to (2.16) can be written as

γn,ℓ = γsugran,ℓ + γ̂n,ℓ , (2.21)

a
(1)
n,ℓ = a

(1),sugra
n,ℓ + â

(1)
n,ℓ , (2.22)

4In general, the small u behavior of the conformal block for an operator of twist τ is uτ/2.

– 6 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
4

where
{

γ̂n,ℓ, â
(1)
n,ℓ

}

are solutions of the “homogeneous” equation

∞
∑

n=0

∞
∑

ℓ=0
even

(

â
(1)
n,ℓG4+2n+ℓ,ℓ(z, z̄) + a

(0)
n,ℓ γ̂n,ℓ

1

2

∂

∂n
G4+2n+ℓ,ℓ(z, z̄)

)

= A(z, z̄),

A(z, z̄) = A(1− z, 1− z̄) . (2.23)

In order to construct explicit solutions to (2.2) we follow closely [7] adapted to our case.

The idea is to restrict ourselves to solutions with intermediate operators of spin up to a

maximum value L, namely we allow ℓ = 0, 2, . . . , L. Next, we consider the limit z → 0 and

z̄ → 1 and focus in the terms proportional to log z log(1−z̄). This isolates the contributions

from the anomalous dimensions and we obtain the following set of conditions for any pair

(p, q) ∈ Z
2
+

0 =
∞
∑

n=0

∞
∑

ℓ=0
even

1

2ℓ
a
(0)
n,ℓγ̂n,ℓ {I(n+ 3, q)δℓ+n+2,p−1 − I(n+ ℓ+ 4, q)δn+1,p−1}

+

∞
∑

n=0

∞
∑

ℓ=0
even

1

2ℓ
a
(0)
n,ℓγ̂n,ℓ {I(ℓ+ n+ 4, p)δn+1,q−1 − I(n+ 3, p)δℓ+n+2,q−1} , (2.24)

where have defined

I(m,m′) =

∮

dz

2πi

(1− z)m−3

zm′
−1

k̃2m(z)k−2m′(z), (2.25)

with

k̃β(z) = − Γ(β)

Γ2(β/2)
2F1

(

β

2
,
β

2
, 1, z

)

. (2.26)

The counting of solutions of (2.24) works exactly as in [7]. For instance, for L = 0 there is

exactly one solution, proportional to an overall normalization factor, for which

γ̂n,0 = −(1 + n)2(2 + n)2(3 + n)3(4 + n)2(5 + n)2

960(5 + 2n)(7 + 2n)
. (2.27)

For L = 2 there are two new solutions, for L = 4 there are three new solutions, and so on.

For a cut-off L the total number of solutions is (L+ 2)(L+ 4)/8. After having found γ̂n,ℓ,

we look at the terms proportional to log(1− z̄) in (2.2). In all the cases we find

â
(1)
n,ℓ =

1

2

∂

∂n

(

a
(0)
n,ℓγ̂n,ℓ

)

, (2.28)

exactly as for the supergravity solution. This was also observed for the solutions in [7]

and was subsequently proven by [14]. To each solution corresponds a function A(z, z̄). We

denote by A
(L)
m (z, z̄) for m = 0, 2, 4, . . . , L, the new solutions that appear at spin L (later

we will be more specific about the index m). In the next subsection we will show that

these solutions admit a simple representation in Mellin space, and we will give an analytic

expression for all of them, but in the meantime let us add that each of these solutions

– 7 –



J
H
E
P
0
6
(
2
0
1
5
)
0
7
4

can be written in terms of D̄ functions, and so have an interpretation in terms of Witten

diagrams, as expected. For instance

A
(0)
0 (u, v) = u2v2D̄4444(u, v), (2.29)

A
(2)
0 (u, v) = u2v2(1 + u+ v)D̄5555(u, v), (2.30)

A
(2)
2 (u, v) = u2v2

(

D̄5656(u, v) + D̄6565(u, v) + u2D̄6655(u, v)+ (2.31)

+uD̄5566(u, v) + v2D̄5665(u, v) + vD̄6556(u, v)
)

.

Note that these expressions agree with the ones found holographically by [7], for the special

case ∆ = 4, however, our external states have dimension two.

2.3 Solutions in Mellin space

As shown in [15–17], beautiful structure emerges when expressing correlators in Mellin

space, specially in the large N limit. For the purposes of the present note, given a function

of cross ratios A(u, v), we define its Mellin representation M(x, y) by

A(u, v) =
1

(2πi)2

∫

Γ2(x)Γ2(y)Γ2(2− x− y)M(x, y)u−xv−ydxdy , (2.32)

where the integration contours are over the imaginary axis shifted by a small positive real

part. Notice that we defined (2.32) in such a way that the Mellin amplitude for D̄2222(u, v)

equals 1. The solutions A(L)(u, v) we have found in the previous section5 possess two

important symmetries. First, due to crossing symmetry they satisfy

A(L)(u, v) = A(L)(v, u). (2.33)

Second, they are obtained from a conformal partial wave decomposition in the (12)(34)

channel, as such

A(L)(u, v) = v2A(L)

(

u

v
,
1

v

)

. (2.34)

This is a symmetry of each conformal block (2.3) separately, and physically corresponds to

exchanging operators 1 and 2. These conditions will translate as symmetries in Mellin space

M (L)(x, y) = M (L)(y, x), (2.35)

M (L)(x, y) =
Γ2(−2− x− y)Γ2(4 + y)

Γ2(y)Γ2(2− x− y)
M (L)(x,−2− x− y). (2.36)

For instance, we can work out the solution of previous section for L = 0 in Mellin space,

we obtain

M (0)(x, y) =
x2(1 + x)2y2(1 + y)2

(1− x− y)2(x+ y)2
, (2.37)

which can be easily checked to satisfy both symmetries.

5We denote by A(L)(u, v) the collective space of solutions entering at spin L.
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In order to construct the solutions to crossing symmetry in Mellin space for higher

spin L, we work out the Mellin representation for the superconformal blocks (2.3). This is

given by

B∆,ℓ(x, y) =
y2(1 + y)2

(−1 + x+ y)2(x+ y)2
B∆+4,ℓ(x, y), (2.38)

where B∆,ℓ(x, y) are the usual four dimensional conformal blocks in Mellin space, for the

exchange of a particle of dimension ∆ and spin ℓ and for external particles of dimension

two. They have been constructed in [18, 19] and are given by

B∆,ℓ(x, y) =
e−iπ∆

(

eiπ(ℓ−2x+∆) − 1
)

Γ(− ℓ
2 + x− ∆

2 )Γ(−2− ℓ
2 + x+ ∆

2 )

Γ2(x)
P

(ℓ)
∆ (x, y), (2.39)

where P
(ℓ)
∆ (x, y) is a polynomial of degree ℓ, defined in [18], and whose explicit form will

not be important for us. Note the remarkable fact that the dependence of B∆,l(x, y) on

y is very simple. This is a very nice feature of Mellin space and it will be important in

the construction of our solutions. Let us see how M (0)(x, y) follows directly from sym-

metries (2.35) and (2.36) and the expression for conformal blocks in Mellin space. Since

this solution involves only intermediate states with ℓ = 0, it is a sum of terms B∆,0(x, y).

Therefore, its y dependence is fixed, and it should take the form

M (0)(x, y) =
y2(1 + y)2

(−1 + x+ y)2(x+ y)2
f(x). (2.40)

But then the symmetries (2.35) and (2.36) fix f(x) = x2(1 + x)2 up to a constant! Hence

we reobtain (2.37). This reasoning can be extended to higher spins. Allowing intermediate

states up to spin L we obtain

M (L)(x, y) =
x2(1 + x)2y2(1 + y)2

(1− x− y)2(x+ y)2
P (L)(x, y), (2.41)

where P (L)(x, y) is a polynomial of degree L which satisfies

P (L)(x, y) = P (L)(y, x) = P (L)(x,−2− x− y). (2.42)

Requiring these two conditions on a general polynomial of degree L leaves (L+2)(L+4)/8

undetermined coefficients, which exactly agrees with the number of solutions found in the

previous section.

Before proceeding, let us mention that the supergravity solution in Mellin space can

be written in the form (2.41), with

P (sugra)(x, y) =
16

(x+ 1)(y + 1)(1 + x+ y)
. (2.43)

In order to construct the most general solution we introduce the following set of variables

s = x+ 2/3 , (2.44)

t = −4/3− x− y , (2.45)

u = y + 2/3 . (2.46)
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These satisfy s+ t+ u = 0 and as a consequence of the symmetries P (L)(s, t, u) should be

a completely symmetric function in the three variables. Introducing

σ2 = s2 + t2 + u2 , (2.47)

σ3 = s3 + t3 + u3 , (2.48)

we can take our basis of solutions to be

Pp,q(x, y) = σp
2σ

q
3 , (2.49)

for non-negative integers p, q. These correspond to intermediate states up to spin 2(p+ q).

Finally, the supergravity solution can be written in these variables as

P (sugra)(s, t, u) = − 16

(s+ 1/3)(t+ 1/3)(u+ 1/3)
. (2.50)

2.4 Absence of other solutions

The representation in Mellin space is also useful in order to discuss the existence of other

solutions. Imagine we had an extra solution of the form

M extra(x, y) =
x2(1 + x)2y2(1 + y)2

(1− x− y)2(x+ y)2
f extra(x, y), (2.51)

for a non-polynomial function f extra(x, y) satisfying the required symmetries. Let us con-

sider the analytic structure of f extra(x, y) in the complex plane. An important feature of

the Mellin space representation is that poles of M(x, y) correspond to intermediate states.

Having assumed the spectrum at large N , the structure of poles is already fixed. Then

f extra(x, y) should have no poles. This means that f extra(x, y) is an entire function in the

complex x, y planes. If we assume polynomially bounded solutions, namely γn,ℓ grows at

large n at most as a polynomial, we require f extra(x, y) to be polynomially bounded as

well.6 This implies that f extra(x, y) has to be a polynomial (since a polynomially bounded

entire function is a polynomial). Therefore, such a function has to be a finite linear com-

bination of the solutions we have already discussed. Let us mention that by independent

arguments in [7] it was shown, for non supersymmetric CFT, that all solutions are obtained

as convergent sums of the bounded-spin solutions. There are two classes of solutions for

which our assumptions do not hold and are unbounded in the spin. For one class, extra

poles at large values ∆gap are allowed. As we will argue, their contribution to higher spins

is suppressed by powers of ∆gap. For the second class γn,ℓ is not polynomially bounded.

As will be seen in the next section, such solutions would require a gap scale smaller than

any positive power of N . Both classes correspond to sums of the solutions we have found,

so in this sense our solutions are a complete set.

6We assume that a non-polynomially bounded M(x, y), consistent with crossing-symmetry, leads to a

non-polynomially bounded γn,ℓ. This was seen to be the case for all examples we have tried. The intuitive

reason is that if M(x, y) grows exponentially inside an angular region, crossing symmetry would extend

this region to other two regions via (2.35) and (2.36) (e.g. the upper half plane in the complex x−plane is

extended to ℑ(y) > 0 and ℑ(−2−x−y) > 0). The requirement of polynomially bounded Mellin amplitudes

also arises if we require the CFT to have a dual description in terms of an effective field theory on AdS [20].
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3 Interpretation

In the previous section we have obtained the general solution at order 1/N2 (and for large

g2N) consistent with crossing symmetry. It takes the final form

A(z, z̄) = A(sugra)(z, z̄) +
∞
∑

p,q=0

αp,qA
(p,q)(z, z̄) , (3.1)

where we have given explicit expressions for all solutions in Mellin space (and for the

first few ones in space time). Note that the coefficient in front of A(sugra)(z, z̄) is fixed,

since A(sugra)(z, z̄) cancels a contribution (2.16) in G
(1)
short(z, z̄), which would violate our

assumption for the spectrum. On the other hand, the solutions A(p,q)(z, z̄) may have (in

principle!) an arbitrary coefficient αp,q in front. In this section we will analyze these

solutions.

3.1 Large n behavior

For the discussion to follow it will be important to understand the contribution from

each solution to the anomalous dimension γn,ℓ in the large n limit. Let us start with the

supergravity solution (2.19), in the n ≫ ℓ limit we obtain7

γsugran,ℓ = −2
n3

ℓ+ 1
+ . . . . (3.2)

We have given the explicit form of A(p,q)(z, z̄) in Mellin space. It turns out that the large

n contribution to the anomalous dimensions from such solutions can be inferred from the

large x, y behaviour of the Mellin amplitude [11, 20]. More precisely

M(ρ x, ρ y) ∼ ρsf(x, y) → γn ∼ n2s+1 , (3.3)

at large n. One can indeed check that this gives the correct answer for the supergravity

contribution. From the explicit form of σ2 and σ3 and the overall prefactor M (0)(x, y)

we obtain

M (p,q)(ρ x, ρ y) ∼ x4y4

(x+ y)4
(x2 + xy + y2)p(xy(x+ y))qρ4+2p+3q . (3.4)

Denoting by γ
(p,q)
n,ℓ the contribution to the anomalous dimension from A(p,q)(z, z̄) we there-

fore obtain

γ
(p,q)
n,ℓ ∼ n4p+6q+9 . (3.5)

Note that even for the smallest p, q the anomalous dimension grows quite fast with n. From

this together with the relation a
(1)
n,ℓ =

1
2

∂
∂n

(

a
(0)
n,ℓγn,ℓ

)

we can obtain the behavior at large n

of the structure constants. The zeroth order structure constants behaves as

a
(0)
n,ℓ ∼

1 + ℓ

2ℓ
n2

16n
. (3.6)

Hence

a
(1),sugra
n,ℓ ∼ 1

2ℓ
n5

16n
, a(p,q)n ∼ −n4p+6q+11

16n
. (3.7)

7The limit ℓ ≫ n ≫ 1 will also be relevant below. In this case we obtain γsugra
n,ℓ = −4n4/ℓ2.
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3.2 Interpretation of our solutions

The superconformal bootstrap equation was first proposed by [1] and was used to find

numerical bounds for the dimension of unprotected leading twist operators with low spin. In

that paper it was observed that the numerical bounds for dimensions of operators with spin

l = 0, 2, 4 at large values of the central charge were consistent with the supergravity result

∆0,0 = 4− 16

N2
+ . . . , (3.8)

∆0,2 = 6− 4

N2
+ . . . , (3.9)

∆0,4 = 8− 48

25N2
+ . . . . (3.10)

In this section we argue that the solutions we have obtained, which are all of order 1/N2,

are consistent with the results found by the numerical bootstrap.

As already mentioned in the introduction, the input we give to the conformal bootstrap

equation is the spectrum of our putative CFT. This spectrum should be consistent with

unitarity, namely, the dimensions should satisfy the unitarity bound and should lead to

real OPE coefficients. Consider the spectrum taking into account only the supergravity

solution γ
(sugra)
n,ℓ . At large n this behaves as

∆n,ℓ = 2n− 2

N2

n3

ℓ+ 1
+ . . . . (3.11)

If we take N very large but finite, at some large enough n the spectrum will violate unitarity

no matter how small 1/N is. Note that the sign in front of γ
(sugra)
n,ℓ is immaterial: if we had

the opposite sign, the violation to unitarity would manifest in the sign of the square of the

OPE coefficient. For the case at hand we see that we run into trouble when8

n ∼ N . (3.12)

Even more importantly, note that at this point the subleading corrections n3/N2 are as

large as the leading piece 2n, and hence we cannot trust our perturbative solutions. This

signals the fact that the spectrum should be modified at large n. More precisely we can

trust γ
(sugra)
n,ℓ only below certain scale ∆gap. This is the scale which was assumed to be

parametrically large when constructing the zero order spectrum. Around that scale new

operators have to be included in the spectrum such that the exact spectrum is now consis-

tent with unitarity:

γ
(sugra)
n,ℓ → γ

(exact)
n,ℓ (∆gap). (3.13)

Note that we are not assuming any particular dependence of ∆gap with N . The rela-

tion (3.12) implies an upper bound ∆gap . N , but the gap scale could be much smaller

than that. In particular, ∆gap could depend on other parameters to which the crossing

relations are blind, such as the coupling constant.

8Under mild assumptions and in order to preserve unitarity, the improved bound
∣

∣γn,ℓ/N
2
∣

∣ < 4 was

derived in [11] by using the optical theorem.
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We can ask now, what is the expansion of γ
(exact)
n,ℓ (∆gap) in the limit 1 ≪ n ≪ ∆gap.

We expect the following behaviour

γ
(exact)
n,ℓ (∆gap) = −2

n3

ℓ+ 1
+ c1

n4

∆gap
+ c2

n5

∆2
gap

+ . . . , (3.14)

where we are first expanding in 1/∆gap and then in large n. In order to understand this

behavior it is convenient to consider the correlator in Mellin space and focus on the simplest

example of exchange of a heavy operator of dimension ∆gap (plus all its descendants) along

the s−channel. This will produce a tower of poles in Mellin space, of the schematic form

∑

m

Resm(y)

2x+∆gap + 2m
(3.15)

corresponding to the sum over poles of the corresponding conformal block, see e.g. [20].

As we take ∆gap to be very large, the sum above localizes around m ∼ ∆2
gap, effectively

resulting in a pole at x ∼ ∆2
gap. According to the previous discussion about the large n

behavior, we expect then γ
(exact)
n,ℓ (∆gap) ∼ γ

(sugra)
n,ℓ F (n/∆gap), plus subleading terms in n,

leading to (3.14). In particular, F (n/∆gap) has radius of convergence n ∼ ∆gap.

Note that in (3.14) as n ∼ ∆gap the higher orders in the expansion will start to

contribute, so that problems with unitarity are potentially avoided. We argue that the

full solution will be a a double expansion, in 1/N2 and 1/∆gap. Now comes a simple but

important point: the extra terms in the expansion (3.14) should also be consistent with

crossing symmetry. Since in the previous section we have constructed, to order 1/N2, all

solutions consistent with symmetry, the extra terms (3.14) should be combinations of those.

From the large n behavior of γ
(p,q)
n,ℓ we conclude

γ
(exact)
n,ℓ (∆gap) = γ

(sugra)
n,ℓ + c0,0

γ
(0,0)
n,ℓ

∆6
gap

+ c1,0
γ
(1,0)
n,ℓ

∆10
gap

+ . . . . (3.16)

The extra solutions we have found in particular capture the 1/∆gap expansion of the exact

completion of the supergravity solution.

The necessity of an extra scale to render the spectrum consistent with unitarity was

first discussed in [11], where it was motivated from the point of view of effective field

theories in the AdS bulk. From that point of view, the analogues of our extra solutions

arise from non-renormalizable interactions in AdS and are suppressed by powers of ∆gap,

the powers being fixed by dimensional analysis. From a purely CFT point of view note that

crossing symmetry allows the extra solutions with coefficients which are not suppressed

γ(n, ℓ) = γsugran,ℓ + α0,0γ
(0,0)
n,ℓ + α1,0γ

(1,0)
n,ℓ + . . . . (3.17)

The presence of extra solutions with non-suppressed overall coefficients will not be, in

general, consistent with the numeric results quoted at the beginning of this section, unless

precise linear inequalities are satisfied. Note that perturbative crossing symmetry alone is

not sufficient to rule out such solutions, however, we would like to claim that such solutions
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are not present and the extra solutions appear always with suppressed overall coefficients.

Below we present two compelling arguments for this claim, although we do not have a proof.

First, note that (3.17) would imply that our solutions break down at smaller and

smaller scales. In order for the solutions not to break down, the simplest possibility is to

assume ∆gap is small enough, so that the spectrum changes, as described above.9 More

precisely, if (3.17) includes γ
(p,q)
n,ℓ with coefficient αp,q ∼ 1 we get the upper bound

∆gap . N
1

4+2p+3q . (3.18)

For instance, including only the spin zero solution we would obtain ∆gap . N1/4, while

including also the next solution we would have ∆gap . N1/6. From crossing symmetry

considerations alone we are not able to find a lower bound for ∆gap. However, in the

following we compare our solutions with known instanton contributions to the four point

correlators. As we will see, this comparison suggests ∆gap ∼ N1/4, ruling out most of the

extra solutions (or requiring suppressed overall coefficients).

Comparison with instanton solutions. Correlation functions in N = 4 SYM are

known to receive non-perturbative instanton contributions [21, 22]. In the large N limit we

expect the conformal bootstrap equation, and hence our treatment of it, to capture such

solutions as well. The precise form of the instanton correction to the four-point function

of protected operators considered in this paper was given in [23]. In our conventions, their

result reads

G(u, v)inst =
f(τ)

N7/2
u2v2D̄4444(u, v), (3.19)

where τ is the complexified coupling constant. While f(τ) was computed in a semiclassical

approximation (around the one-instanton background) the full solution, for all values of τ ,

is expected to have this form [21, 22]. Hence it is valid to compare this expression with our

solutions. We see that (3.19) has exactly the form A(0,0)(u, v)! Furthermore the precise

normalization is consistent with (3.16), and for a moderate coupling constant g = fixed,

we obtain
1

N2

1

∆6
gap

∼ N−7/2 → ∆gap ∼ N1/4 , (3.20)

which coincides with the dimension of single trace operators in N = 4 SYM at large N

and g = fixed, see e.g. [12]. This strengthen our argument that all other solutions, besides

the supergravity one, are suppressed.

Before proceeding, note that according to the AdS/CFT duality ∆2
gap ∼ 1/α′. There-

fore, in the dual picture the expansion (3.17) corresponds to the expansion of the string

theory result, as expected.

3.3 Connection to causality and UV completion

UV completion and positivity constraints. Given a correlator in N = 4 SYM one

can construct a corresponding scattering amplitude in flat space [15, 24]. The expression

9Another possibility is that one needs to consider the full, finite N , bootstrap equation. In that case

none of our methods apply and we have nothing to say.
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for the flat space amplitude follows directly from the Mellin expression for the correlator

and for our particular case we obtain

Aflat(s, t, u) = − 16

s t u
+

∑

p,q=0

αp,qσ
p
2σ

q
3 , (3.21)

where σ2 = s2+ t2+u2, σ3 = s3+ t3+u3 and s+ t+u = 0. We have suppressed an overall

factor which depends on our precise conventions and GN ∼ 1/N2. In [25] it was argued

that there are positivity constraints on the 2 → 2 scattering in the forward direction t → 0.

More precisely, we can consider (3.21) in the limit t → 0. In this limit σ2 = 2s2 and σ3 → 0

and we obtain

Aflat(s, t,−s) =
16

s2 t
+ α0,0 + 2α1,0s

2 + . . . +O(t). (3.22)

According to [25], the coefficients α0,0, α1,0, etc., have to be positive, otherwise there is

no hope to embed this amplitude into the amplitude for a UV complete theory, whose

S-matrix has the usual analytic properties.

What is the consequence of this fact for our discussion? Consider the first two extra

solutions A(0,0) and A(1,0). Their contribution to the leading-twist anomalous dimension

for ℓ = 0, 2 can be computed and we obtain

γ0,0 = −16− 9

7
α0,0 −

16

7
α1,0 , (3.23)

γ0,2 = −4− 20

11
α1,0 , (3.24)

where the contribution from supergravity has also been included. The positivity constraints

α0,0 > 0, α1,0 > 0 lead to an upper bound for the anomalous dimension γ0,0 and γ0,2.

This upper bound is consistent with the one found by the numerical conformal bootstrap!

The situation is less straightforward if we include higher spin solutions. For instance, as

σ3 vanishes in the forward limit, the coefficient in front of most of our solutions is not

constrained by these considerations. However, as we have seen above, for these solutions

to be present we would need a quite small dimension gap.

Finally, let us mention that this argument relies on the flat space limit of the AdS/CFT

duality and not solely on the CFT perspective. It should be possible to prove that a CFT

with, lets say α0,0 < 0, has pathologies, along the lines of [25].

Causality and large n, ℓ behavior. In [12] the graviton three-point coupling in weakly

coupled theories of gravity was studied. For the case of asymptotically AdSD space the

authors show that causality imposes non-trivial constraints on the anomalous dimensions

γ(n, ℓ) of operators around large N . In the limit ℓ ≫ n ≫ 1 they obtain

γ(n, ℓ) ∼ −nD−1

ℓD−3
, (3.25)

where we have suppressed a factor of GN already implicit in our definition of γ(n, ℓ). This

has been already derived using crossing arguments [8, 9, 26]. Note that the supergravity
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result (2.19) exactly agrees with their result for D = 5, see footnote 7. In the opposite

limit n ≫ ℓ ≫ 1 (and ℓ
n > 1

∆gap
) they find

γ(n, ℓ) ∼ −n2
(n

ℓ

)D−4
. (3.26)

Again, the supergravity result exactly agrees with this result. In the previous section we

have obtained an infinite set of solutions to crossing equations. However, each of these

solutions only contributes to a finite range of spins, hence, they will not contribute to

the above limits.10 Solutions where the spin is unbounded are either suppressed or would

require a very small gap scale, according to the discussion above. Hence, (3.25) and (3.26)

follow from crossing symmetry.

4 Conclusions

In this paper we have considered the four-point correlator of the stress tensor multiplet in

N = 4 SCFT and have constructed all solutions consistent with crossing symmetry, as an

expansion in 1/N2 and for fixed non-zero values of the coupling constant. In addition to

the supergravity solution, necessary due to the structure of Fshort(u, v, c), we have found an

infinite tower of solutions. Our solutions break down unless we introduce a scale ∆gap.
11

We argued that the extra tower of solutions is suppressed by powers of ∆gap. The full

solution hence organizes as a double expansion in 1/c and 1/∆gap. Our solutions are

valid to leading order in 1/c and to all orders in 1/∆gap. Comparison of our solutions with

explicit instanton computations confirms our expectations and leads to ∆gap ∼ N1/4, which

agrees with the known dimension of the operators neglected when constructing the zeroth

order solution. This value of ∆gap would imply most extra solutions would break down

(unless suppressed). The basic reason is that if γn,ℓ for a given solution grows too fast with

n, perturbation theory would break down, before ∆gap enters into the game (which would

be unexpected from a effective field theory point of view). Note that our solutions grow

faster with n than the solutions for a generic conformal field theory found in [7]. This is

due to supersymmetry and the shift ∆ → ∆+4 in the definition of superconformal blocks.

Actually, if we allow ourselves to use the improved bound
∣

∣γn,ℓ/N
2
∣

∣ < 4 derived in [11],

then we can rule out all the extra solutions. This would explain why the extra solutions we

have found, do not violate the upper bounds observed by [1]. It would also be consistent

with the fact that these bounds seem to work better as we increase the spin: the solutions

entering at higher spin are suppressed by higher powers of ∆gap! Note however, that we

have not proven the upper bounds observed by [1], as our solutions are valid only in the

regime of large g2N . Besides, we have argued, but not proven, the fact that the extra

solutions appear suppressed by the extra parameter ∆gap.

It would be interesting to see if ∆gap can be determined entirely from the supercon-

formal bootstrap equation, without any additional input. It is not clear to us if this can

10Note however that even though they are not forbidden, they are somehow disfavored, as they grow too

fast in n.
11To be more precise, in order to construct our solutions we have assumed a parametrically large gap.

Unitarity requires such a gap not to be too large.
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be the case. In any case, note that with this single input our solutions reproduce much

of the structure of the string theory result, at leading order in 1/N2 but to all orders in

α′ (or 1/
√
λ).

We have also elucidated a connection between such upper bounds and positivity con-

straints arising from causality in flat space. This is not a purely CFT argument, and it

would be interesting to show, following [25] that if a CFT correlator leads to flat space

amplitudes with the wrong sign, then the CFT is pathologic. Note that these positivity

constraints would lead to the correct upper bound even if the first solutions in the tower

are not suppressed. This could be more relevant to applications where the growing with n

is slower. For instance, for standard four-dimensional conformal field theories and external

operators with dimension two, the anomalous dimension for the first three solutions of [7]

grow like n, n5 and n7, while our first solution grows like n9.

Finally, we have seen that certain relations for the anomalous dimension of double

trace operators, derived from causality constraints for scattering in AdS in [12] follow from

crossing symmetry. It would be interesting to extend the positivity constraints of [25] to

the case of AdS.

To summarize, trying to understand how the numeric conformal bootstrap for N = 4

SYM reproduces the supergravity result, we have learnt the following interesting lessons:

• The conformal bootstrap equation captures non-perturbative instanton solutions. As

it should, since it is valid even non perturbatively, but here we are seeing this very

explicitly.

• With an additional input for ∆gap, the conformal bootstrap equation captures much

of the structure of the full stringy result for the four-point correlator.

• The existence of upper bounds for the dimension of leading twist operators is related

to positivity constraints arising from causality in flat space.

• Recent relations derived from causality constraints for scattering in AdS can be shown

to follow from symmetry.

These lessons indicate that for N = 4 SYM the conformal bootstrap equation knows not

only about the supergravity result for anomalous dimensions but actually much more about

the dual string theory.
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A Gshort(u, v, c)

In this appendix we summarize the form of the function12 Gshort(u, v, c) appearing in the

conformal partial wave expansion performed in section 2.2. Firstly, we make explicit its

dependence on the central charge c

Gshort(u, v, c) = G
(0)
short(u, v) +

1

c
G

(1)
short(u, v). (A.1)

Secondly, we organize both contributions separating various logarithmic terms

G
(i)
short = R

(i)
1 (z, z̄)+R

(i)
2 (z, z̄) log(1−z)+R

(i)
2 (z̄, z) log(1− z̄)+R

(i)
3 (z, z̄) log(1−z) log(1− z̄).

(A.2)

Then, all functions R
(i)
j (z, z̄) are rational and they take the following form

R
(0)
1 =

4
(

z3(z̄ − 6)(z̄ − 1)2 − 8z2(z̄ − 1)2z̄ + z(z̄(z̄(13z̄−8)−46)+36)−6
(

z̄3−6z̄+4
))

zz̄
,

R
(0)
2 =

8(z − 1)2
(

2zz̄4 − zz̄3 + 4zz̄2 − 18zz̄ + 12z − 3z̄4 + 18z̄2 − 12z̄
)

z2z̄(z̄ − z)
,

R
(0)
3 = −96(z − 1)2(z̄ − 1)2

z2z̄2
,

R
(1)
1 = −4(z − 1)(z̄ − 1)(17zz̄ − 18z − 18z̄ + 36)

zz̄
,

R
(1)
2 =

8(z − 1)2(z̄ − 1)
(

4zz̄2 + 9zz̄ − 18z − 9z̄2 + 18z̄
)

z2z̄(z̄ − z)
,

R
(1)
3 = −144(z − 1)2(z̄ − 1)2

z2z̄2
. (A.3)

B D̄-functions

In this appendix we collect the definition and basic symmetries of the functions D̄∆i(u, v)

we used in the main body of the paper. These functions enter in the computations of the

Witten diagrams for the four-point function associated to the contact interactions in AdS.

They are related to the function D introduced in [27]

D∆i(x1, x2, x3, x4) =
Γ(12

∑

i∆i − 2)
∏

i Γ(∆i)

∫

∞

0

∏

i

dtit
∆i−1
i e−

1
2

∑
i,j titjx

2
ij (B.1)

in the following way

D̄∆i(u, v) =
2
∏

i Γ(∆i)

Γ(12
∑

i∆i − 2)
x2∆1
13 x2∆2

24

(

x214
x213x

2
34

)

∆1−∆3
2

(

x213
x214x

2
34

)

∆2−∆4
2

D∆i(xi). (B.2)

For the particular case ∆i = 1, D̄∆i(u, v) reduces to the celebrated four-point scalar box

integral, which in our conventions takes the form

D̄1111(u, v) =
1

z − z̄

(

2Li2(z)− 2Li2(z̄) + log(z z̄) log
1− z

1− z̄

)

. (B.3)

12We thank the authors of [1] for sharing the explicit form of this function with us.
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For computational purposes it is convenient to construct all other functions by acting on

D̄1111 with differential operators introduced in [28].

In order to prove symmetries of all our solutions in section 2.2 we used the following

symmetries of D̄-functions

D̄∆1∆2∆3∆4(u, v) = D̄∆3∆2∆1∆4(v, u)

= v∆4−
1
2

∑
i ∆iD̄∆2∆1∆3∆4

(

u

v
,
1

v

)

. (B.4)
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