3,292 research outputs found

    Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas

    Full text link
    We derive a closed form expression for the quantum corrections to the kinetic energy density (KED) in the Thomas-Fermi (TF) limit of a linear potential model system in three dimensions (the Airy gas). The universality of the expression is tested numerically in a number of three dimensional model systems: (i) jellium surfaces, (ii) hydrogen-like potentials, (iii) systems confined by an harmonic potential in one and (iv) all three dimensions, and (v) a system with a cosine potential (the Mathieu gas). Our results confirm that the usual gradient expansion of extended Thomas-Fermi theory (ETF) does not describe the quantum oscillations for systems that incorporate surface regions where the electron density drops off to zero. We find that the correction derived from the Airy gas is universally applicable to relevant spatial regions of systems of type (i), (ii), and (iv), but somewhat surprisingly not (iii). We discuss possible implications of our findings to the development of functionals for the kinetic energy density.Comment: 15 pages, 9 figure

    Monte Carlo Simulation of Ising Models with Dipole Interaction

    Full text link
    Recently, a new memory effect was found in the metamagnetic domain structure of the diluted Ising antiferromagnet FexMg1xCl2Fe_x Mg_{1-x} Cl_2 by domain imaging with Faraday contrast. Essential for this effect is the dipole interaction. We simulate the low temperature behavior of diluted Ising-antiferromagnets by a Monte Carlo simulation considering long range interaction. The metamagnetic domain structure occurring due to the dipole interaction is investigated by graphical representation. In the model considered the antiferromagnetic state is stable for an external magnetic field smaller than a lower boundary Bc1B_{c1} while for fields larger than an upper boundary Bc2B_{c2} the system is in the saturated paramagnetic phase, where the spins are ferromagnetically polarized. For magnetic fields in between these two boundaries a mixed phase occurs consisting of ferromagnetic domains in an antiferromagnetic background. The position of these ferromagnetic domains is stored in the system: after a cycle in which the field is first removed and afterwards applied again the domains reappear at their original positions. The reason for this effect can be found in the frozen antiferromagnetic domain state which occurs after removing the field.Comment: Latex, 10 pages; 3 postsript-figures, compressed tar-file, uuencoded, report 10109

    The role of airborne EM methods for environmental applications in different geological terrains

    Get PDF
    This paper reviews the increasing role of Airborne EM (AEM) methods for environmental purposes in a variety of geological contexts. The ability of AEM data to differentiate geological, cultural and environmental influences is considered using fixed-wing survey examples from Finland and the UK. The provision of AEM subsurface resistivity information constitutes a unique capability in relation to general remote-sensing information to which it is allied. To be fully exploited, the results of AEM surveys require both ground calibration and integration (e.g. through GIS techniques) with existing geological, hydrogeological and environmental databases

    Supernovae data and perturbative deviation from homogeneity

    Full text link
    We show that a spherically symmetric perturbation of a dust dominated Ω=1\Omega=1 FRW universe in the Newtonian gauge can lead to an apparent acceleration of standard candles and provide a fit to the magnitude-redshift relation inferred from the supernovae data, while the perturbation in the gravitational potential remains small at all scales. We also demonstrate that the supernovae data does not necessarily imply the presence of some additional non-perturbative contribution by showing that any Lemaitre-Tolman-Bondi model fitting the supernovae data (with appropriate initial conditions) will be equivalent to a perturbed FRW spacetime along the past light cone.Comment: 8 pages, 3 figures; v2: 1 figure added, references added/updated, minor modifications and clarifications, matches published versio

    European Community Multi-Center Trial "Fetal ECG Analysis During Labor": ST plus CTG analysis

    Get PDF
    This report form part of the European Community Multi-Center Trial "Fetal ECG Analysis during Labor". Aim of this prospective trial was to identify changes in the fetal ECG waveform with cases of verified fetal hypoxia. In this paper we also report on the use of a newly developed automatic system for identification of ST waveform changes (ST Log). All ECG were recorded with the STAN recorder (Neoventa Medical AB, Gothenburg, Sweden). The ECG information was not displayed during labor in order not to influence the clinical management. This report includes data from 320 cases and include six cases of fetal intrapartum hypoxia. Twenty seven cases showed changes in ST waveform. All five cases with the most marked ST change (a rise in T/QRS of >0.10 units and lasting more then 10 minutes) had signs of ongoing intrapartum hypoxia. Six out of six cases with evidence of intrapartum asphyxia, showed ST changes. On the basis of our multi-center trial it appears that the combined analysis of CTG and ST waveform changes provides an accurate way to identify adverse events during labor. The work is continuing with a new STAN recorder developed by Neoventa Medical in Goteborg and currently being tested in a Swedish randomized, controlled multi-center trial

    Quantum molecular dynamics simulations for the nonmetal-to-metal transition in fluid helium

    Get PDF
    We have performed quantum molecular dynamics simulations for dense helium to study the nonmetal-to-metal transition at high pressures. We present new results for the equation of state and the Hugoniot curve in the warm dense matter region. The optical conductivity is calculated via the Kubo-Greenwood formula from which the dc conductivity is derived. The nonmetal-to-metal transition is identified at about 1 g/ccm. We compare with experimental results as well as with other theoretical approaches, especially with predictions of chemical models.Comment: 4 pages, 5 figure

    Strain-Rate Frequency Superposition (SRFS) - A rheological probe of structural relaxation in soft materials

    Get PDF
    The rheological properties of soft materials often exhibit surprisingly universal linear and non-linear features. Here we show that these properties can be unified by considering the effect of the strain-rate amplitude on the structural relaxation of the material. We present a new form of oscillatory rheology, Strain-Rate Frequency Superposition (SRFS), where the strain-rate amplitude is fixed as the frequency is varied. We show that SRFS can isolate the response due to structural relaxation, even when it occurs at frequencies too low to be accessible with standard techniques.Comment: 4 pages, 4 figure

    Obituary for Walter Kohn (1923–2016)

    No full text
    Walter Kohn (Figure 1) is one of the most cited scientists of our time, who died on 19 April 2016 in Santa Barbara, CA, USA. [...
    corecore