96 research outputs found

    ์ฃผ์–ด์ง„ ๋ฏธํƒ-๋ ˆํ”Œ๋Ÿฌ ํ•จ์ˆ˜๊ฐ€ ์‹ค๊ทผ๋งŒ์„ ๊ฐ–๊ธฐ ์œ„ํ•œ ์ถฉ๋ถ„์กฐ๊ฑด๊ณผ ๋ฏธ๋ถ„ ์—ฐ์‚ฐ์ž์˜ ํด๋žด-์œ„๋งŒ ์„ฑ์งˆ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์ˆ˜๋ฆฌ๊ณผํ•™๋ถ€, 2016. 2. ๊น€์˜์›.In this dissertation, we study the distribution of zeros of entire functions. First, we study the reality of zeros of Mittag-Leffler functions. If ฮฑ\alpha and ฮฒ\beta are complex numbers with Reย ฮฑ>0\mathrm{Re}\ \alpha>0, the Mittag-Leffler function Eฮฑ,ฮฒE_{\alpha,\beta} is defined by \begin{equation*} E_{\alpha,\beta} (z)=\sum_{k=0}^{\infty} \frac{z^k}{\Gamma{(\beta+\alpha k })}. \end{equation*} One of the most recent results on the zeros of the Mittag-Leffler functions is due to Popov and Sedletskii: if ฮฑ>2\alpha > 2 and 040 4 and 0<ฮฒโ‰ค2ฮฑ0 < \beta \leq 2\alpha then Eฮฑ,ฮฒ(z) E_{\alpha,\beta}(z) has only real zeros. We improve the result by showing that if ฮฑโ‰ฅ4.07\alpha\geq4.07 and 0202. Second, we study the P\'olya-Wiman properties of differential operators. Let ฯ•(x)=โˆ‘ฮฑnxn\phi(x)=\sum \alpha_n x^n be a formal power series with real coefficients and let DD denote differentiation. It is shown that ``for every real polynomial ff there is a positive integer m0m_0 such that ฯ•(D)mf\phi(D)^mf has only real zeros whenever mโ‰ฅm0m\geq m_0'' if and only if ``ฮฑ0=0\alpha_0=0 or 2ฮฑ0ฮฑ2โˆ’ฮฑ12<02\alpha_0\alpha_2 - \alpha_1^2 <0'', and that if ฯ•\phi does not represent a Laguerre-P\'olya function, then there is a Laguerre-P\'olya function ff of genus 00 such that for every positive integer mm, ฯ•(D)mf\phi(D)^mf represents a real entire function having infinitely many nonreal zeros. Finally, we prove the identity \sup\{\alpha\in\mathbb{R}:e^{\alpha D^2}\cos{ D}\ M^n \mbox{\ has real zeros only}\}=4{\lambda_n}^{-2}, where MnM^n is the monic monomial of degree nn, that is, Mn(z)=znM^n (z)=z^n, and ฮปn\lambda_n is the largest zero of the 2n2n-th Hermite polynomial H2nH_{2n} given by H2n(z)=(2n)!โˆ‘k=0n(โˆ’1)kk!(2nโˆ’2k)!(2z)2nโˆ’2k. H_{2n}(z)=(2n)!\sum_{k=0}^{n}\frac{(-1)^k}{k!(2n-2k)!}(2z)^{2n-2k}. Introduction 1 Chapter 1 Sufficient condition for a Mittag-Leffler function to have real zeros only 7 1.1 Main result and sketch outline of the proof 7 1.2 Sufficient condition to have real zeros only 11 1.3 Proof of Theorem 1.1.4 in the case n<โŒŠฮฑ/4โŒ‹n<\lfloor\alpha/4\rfloor 19 1.3.1 Proof of Proposition 1.3.8 29 1.4 Proof of Theorem 1.1.5 37 Chapter 2 P\'olya-Wiman properties of differential operators 40 2.1 P\'olya-Wiman property 40 2.2 P\'olya-Wiman property with respect to real polynomials 43 2.2.1 Proof of Theorem 2.2.3 46 2.2.2 Proof of Theorem 2.2.4 48 2.2.3 Laguerre-P\'olya class and P\'olya-Wiman property with respect to real polynomials 50 2.3 P\'olya-Wiman property with respect to Laguerre -P\'olya functions of genus 00 54 2.4 Asymptotic behavior of distribution of zeros of ฯ•(D)mf\phi (D)^m f as mโ†’โˆžm\to \infty 63 Chapter 3 Asymptotic behavior of distribution of the zeros of a one-parameter family of polynomials 65 3.1 Asymptotic behavior of distribution of the zeros of ฯ•(D)mf\phi (D)^m f as mโ†’โˆžm\to \infty 65 3.2 Zeros of polynomials with complex coefficients 66 3.3 Proofs of Theorem 3.1.1 and Theorem 3.1.2 68 Chapter 4 De Bruijn-Newman constant of the polynomial (z+i)n+(zโˆ’i)n(z+i)^n +(z-i)^n 75 4.1 Main Result 75 4.2 Preliminaries 77 4.3 Proof of the main result 78 Bibliography 82 Abstract (in Korean) 85Docto

    Numerical Study on Flow Characteristics of Synthetic Jet with Rectangular and Circular Slot Exit

    Get PDF
    ์‚ฌ๊ฐํ˜• ๋ฐ ์›ํ˜• ์ถœ๊ตฌ ํ˜•์ƒ synthetic jet์˜ ์ˆ˜์น˜์  ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ ์œ ์ž…๋ฅ˜๊ฐ€ ์กด์žฌํ•  ๊ฒฝ์šฐ ํ‰ํŒ์—์„œ์˜ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜์˜€๋‹ค. ์‚ฌ๊ฐํ˜• ์ถœ๊ตฌ ํ˜•์ƒ์˜ ๊ฒฝ์šฐ, jet ์งํ›„์— ๊ฐ•ํ•œ vortex๊ฐ€ ์ƒ์„ฑ๋˜์ง€๋งŒ ์ฃผ๋ณ€์— ์ ์€ momentum์„ ๊ณต๊ธ‰ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์œ ์ž…๋ฅ˜ ๋ฐฉํ–ฅ์œผ๋กœ ๊ฐˆ์ˆ˜๋ก ์œ ๋™์ œ์–ด ํšจ๊ณผ๊ฐ€ ๊ธ‰๊ฒฉํ•˜๊ฒŒ ๊ฐ์†Œํ•˜๊ฒŒ ๋œ๋‹ค. ์›ํ˜•์ถœ๊ตฌ ํ˜•์ƒ์˜ ๊ฒฝ์šฐ, ๊ทœ์น™์ ์ธ vortex์˜ ํ˜•ํƒœ๊ฐ€ slot ์ค‘์•™๋ถ€ํ„ฐ ๋๊นŒ์ง€ ๋‚˜ํƒ€๋‚˜๊ณ  jet์— ์˜ํ•ด์„œ ๊ณต๊ธ‰๋˜๋Š” vortex์˜ ํ˜•ํƒœ๊ฐ€ ์œ ์ž…๋ฅ˜์˜ ๋ฐฉํ–ฅ์œผ๋กœ ๋ฐœ๋‹ฌ๋˜๊ฒŒ ๋˜์–ด ๋ณด๋‹ค ๋ฉ€๋ฆฌ๊นŒ์ง€ vorticity์˜ ์˜ํ–ฅ์ด ๋ฏธ์น˜๊ฒŒ ๋œ๋‹ค. ์œ ๋™์ œ์–ด ํšจ๊ณผ๋ฅผ ์˜ˆ์ƒํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ๊ฐํ˜• ๋ฐ ์›ํ˜• ์ถœ๊ตฌ ํ˜•์ƒ์˜ ์œ„์น˜ ๋ณ„ wall shear stress๋ฅผ ๋น„๊ตํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์›ํ˜• ์ถœ๊ตฌ ํ˜•์ƒ์ด ์‚ฌ๊ฐํ˜• ์ถœ๊ตฌ ํ˜•์ƒ๋ณด๋‹ค ์œ ๋™์ œ์–ด ํšจ๊ณผ๊ฐ€ ๋” ํด ๊ฒƒ์œผ๋กœ ์˜ˆ์ƒ๋œ๋‹ค.The flow characteristics of synthetic jet depending on rectangular and circular jet exit configuration are investigated using numerical computation with cross flow. In rectangular slot, synthetic jet generates the strong vortex, however, supply fewer momentum and effectiveness of flow control is reduced along flow direction. In circular slot, regular vortex is formed from slot center to end and developed in flow direction. It affects the wider region than rectangular slot. The distribution of wall shear stress is considered in order to indicate the effectiveness of flow control device for flow separation delay. As a result, circular slot is a more suitable candidate for delaying flow separation.๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฐฉ์œ„์‚ฌ์—…์ฒญ๊ณผ ๊ตญ๋ฐฉ๊ณผํ•™์—ฐ๊ตฌ์†Œ์˜ ์ง€์›(UC100031JD), ์Šˆํผ์ปดํ“จํŒ…์„ผํ„ฐ(KSC-2010-C1-0030), ํ•ญ๊ณต ์šฐ์ฃผ ์‹ ๊ธฐ์ˆ  ์—ฐ๊ตฌ์†Œ์˜ ์ง€์›์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Œ.OAIID:oai:osos.snu.ac.kr:snu2011-01/104/0000004648/13SEQ:13PERF_CD:SNU2011-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:์‚ฌ๊ฐํ˜•_๋ฐ_์›ํ˜•_์ถœ๊ตฌ_Synthetic_Jet์˜_์œ ๋™_ํŠน์„ฑ์—_๋Œ€ํ•œ_์ˆ˜์น˜์ _์—ฐ๊ตฌ.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    Flow Control of Delta Wing at High Angle of Attack Using Synthetic Jets

    Get PDF
    ์‹คํ—˜์ , ์ˆ˜์น˜์  ๋ฐฉ๋ฒ•์„ ํ†ตํ•˜์—ฌ synthetic jet์„ ์ด์šฉํ•œ ๊ณ  ๋ฐ›์Œ๊ฐ์—์„œ์˜ delta wing ์œ ๋™์ œ์–ด๋ฅผ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Synthetic jet-off ์กฐ๊ฑด์—์„œ์˜ ์œ ๋™ ํŠน์„ฑ์„ ํŒŒ์•…ํ•˜๊ณ  ์™€๋ฅ˜ ๋ถ•๊ดด ํ˜„์ƒ์„ ๋ถ„์„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ’๋™ ์‹คํ—˜์„ ํ†ตํ•œ ํ‘œ๋ฉด ์œ ๋™๊ฐ€์‹œํ™” ๋ฐ ํ‘œ๋ฉด ์••๋ ฅ ์ธก์ •์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ „์‚ฐ์ˆ˜์น˜ํ•ด์„์„ ํ†ตํ•˜์—ฌ ๋ณด๋‹ค ์ž์„ธํ•œ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ ์™€๋ฅ˜ ๋ถ•๊ดด ํ˜„์ƒ์„ ์™„ํ™”์‹œ์ผœ normal force๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ธฐ ์œ„ํ•˜์—ฌ ์•ž์ „ ๋ถ€๊ทผ์— synthetic jet์„ ์œ„์น˜์‹œํ‚ค๊ณ  ์••๋ ฅ ์„ผ์„œ๋ฅผ ๋ฐฐ์—ดํ•˜์—ฌ ์œ ๋™์ œ์–ด ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. Synthetic jet์˜ ์ž‘๋™ ์ฃผํŒŒ์ˆ˜์— ๋”ฐ๋ฅธ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์œ ๋™์ œ์–ด์— ๋ณด๋‹ค ํšจ๊ณผ์ ์ธ ๊ตฌ๋™๊ธฐ์˜ ์ž‘๋™ ์ฃผํŒŒ์ˆ˜๋ฅผ ์ฐพ๊ณ , ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ synthetic jet์˜ ์œ„์น˜์— ๋”ฐ๋ฅธ ์œ ๋™์ œ์–ด ํŠน์„ฑ ๋ฐ normal force ์ฆ๊ฐ€ ์—ฌ๋ถ€์— ๋Œ€ํ•˜์—ฌ ํ™•์ธํ•˜์˜€๋‹ค.This paper presents experimental and computational investigations on the flow control of delta wing at a high angle of attack using synthetic jets. For control-off condition, flow characteristics have been investigated by analyzing surface pressures, oil flow visualization, and computed vortical structures. Based on the baseline data, synthetic jets and pressure sensors were installed to control vortex breakdown. For control-on condition, comparative studies were then conducted by changing parameters, such as oscillation frequency and actuation type. As a result, adequate oscillation frequency and efficient actuation location were found for the flow control of delta wing.๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฐฉ์œ„์‚ฌ์—…์ฒญ ๋ฐ ๊ตญ๋ฐฉ ๊ณผํ•™์—ฐ๊ตฌ์†Œ (UC100031JD), ๊ตญํ† ํ•ด์–‘๋ถ€์˜ ใ€Œํ•˜๋Š˜ ํ”„๋กœ ์  ํŠธใ€, ํ•ญ๊ณต ์šฐ์ฃผ ์‹ ๊ธฐ์ˆ  ์—ฐ๊ตฌ์†Œ์˜ ์ง€์›์œผ๋กœ ์ˆ˜ ํ–‰๋˜์—ˆ์ŒOAIID:oai:osos.snu.ac.kr:snu2012-01/104/0000004648/34SEQ:34PERF_CD:SNU2012-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:Synthetic_jet์„_์ด์šฉํ•œ_๊ณ _๋ฐ›์Œ๊ฐ์—์„œ์˜_delta_wing_์œ ๋™์ œ์–ด.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 2 : Flow control in Transition Mode Using Synthetic Jet

    Get PDF
    In order to reduce the download around the Smart UAV(SUAV) at Transition mode, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. Based on the results of part 1 of the present work, synthetic jet is located at 0.01c, 0.95cflap and it is operated with the non-dimensional frequency of 0.5, 5 to control the leading edge and trailing edge separation. Consequently, download is substantially reduced compared to with no control case at transition mode using leading edge jet only. The present results show that the overall flight performance and stability of the SUAV can be remarkably improved by applying the active flow control strategy based on synthetic jet.์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ ์ตํ˜• ์ฃผ์œ„์˜ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ synthetic jet์„ ์ด์šฉํ•˜์—ฌ ์ฒœ์ด ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ์ˆ˜์ตํ•˜์ค‘ ๊ฐ์†Œ ์—ฌ๋ถ€๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ์˜ ์‹ค์ œ ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์•ž์ „ ๋ฐ ๋’ท์ „์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์™€๋ฅ˜์— ์˜ํ•ด์„œ ์ˆ˜์ตํ•˜์ค‘์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•จ์„ ๋ฐํ˜”๋‹ค. ์ด์— ์•ž์ „๊ณผ ๋’ท์ „์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์œ ๋™์˜ ๋ฐ•๋ฆฌ๋ฅผ ํšจ๊ณผ์ ์œผ๋กœ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ Part 1์˜ ๊ฒฐ๊ณผ๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ 0.01c, 0.95cflap ์ง€์ ์— jet์„ ์œ„์น˜์‹œํ‚ค๊ณ  ๊ฐ๊ฐ ๋ฌด์ฐจ์› ์ฃผํŒŒ์ˆ˜(F+)๋ฅผ 0.5, 5๋กœ ์ž‘๋™์‹œ์ผœ ๊ทธ์— ๋”ฐ๋ฅธ ์œ ๋™๊ตฌ์กฐ ๋ณ€ํ™”์™€ ํ•ญ๋ ฅ ๊ฐ์†Œ์œจ์„ ์•Œ์•„๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ฒœ์ด ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ์œ ๋™ ์ œ์–ด๋ฅผ ์œ„ํ•ด์„œ๋Š” ์•ž์ „์— ์œ„์น˜ํ•œ jet๋งŒ์„ ์ž‘๋™์‹œํ‚ฌ ๊ฒฝ์šฐ ๊ฐ€์žฅ ํšจ๊ณผ์ ์œผ๋กœ ์ˆ˜์ตํ•˜์ค‘์„ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์Œ์„ ๋ฐํ˜”๋‹ค. ์ด์— ์ •์ง€ ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ์ฒœ์ด ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ synthetic jet์„ ์ด์šฉํ•˜์—ฌ ์œ ๋™์„ ์ œ์–ดํ•œ๋‹ค๋ฉด ์Šค๋งˆํŠธ์ „ ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ๋น„ํ–‰์„ฑ๋Šฅ๊ณผ ์•ˆ์ •์„ฑ์„ ๋™์‹œ์— ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.๋ณธ ์—ฐ๊ตฌ๋Š” ์ง€์‹๊ฒฝ์ œ๋ถ€ ์ง€์›์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” 21์„ธ๊ธฐ ํ”„๋ก ํ‹ฐ์–ด ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…(์Šค๋งˆํŠธ๋ฌด์ธ๊ธฐ๊ธฐ์ˆ ๊ฐœ๋ฐœ) ๋ฐ ๋ฐฉ์œ„์‚ฌ์—…์ฒญ๊ณผ ๊ตญ๋ฐฉ๊ณผํ•™์—ฐ๊ตฌ์†Œ์˜ ์ง€์› (๊ณ„์•ฝ๋ฒˆํ˜ธ UD0700 41AD)๊ณผ ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณด์—ฐ๊ตฌ์› ์Šˆํผ์ปดํ“จํŒ…์„ผํ„ฐ (KSC-2007- S00-1016), BK 21์‚ฌ์—…์˜ ์ง€์›์„ ํ†ตํ•ด ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.OAIID:oai:osos.snu.ac.kr:snu2009-01/102/0000004648/11SEQ:11PERF_CD:SNU2009-01EVAL_ITEM_CD:102USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:Synthetic jet์„ ์ด์šฉํ•œ ์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ(SUAV) ์œ ๋™์ œ์–ด Part 2.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]_YN:NCONFIRM:

    Flow Control of Smart UAV Airfoil Using Synthetic Jet Part 1 : Flow control in Hovering Mode Using Synthetic Jet

    Get PDF
    In order to reduce the download around the Smart UAV(SUAV) at hovering, flow control using synthetic jet has been performed. Many of the complex tilt rotor flow features are captured including the leading and trailing edge separation, and the large region of separated flow beneath the wing. In order to control the leading edge andtrailing edge separation, synthetic jet is located at 0.01c, 0.3cflap, 0.95cflap. As non-dimensional frequency, the flow pattern is altered and the rate of drag reduction is changed. The results show that synthetic jets shorten the vortex period and decrease the vortex size by changing local flow structure. By using leading edge jet and trailing edge jet, download is efficiently reduced compared to no control case at hovering mode.์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ ์ตํ˜• ์ฃผ์œ„์˜ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ํŒŒ์•…ํ•˜๊ณ  ์ด๋ฅผ ๋ฐ”ํƒ•์œผ๋กœ synthetic jet์„ ์ด์šฉํ•˜์—ฌ ์ •์ง€ ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ์˜ ์ˆ˜์ตํ•˜์ค‘ ๊ฐ์†Œ ์—ฌ๋ถ€๋ฅผ ํŒŒ์•…ํ•˜์˜€๋‹ค. ์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ์˜ ์‹ค์ œ ๋น„ํ–‰ ๋ชจ๋“œ์— ๋Œ€ํ•˜์—ฌ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์•ž์ „ ๋ฐ ๋’ท์ „์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์™€๋ฅ˜์— ์˜ํ•ด์„œ ์ˆ˜์ตํ•˜์ค‘์ด ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•จ์„ ๋ฐํ˜”๋‹ค. ์ด์— ์•ž์ „๊ณผ ๋’ท์ „์—์„œ ๋ฐœ์ƒํ•˜๋Š” ์œ ๋™์˜ ๋ฐ•๋ฆฌ๋ฅผ ์ œ์–ดํ•˜๊ธฐ ์œ„ํ•˜์—ฌ 0.01c, 0.3cflap, 0.95cflap ์œ„์น˜์— jet์„ ์œ„์น˜์‹œ์ผฐ๋‹ค. ๋˜ํ•œ ๋ฌด์ฐจ์› ์ฃผํŒŒ์ˆ˜(F+)์˜ ๋ณ€ํ™”์— ๋”ฐ๋ฅธ ์œ ๋™ ๊ตฌ์กฐ ๋ณ€ํ™”์™€ ํ•ญ๋ ฅ ๊ฐ์†Œ์œจ์„ ์•Œ์•„๋ณด์•˜๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, ์™€๋ฅ˜์˜ ์œ ๋™ ๊ตฌ์กฐ๋ฅผ ๋ณ€ํ™”์‹œ์ผœ ์•ž์ „๊ณผ ๋’ท์ „์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๊ฑฐ๋Œ€ํ•œ ์™€๋ฅ˜์˜ ๋ฐ•๋ฆฌ ์ฃผ๊ธฐ๋ฅผ ์งง๊ฒŒ ํ•˜๊ณ  ์™€๋ฅ˜์˜ ํฌ๊ธฐ๋ฅผ ๊ฐ์†Œ์‹œ์ผœ ์ •์ง€ ๋น„ํ–‰ ๋ชจ๋“œ์—์„œ ์ˆ˜์ต ํ•˜์ค‘์„ ํšจ๊ณผ์ ์œผ๋กœ ๊ฐ์†Œ์‹œํ‚ฌ ์ˆ˜ ์žˆ์—ˆ๋‹ค.๋ณธ ์—ฐ๊ตฌ๋Š” ์ง€์‹๊ฒฝ์ œ๋ถ€ ์ง€์›์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋Š” 21์„ธ๊ธฐ ํ”„๋ก ํ‹ฐ์–ด ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…(์Šค๋งˆํŠธ๋ฌด์ธ๊ธฐ๊ธฐ์ˆ ๊ฐœ๋ฐœ) ๋ฐ ๋ฐฉ์œ„์‚ฌ์—…์ฒญ๊ณผ ๊ตญ๋ฐฉ๊ณผํ•™์—ฐ๊ตฌ์†Œ์˜ ์ง€์› (๊ณ„์•ฝ๋ฒˆํ˜ธ UD0700 41AD)๊ณผ ํ•œ๊ตญ๊ณผํ•™๊ธฐ์ˆ ์ •๋ณด์—ฐ๊ตฌ์› ์Šˆํผ์ปดํ“จํŒ…์„ผํ„ฐ (KSC-2007- S00-1016), BK 21์‚ฌ์—…์˜ ์ง€์›์„ ํ†ตํ•ด ์ˆ˜ํ–‰๋˜์—ˆ์Šต๋‹ˆ๋‹ค.OAIID:oai:osos.snu.ac.kr:snu2009-01/102/0000004648/10SEQ:10PERF_CD:SNU2009-01EVAL_ITEM_CD:102USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:Synthetic jet์„ ์ด์šฉํ•œ ์Šค๋งˆํŠธ ๋ฌด์ธ๊ธฐ(SUAV) ์œ ๋™์ œ์–ด Part 1.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]_YN:NCONFIRM:

    Experimental Study on Flow Characteristics of Synthetic Jet with Circular Exit Array in Separated Flow

    Get PDF
    Piezo-electric diaphragm์œผ๋กœ ์ž‘๋™๋˜๋Š” synthetic jet์„ ๋ฐ•๋ฆฌ ์œ ๋™ ์ œ์–ด์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•œ ์‹คํ—˜์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ „์‚ฐ ์ˆ˜์น˜ ํ•ด์„ ๊ฒฐ๊ณผ์™€ ์œ ๋™ ํ˜„์ƒ์„ ๋น„๊ต ๋ถ„์„ํ•˜์˜€๋‹ค. ์™ธ๋ถ€ ์œ ๋™์ด ์—†๋Š” ์กฐ๊ฑด์—์„œ ์—ด์„  ์œ ์†๊ณ„๋ฅผ ํ™œ์šฉํ•œ ์ถœ๊ตฌ ์†๋„ ์ธก์ • ์‹คํ—˜์„ ํ†ตํ•ด ์ž‘๋™ ์ฃผํŒŒ์ˆ˜์™€ ์ถœ๊ตฌ ์ง€๋ฆ„์ด ์ถœ๊ตฌ ์œ ์† ๋ณ€ํ™”์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•˜๊ณ  ์žˆ์Œ์„ ๊ฒ€์ฆํ–ˆ๋‹ค. ์ถœ๊ตฌ ๋‹จ๋ฉด์ ์ด ๋™์ผํ•œ ์กฐ๊ฑด์˜ ์‹คํ—˜์—์„œ๋Š” ๋™์ผํ•œ ์œ ๋Ÿ‰์ด ์ถœ๊ตฌ๋ฅผ ํ†ตํ•ด ๋ถ„์ถœ๋˜๋”๋ผ๋„ ์ถœ๊ตฌ ๋‘˜๋ ˆ์˜ ๊ธธ์ด๊ฐ€ ์ปค์งˆ์ˆ˜๋ก ์ ์„ฑ์˜ ์˜ํ–ฅ์ด ์ฆ๊ฐ€ํ•˜์—ฌ ์ถœ๊ตฌ ์œ ์†์ด ๊ฐ์†Œํ•จ์„ ์•Œ ์ˆ˜ ์žˆ์—ˆ๋‹ค. ์™ธ๋ถ€ ์œ ์ž…๋ฅ˜๊ฐ€ ์žˆ๋Š” inclined flat plate์—์„œ synthetic jet ์ž‘๋™ ์ „/ํ›„์˜ ์••๋ ฅ ๊ณ„์ˆ˜ ๋ถ„ํฌ๋ฅผ ๋น„๊ตํ•˜์—ฌ ์œ ๋™ ์ œ์–ด ์„ฑ๋Šฅ์„ ๊ฒฐ์ •ํ•˜๋Š” ํ•ต์‹ฌ ํŒŒ๋ผ๋ฏธํ„ฐ์˜ ์—ญํ• ์„ ๊ฒ€์ฆํ–ˆ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์ฃผ์–ด์ง„ ๋ฐ•๋ฆฌ ๋ฐœ์ƒ ์กฐ๊ฑด์—์„œ ์ตœ์ ์˜ ์œ ๋™ ์ œ์–ด ์„ฑ๋Šฅ์„ ๋ฐœํœ˜ํ•˜๋Š” ์ž‘๋™ ์ฃผํŒŒ์ˆ˜, ์ถœ๊ตฌ ์ง€๋ฆ„, ์ถœ๊ตฌ ๊ฐ„๊ฒฉ์„ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.The control of separated flow on an inclined flat plate using synthetic jet which actuated by piezo-electric diaphragm was investigated experimentally. Experimental results were compared with computational results in order to analyze flow physics. According to the result of jet velocity using hot wire anemometry with no cross flow, we found that actuation frequency and orifice diameter played important role in jet velocity. On the condition of same exit area, jet velocity was decreased because of exit perimeter which related with viscous effect. According to the result of measuring static pressure on the inclined flat plate with cross flow, we found that actuation frequency and orifice diameter and gap between orifices played important role in separation control performance.๋ณธ ์—ฐ๊ตฌ๋Š” ๋ฐฉ์œ„์‚ฌ์—…์ฒญ ๋ฐ ๊ตญ๋ฐฉ๊ณผํ•™์—ฐ๊ตฌ์†Œ (UC100031JD), ์Šˆํผ์ปดํ“จํŒ…์„ผํ„ฐ(KSC-2010-C1- 0030), ํ•ญ๊ณต ์šฐ์ฃผ ์‹ ๊ธฐ์ˆ  ์—ฐ๊ตฌ์†Œ, BK 21์˜ ์ง€์› ์œผ๋กœ ์ˆ˜ํ–‰๋˜์—ˆ์Œ.OAIID:oai:osos.snu.ac.kr:snu2011-01/104/0000004648/24SEQ:24PERF_CD:SNU2011-01EVAL_ITEM_CD:104USER_ID:0000004648ADJUST_YN:NEMP_ID:A001138DEPT_CD:446CITE_RATE:0FILENAME:๋ฐฐ์—ด๋œ_์›ํ˜•_์ถœ๊ตฌ_Synthetic_Jet์˜_๋ฐ•๋ฆฌ_์œ ๋™_์ œ์–ด_ํŠน์„ฑ์—_๊ด€ํ•œ_์‹คํ—˜์ _์—ฐ๊ตฌ.pdfDEPT_NM:๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€EMAIL:[email protected]:

    Glioma is formed by active Akt1 alone and promoted by active Rac1 in transgenic zebrafish

    Get PDF
    Background Ongoing characterization of glioma has revealed that Akt signaling plays a crucial role in gliomagenesis. In mouse models, however, Akt alone was not sufficient to induce glioma. Methods We established transgenic zebrafish that overexpressed dominant-active (DA) human Akt1 or Rac1G12V (DARac1) at ptf1a domain and investigated transgenic phenotypes and mechanisms leading to gliomagenesis. Results Transgene expressions were spatiotemporally restricted without any developmental abnormality of embryos and persisted at cerebellum and medulla in adult zebrafish. DAAkt1 alone induced glioma (with visible bumps at the head), with incidences of 36.6% and 49% at 6 and 9 months, respectively. Histologically, gliomas showed various histologic grades, increased proliferation, and frequent invasion into the fourth ventricle. Preferential location of small tumors at periventricular area and coexpression of Her4 suggested that tumors originated from Ptf1a- and Her4-positive progenitor cells at ventricular zone. Gliomagenesis was principally mediated by activation of survival pathway through upregulation of survivin genes. Although DARac1 alone was incapable of gliomagenesis, when coexpressed with DAAkt1, gliomagenesis was accelerated, showing higher tumor incidences (62.0% and 73.3% at 6 and 9 months, respectively), advanced histologic grade, invasiveness, and shortened survival. DARac1 upregulated survivin2, cyclin D1, ฮฒ-catenin, and snail1a but downregulated E-cadherin, indicating that DARac1 promotes gliomagenesis by enhancing proliferation, survival, and epithelial-to-mesenchymal transition. On pharmacologic tests, only Akt1/2 inhibitor effectively suppressed gliomagenesis, inhibited cellular proliferation, and induced apoptosis in established gliomas. Conclusions The zebrafish model reinforces the pivotal role of Akt signaling in gliomagenesis and suggests Rac1 as an important protein involved in progression.ope

    Content Analysis of Inquiry Processes in the Elementary Science Textbooks and Students Awareness about Science Process Skills under the 2007 Revised Curriculum

    No full text
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณผํ•™๊ต์œก๊ณผ(์ƒ๋ฌผ์ „๊ณต), 2015. 2. ๊น€์˜์ˆ˜.๋ณธ ์—ฐ๊ตฌ๋Š” ์ดˆ๋“ฑ ๊ณผํ•™ ํƒ๊ตฌ ๊ต์œก ๊ฐœ์„ ์— ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ๋Š” ๊ต์œก์  ์‹œ์‚ฌ์ ์„ ์–ป๊ณ ์ž 2007 ๊ฐœ์ • ๊ต์œก๊ณผ์ •์— ๋”ฐ๋ฅธ ์ดˆ๋“ฑํ•™๊ต ๊ณผํ•™ ๊ต๊ณผ์„œ์˜ ํƒ๊ตฌ๊ณผ์ • ๋‚ด์šฉ์„ ๋ถ„์„ํ•œ ์—ฐ๊ตฌ์ด๋‹ค. ๋˜ํ•œ ๊ต์œก๊ณผ์ •์„ ์ด์ˆ˜ํ•จ์— ๋”ฐ๋ผ ์ดˆ๋“ฑํ•™์ƒ๋“ค์ด ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ์ธ์‹์„ ์‹ฌํ™”ํ•˜๊ณ , ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ์„ ์‹ ์žฅํ•˜๊ณ  ์žˆ๋Š”๊ฐ€๋ฅผ ์กฐ์‚ฌํ•˜์˜€์œผ๋ฉฐ, ๋ถ„์„ ๊ฒฐ๊ณผ๋Š” ๋‹ค์Œ๊ณผ ๊ฐ™๋‹ค. ์ฒซ์งธ, ์ดˆ๋“ฑํ•™๊ต 5ํ•™๋…„๊ณผ 6ํ•™๋…„ ๊ณผํ•™๊ต๊ณผ์„œ์˜ ์ „์ฒด 107๊ฐœ์˜ ์ฃผ์ œ ์ค‘ ๊ธฐ์ดˆ ํƒ๊ตฌ๊ณผ์ •(50.0%)์ด ํ†ตํ•ฉ ํƒ๊ตฌ๊ณผ์ •(25.3%)๋ณด๋‹ค ๋†’์•˜์œผ๋ฉฐ, ํ†ตํ•ฉ ํƒ๊ตฌ๊ณผ์ •์˜ ๋น„์œจ์€ ๊ณ„์† ์ฆ๊ฐ€ํ•˜์˜€๋‹ค. ๋‚ด์šฉ ์˜์—ญ๋ณ„๋กœ ๊ฐ ์ฃผ์ œ์— ์ ํ•ฉํ•œ ํƒ๊ตฌ ์š”์†Œ๋ฅผ ํ™œ์šฉํ•˜๋‚˜, ๋Œ€๋ถ€๋ถ„(95.3%)์ด ์ผ๋ จ์˜ ํƒ๊ตฌ๊ณผ์ • ์ค‘ ์ผ๋ถ€ ์š”์†Œ๋ฅผ ๋‹จํŽธ์ ์œผ๋กœ ์ œ์‹œํ•˜๊ณ  ์žˆ์—ˆ๋‹ค. ๋”ฐ๋ผ์„œ ํ•™์ƒ๋“ค์ด ๊ณผํ•™์ง€์‹์˜ ํ˜•์„ฑ ๊ณผ์ •์ธ ํƒ๊ตฌ๊ณผ์ •์„ ํฐ ํ๋ฆ„์œผ๋กœ ์ธ์‹ํ•  ์ˆ˜ ์žˆ๋Š” ์ˆ˜์—… ๊ตฌ์„ฑ์ด ํ•„์š”ํ•˜๋‹ค. ๋‘˜์งธ, ํ•™๊ต ๊ณผํ•™ ์ˆ˜์—…์„ ํ†ตํ•œ ํƒ๊ตฌ๊ณผ์ • ๊ฒฝํ—˜์€ ํ•™๋…„์— ๋”ฐ๋ผ ์ฆ๊ฐ€ํ•˜๋‚˜(5ํ•™๋…„ 58.9%, 6ํ•™๋…„ 69.3%), ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ์ดํ•ด๋„๋Š” ๊ฐ์†Œํ•˜์˜€๋‹ค(5ํ•™๋…„ 50.1%, 6ํ•™๋…„ 44.0%). ์ด๋Š” ๊ต๊ณผ์„œ ๋ถ„์„ ๊ฒฐ๊ณผ ํ•™๋…„์— ๋”ฐ๋ผ ํ™œ๋™ ๋‚œ์ด๋„๊ฐ€ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒƒ๊ณผ ๊ด€๋ จ์ด ์žˆ๋‹ค๊ณ  ์‚ฌ๋ฃŒ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ํƒ๊ตฌ ๊ณผ์ • ์•ˆ๋‚ด ์ˆ˜์—… ์‹œ์ˆ˜๋ฅผ ๋ฐฐ๋‹นํ•˜๊ณ  ๊ณผํ•™์ง€์‹์˜ ๋ณธ์„ฑ, ํƒ๊ตฌ์˜ ์˜๋ฏธ, ์š”์†Œ, ์ ˆ์ฐจ, ์œ ์˜์  ๋“ฑ์— ๋Œ€ํ•œ ์ฒด๊ณ„์ ์ธ ํƒ๊ตฌ ๊ต์œก์„ ์ œ๊ณตํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ช…์‹œ์ ์ธ ํƒ๊ตฌ ์•ˆ๋‚ด ์ˆ˜์—…์„ ํ†ตํ•ด ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ์นœ์ˆ™ํ•จ๊ณผ ์ดํ•ด๋„๋ฅผ ๋†’์ธ๋‹ค๋ฉด ํƒ๊ตฌ์— ๋Œ€ํ•œ ๋ถ€์ •์  ์ธ์‹์„ ํ•ด์†Œํ•˜๊ณ , ์žฅ๊ธฐ์ ์œผ๋กœ ๊ธ์ •์ ์ธ ์ธ์‹ ํ˜•์„ฑ๊ณผ ํƒ๊ตฌ ๋Šฅ๋ ฅ ์„ฑ์ทจ ํ–ฅ์ƒ์„ ๊ธฐ๋Œ€ํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค. ์…‹์งธ, 2007 ๊ฐœ์ • ๊ณผํ•™๊ณผ ๊ต์œก๊ณผ์ • ์ด์ˆ˜๋ฅผ ํ†ตํ•ด ์ดˆ๋“ฑํ•™์ƒ์˜ ๊ธฐ์ดˆโ€ค ํ†ตํ•ฉ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ์ด ์‹ ์žฅ๋˜๋Š” ๊ฒƒ์œผ๋กœ ๋‚˜ํƒ€๋‚ฌ๋‹ค, ๊ธฐ์ดˆ ํƒ๊ตฌ ๋Šฅ๋ ฅ, U = 13706.0, p = .002(์–‘๋ฐฉ๊ฒ€์ฆ)ํ†ตํ•ฉ ํƒ๊ตฌ ๋Šฅ๋ ฅ, U = 14522.0, p = .022(์–‘๋ฐฉ๊ฒ€์ฆ). ํŠนํžˆ ์ธก์ •, ์˜ˆ์ƒ, ๋ณ€์ธํ†ต์ œ๋Š” ํ•™๋…„์— ๋”ฐ๋ผ ์œ ์˜ํ•œ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ ์‹ ์žฅ์ด ์žˆ์—ˆ๋‹ค, ์ธก์ • U = 14764.5, p = .027์˜ˆ์ƒ U = 13700.0, p = .001๋ณ€์ธํ†ต์ œ U = 14410.0, p = .005. ๊ทธ๋Ÿฌ๋‚˜ ๊ฐ€์„ค์„ค์ •, ์ž๋ฃŒ๋ณ€ํ™˜, ๊ฒฐ๋ก ๋„์ถœ๊ณผ ๊ฐ™์ด ํ•™๋…„์— ๋”ฐ๋ผ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ ์„ฑ์ทจ ๋ณ€ํ™”๊ฐ€ ์—†๋Š” ๊ฒฝ์šฐ ์ œ์‹œ ๋นˆ๋„๊ฐ€ ๋‚ฎ์•„(๊ฐ€์„ค์„ค์ • 4.7%, ์ž๋ฃŒ๋ณ€ํ™˜ 5.6%) ์ถ”๊ฐ€์ ์ธ ํ•™์Šต์ด ๋ถ€์กฑํ–ˆ๋‹ค๊ณ  ์‚ฌ๋ฃŒ๋˜๋ฏ€๋กœ ์ œ์‹œ ๋น„์œจ ์กฐ์ •์ด ํ•„์š”ํ•˜๋‹ค, ๊ฐ€์„ค์„ค์ • x^2(3, N = 374) = 2.8, p = .417์ž๋ฃŒ๋ณ€ํ™˜ x^2(3, N = 374) = 2.7, p = .443๊ฒฐ๋ก ๋„์ถœ x^2(3, N = 374) = 2.8, p = .428. ์•„์šธ๋Ÿฌ, ์„ฑ์ทจ ์ˆ˜์ค€์ด ๋‚ฎ์€ ์ž๋ฃŒํ•ด์„(5ํ•™๋…„ Mdn = 1.7, 6ํ•™๋…„ Mdn = 1.8) ๋“ฑ์— ๋Œ€ํ•ด์„œ ์„ธ๋ถ€ ์‘๋‹ต ๋ถ„์„์„ ํ†ตํ•ด ํ•™์ƒ๋“ค์ด ํƒ๊ตฌ ์‚ฌ๊ณ  ๊ณผ์ •์—์„œ ๊ฒช์€ ์–ด๋ ค์›€์„ ํŒŒ์•…ํ•˜์—ฌ ์ง€๋„์˜ ์ฃผ์•ˆ์ ์„ ์„ค์ •ํ•˜์˜€๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•ด ์–ป์€ ์‹œ์‚ฌ์ ์„ ํ–ฅํ›„ ์ดˆ๋“ฑ ํƒ๊ตฌ ๊ต์œก ๋ฐฉ์•ˆ ์ˆ˜๋ฆฝ์„ ์œ„ํ•œ ๊ธฐ์ดˆ ์ž๋ฃŒ๋กœ ํ™œ์šฉํ•œ๋‹ค๋ฉด ๊ต์œก๊ณผ์ •์—์„œ ์ง€ํ–ฅํ•˜๋Š” ์ข…ํ•ฉ์ ์ธ ํƒ๊ตฌ ๋Šฅ๋ ฅ์„ ํ•จ์–‘ํ•˜๋Š” ๋ฐ ๊ธฐ์—ฌํ•  ์ˆ˜ ์žˆ์„ ๊ฒƒ์ด๋‹ค.The aim of this study was to establish some suggestions and to improve elementary science education by investigating elementary students awareness of inquiry processes and science process skills. For this purpose, this study analyzed the contents of 13 science process skills in 5th and 6th grade science textbooks under the 2007 revised curriculum and developed a questionnaire with two sections: The first part asked students about their experience and proficiency with 13 inquiry processes and the second part tested their competence in the science process skills. The results for a total of 367 students(5th grade 188, 6th grade 179) are summarized below. First, there were twice as many basic science process skills(50.0%) as there were integrated process skills(25.3%) among 107 topics in 5th and 6th grade science textbooks. The components ratios of the inquiry processes were distinct according to four content fields. Second, the first part of the test showed that the students experience with inquiry processes increased depending on their grades(5th grade 58.9%, 6th grade 69.3%). In contrast, their self-assessed understanding of inquiry processes decreased(5th grade 50.1%, 6th grade 44.0%). Third, we found significant improvements in science process skills whenmeasuring U=14764.5, p=.027predicting U=13700.0, p=.001and controlling variables U=14410.0, p=.005. Nevertheless, several science process skills showed no difference in the analysis, such as hypothesizing x^2(3, N=374)=2.8, p=.417, transforming data x^2(3, N=374)=2.7, p=.443, and drawing conclusions x^2(3, N=374)=2.8, p=.428. Moreover, the students ability for interpreting data remained low(5th grade Mdn=1.7, 6th grade Mdn=1.8). This study suggests that to provide comprehensive guidance to students in the next curriculum, classes, practical materials and training for explicit instruction in inquiry processes should be offered to teachers.๋ชฉ ์ฐจ ๊ตญ๋ฌธ์ดˆ๋ก โ…ฐ ๋ชฉ ์ฐจ โ…ฒ ํ‘œ ๋ชฉ ์ฐจ โ…ด ๊ทธ๋ฆผ๋ชฉ์ฐจ โ…ต I. ์„œ๋ก  1 1. ์—ฐ๊ตฌ์˜ ํ•„์š”์„ฑ 1 2. ์—ฐ๊ตฌ ๋ชฉ์  4 3. ์—ฐ๊ตฌ ๋ฌธ์ œ 4 II. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 5 1. ๊ณผํ•™์  ํƒ๊ตฌ 5 2. ๊ณผํ•™ ํƒ๊ตฌ๊ณผ์ • 5 1) ๊ธฐ์ดˆ ํƒ๊ตฌ ์š”์†Œ 6 2) ํ†ตํ•ฉ ํƒ๊ตฌ ์š”์†Œ 9 III. ์—ฐ๊ตฌ ๋ฐฉ๋ฒ• 12 1. ์ดˆ๋“ฑํ•™๊ต ๊ณผํ•™ ๊ต๊ณผ์„œ์˜ ํƒ๊ตฌ๊ณผ์ • ๋‚ด์šฉ ๋ถ„์„ 12 2. ์ดˆ๋“ฑํ•™์ƒ์˜ ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ์ธ์‹ ๋ฐ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ ์กฐ์‚ฌ 13 1) ์กฐ์‚ฌ ๋Œ€์ƒ 13 2) ์กฐ์‚ฌ ๋„๊ตฌ 14 3) ์ž๋ฃŒ ์ˆ˜์ง‘ 16 4) ์ž๋ฃŒ ๋ถ„์„ 17 IV. ์—ฐ๊ตฌ ๊ฒฐ๊ณผ ๋ฐ ๋…ผ์˜ 18 1. ์ดˆ๋“ฑํ•™๊ต ๊ณผํ•™ ๊ต๊ณผ์„œ์˜ ํƒ๊ตฌ๊ณผ์ • ๋‚ด์šฉ ๋ถ„์„ 18 1) ํ•™๋…„๋ณ„ ํƒ๊ตฌ๊ณผ์ • ๋‚ด์šฉ 18 2) ๋‚ด์šฉ ์˜์—ญ๋ณ„ ํƒ๊ตฌ๊ณผ์ • ๋‚ด์šฉ 21 2. ์ดˆ๋“ฑํ•™์ƒ์˜ ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ์ธ์‹ ์กฐ์‚ฌ 28 1) ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ๊ฒฝํ—˜ 28 2) ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ์ดํ•ด๋„ 31 3. ์ดˆ๋“ฑํ•™์ƒ์˜ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ ์กฐ์‚ฌ 35 1) ํ•™๋…„๋ณ„ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ 35 2) ํƒ๊ตฌ ์š”์†Œ๋ณ„ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ 36 V. ๊ฒฐ๋ก  ๋ฐ ์ œ์–ธ 39 1. ๊ฒฐ๋ก  39 2. ์ œ์–ธ ๋ฐ ํ›„์† ์—ฐ๊ตฌ ๊ณผ์ œ 40 VI. ์ฐธ๊ณ  ๋ฌธํ—Œ 41 ๋ถ€๋ก 45 ๋ถ€๋ก A. ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ ๊ฒ€์‚ฌ์ง€ 45 ๋ถ€๋ก B. ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ ๊ฒ€์‚ฌ ์ •๋‹ต์ง€ 57 ABSTRACT 58 ํ‘œ ๋ชฉ์ฐจ 2007 ๊ฐœ์ • ๊ณผํ•™๊ณผ ๊ต์œก๊ณผ์ • ์ƒ์˜ ํƒ๊ตฌ ์š”์†Œ 6 SAPAโ…ก ์ƒ์˜ ํƒ๊ตฌ ์š”์†Œ 6 ๊ฐ€์„ค๊ณผ ํ˜ผ๋™ํ•˜๊ธฐ ์‰ฌ์šด ๊ณผํ•™์  ์šฉ์–ด์˜ ์ •์˜ 10 ํ•™๋…„ ๋ฐ ์„ฑ๋ณ„์— ๋”ฐ๋ฅธ ์กฐ์‚ฌ ๋Œ€์ƒ 13 ์กฐ์‚ฌ ๋ฒ”์ฃผ ๋ฐ ์„ธ๋ถ€ ์กฐ์‚ฌ ๋‚ด์šฉ 14 ์กฐ์‚ฌ ๋Œ€์ƒ์˜ ์ •๊ทœ์„ฑ ๊ฒ€์ • 17 2007 ๊ฐœ์ • ์ดˆ๋“ฑํ•™๊ต ๊ณผํ•™ ๊ต๊ณผ์„œ์˜ ํ•™๋…„๋ณ„ ํƒ๊ตฌ ์š”์†Œ ๋นˆ๋„ 20 2007 ๊ฐœ์ • ์ดˆ๋“ฑํ•™๊ต ๊ณผํ•™ ๊ต๊ณผ์„œ์˜ ๋‚ด์šฉ ์˜์—ญ๋ณ„ ํƒ๊ตฌ ์š”์†Œ๋นˆ๋„(์šด๋™๊ณผ ์—๋„ˆ์ง€ ์˜์—ญ) 21 2007 ๊ฐœ์ • ์ดˆ๋“ฑํ•™๊ต ๊ณผํ•™ ๊ต๊ณผ์„œ์˜ ๋‚ด์šฉ ์˜์—ญ๋ณ„ ํƒ๊ตฌ ์š”์†Œ๋นˆ๋„(๋ฌผ์งˆ ์˜์—ญ) 23 2007 ๊ฐœ์ • ์ดˆ๋“ฑํ•™๊ต ๊ณผํ•™ ๊ต๊ณผ์„œ์˜ ๋‚ด์šฉ ์˜์—ญ๋ณ„ ํƒ๊ตฌ ์š”์†Œ๋นˆ๋„(์ƒ๋ช… ์˜์—ญ) 24 2007 ๊ฐœ์ • ์ดˆ๋“ฑํ•™๊ต ๊ณผํ•™ ๊ต๊ณผ์„œ์˜ ๋‚ด์šฉ ์˜์—ญ๋ณ„ ํƒ๊ตฌ ์š”์†Œ ๋นˆ๋„(์ง€๊ตฌ์™€ ์šฐ์ฃผ ์˜์—ญ) 26 ํ•™๋…„๋ณ„ ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ํ•™์Šต ๊ฒฝํ—˜ ๋ฐ ํ•™์Šต ๊ฒฝ๋กœ 29 ํ•™๋…„๋ณ„ ํƒ๊ตฌ๊ณผ์ •์— ๋Œ€ํ•œ ์ดํ•ด๋„ 32 ์ดˆ๋“ฑํ•™๊ต 5ํ•™๋…„๊ณผ 6ํ•™๋…„ ํ•™์ƒ๋“ค์˜ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ ์ ์ˆ˜ 35 ์ดˆ๋“ฑํ•™๊ต 5ํ•™๋…„๊ณผ 6ํ•™๋…„ ํ•™์ƒ๋“ค์˜ ํƒ๊ตฌ ์š”์†Œ๋ณ„ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ์ ์ˆ˜ 36 ์ดˆ๋“ฑํ•™๊ต 5ํ•™๋…„๊ณผ 6ํ•™๋…„ ํ•™์ƒ๋“ค์˜ ํƒ๊ตฌ ์š”์†Œ๋ณ„ ํƒ๊ตฌ ์‚ฌ๊ณ ๋ ฅ์„ฑ์ทจ ๋ถ„ํฌ 38 ๊ทธ๋ฆผ ๋ชฉ์ฐจ ํƒ๊ตฌ๊ณผ์ • ๋ชจ๋ธ 27Maste

    Dynamic Causality between Regional Growth and Disparity : Focusing on Gyeonggi Province

    No full text
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) --์„œ์šธ๋Œ€ํ•™๊ต ํ™˜๊ฒฝ๋Œ€ํ•™์› :ํ™˜๊ฒฝ๊ณ„ํšํ•™๊ณผ(๋„์‹œ ๋ฐ ์ง€์—ญ๊ณ„ํš์ „๊ณต),2010.2.Maste

    F. Poulenc์˜ Cinq poรจmes de Max Jacob ์—ฐ๊ตฌ - 20์„ธ๊ธฐ ์ดˆ๋ฐ˜์— ๋‚˜ํƒ€๋‚œ ์ดˆํ˜„์‹ค์ฃผ์˜ ์‹œ์™€ ์Œ์•…์˜ ๊ด€๊ณ„๋ฅผ ์ค‘์‹ฌ์œผ๋กœ -

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (์„์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ์Œ์•…๊ณผ(์„ฑ์•…์ „๊ณต), 2015. 8. ์œคํ˜„์ฃผ.๋ณธ ๋…ผ๋ฌธ์€ ์ž‘๊ณก๊ฐ€ Francis Poulenc(1899-1963)์˜ ์ž‘ํ’ˆ ใ€ŒCinq poรจmes de Max Jacobใ€์— ๊ด€ํ•œ ์—ฐ๊ตฌ๋กœ, ์ดˆํ˜„์‹ค์ฃผ์˜ ์‹œ์™€ ์Œ์•…์˜ ๊ด€๊ณ„์„ฑ์— ์ดˆ์ ์„ ๋งž์ถ”์–ด ๊ณ ์ฐฐํ•œ ๋…ผ๋ฌธ์ด๋‹ค. Poulenc์€ 20์„ธ๊ธฐ ํ”„๋ž‘์Šค ์Œ์•…์„ ๋Œ€ํ‘œํ•˜๋Š” ์ž‘๊ณก๊ฐ€๋กœ์„œ ๋ฌด์—‡๋ณด๋‹ค ์ดˆํ˜„์‹ค์ฃผ์˜์  ๋‚ด์šฉ์„ ๋‹ด์€ ์‹œ๋ฅผ ์ž‘ํ’ˆ์— ๋งŽ์ด ์‚ฌ์šฉํ•˜์—ฌ ์‹œ์™€ ์Œ์•…์„ ์ ˆ๋ฌ˜ํ•˜๊ฒŒ ๊ฒฐํ•ฉํ•˜๊ณ  ๊ทธ ํŠน์œ ์˜ ์œ ๋จธ์™€ ์„œ์ •์„ฑ์ด ๋‹๋ณด์ด๋Š” ๊ฐ€๊ณก์œผ๋กœ ์žฌํƒ„์ƒํ•˜์—ฌ ํ”„๋ž‘์Šค ์˜ˆ์ˆ ๊ฐ€๊ณก์˜ ํ๋ฆ„์— ํฌ๊ฒŒ ์ž๋ฆฌ๋งค๊น€ํ•œ ๋งŽ์€ ๊ฑธ์ž‘๋“ค์„ ๋‚จ๊ฒผ๋‹ค. ์ดˆํ˜„์‹ค์ฃผ์˜๋Š” 1์ฐจ ์„ธ๊ณ„๋Œ€์ „ ์ดํ›„ ๋‚˜ํƒ€๋‚œ ๋‹ค๋‹ค์ด์ฆ˜ ์ •์‹ ์„ ๊ณ„์Šนํ•˜๊ณ  ๋ฐœ์ „์„ ์‹œ๋„ํ•˜๋ฉฐ ๋‚˜ํƒ€๋‚˜๊ฒŒ ๋œ ์šด๋™์œผ๋กœ, ์ง„๋ฆฌ์˜ ์ „๋‹ฌ์„ ์œ„ํ•ด ์ดˆํ˜„์‹ค์˜ ์ƒ์ƒ๋ ฅ์„ ์‚ฌ์šฉํ•œ๋‹ค๋Š” ์˜๋ฏธ์˜ ์ดˆํ˜„์‹ค์ฃผ์˜๋Š” 20์„ธ๊ธฐ ์ดˆ๋ฐ˜ ์ „ ์„ธ๊ณ„์ ์œผ๋กœ ํ™•์žฅ๋˜์–ด ์ •์น˜, ๋ฌธํ•™, ์Œ์•… ๋“ฑ ์‚ฌํšŒ ์ „๋ฐ˜์— ๊ฑธ์ณ ์˜ํ–ฅ์„ ๋ฏธ์น˜์—ˆ๋‹ค. 20์„ธ๊ธฐ ํ”„๋ž‘์Šค์˜ ๋Œ€ํ‘œ์ ์ธ ์ž‘๊ณก๊ฐ€ Poulenc๊ณผ ์‹œ์ธ Max Jacob์€ ์ดˆํ˜„์‹ค์ฃผ์˜ ์šด๋™์˜ ์ค‘์‹ฌ์— ์žˆ์—ˆ๋‹ค. Poulenc์€ ์ผ์ฐ์ด ๋‹ค์–‘ํ•˜๊ณ  ์ฒด๊ณ„์ ์ธ ์Œ์•…๊ต์œก์„ ๋ฐ›์•„ ๊ธฐ์•…๊ณก, ๊ด€ํ˜„์•…๊ณก, ์‹ค๋‚ด์•…๊ณก, ํ•ฉ์ฐฝ์Œ์•…, ๊ฐ€๊ณก ๋“ฑ ๋‹ค์–‘ํ•œ ์žฅ๋ฅด์˜ ๋งŽ์€ ์ž‘ํ’ˆ์„ ๋‚จ๊ฒผ๋Š”๋ฐ, ์ด ์ค‘ ๋ณธ ๋…ผ๋ฌธ์—์„œ ๋‹ค๋ฃจ๊ณ ์ž ํ•˜๋Š” ใ€ŒCinq poรจmes de Max Jacobใ€์€ 1931๋…„ ์ž‘๊ณก๋œ ์„ฑ์•…๊ณก์œผ๋กœ์„œ ์ด 5ํŽธ์˜ ์‹œ๋กœ ์ด๋ฃจ์–ด์ ธ ์žˆ๋Š” ์ž‘ํ’ˆ์ด๋‹ค. Max Jacob์— ์˜ํ•œ ์ด 5ํŽธ์˜ ์‹œ๋Š” ๊ทธ๊ฐ€ Morven le Gaรซlique๋ผ๋Š” ํ•„๋ช…์œผ๋กœ ์„œ๋ช…ํ•œ ์ปฌ๋ ‰์…˜ Chants Bretons์—์„œ ๋ฐœ์ทŒํ•œ ๊ฒƒ์œผ๋กœ, ์ดˆํ˜„์‹ค์ฃผ์˜์  ์„ฑํ–ฅ์„ ์ง™๊ฒŒ ๋„๋Š” ์ž‘ํ’ˆ์ด๋‹ค. Poulenc์˜ใ€ŒCinq poรจmes de Max Jacobใ€์€ 20์„ธ๊ธฐ ์ดˆ ํ”„๋ž‘์Šค ๋ฌธํ•™์˜ ํ๋ฆ„์„ ์ฃผ๋„ํ•œ ์ดˆํ˜„์‹ค์ฃผ์˜ ์‹œ๋ฅผ ์Œ์•…์ ์œผ๋กœ ์žฌํ•ด์„ํ•˜์—ฌ ์ดˆํ˜„์‹ค์ฃผ์˜ ์˜ˆ์ˆ ์˜ ๋Œ€ํ‘œ์  ์ž‘ํ’ˆ์œผ๋กœ์„œ ํ‰๊ฐ€๋ฐ›๋Š” ์ž‘ํ’ˆ์ด๋‹ค. ์ด์— ํ•„์ž๋Š” ์ดˆํ˜„์‹ค์ฃผ์˜์™€ ์ž‘๊ณก๊ฐ€ Poulenc ๊ทธ๋ฆฌ๊ณ  ์ด ์ž‘ํ’ˆ์— ๋Œ€ํ•ด ๊ณ ์ฐฐ, ๋ถ„์„ํ•จ์œผ๋กœ์จ ์ด์ž‘ํ’ˆ์„ ์‹ฌ๋„ ์žˆ๊ฒŒ ์ดํ•ดํ•˜๊ณ  ๋” ๋‚˜์•„๊ฐ€ Poulenc ๊ฐ€๊ณก์˜ ๋ณด๋‹ค ๊นŠ์€ ์ดํ•ด์™€ ํ•™๊ตฌ์ ์ธ ์—ฐ์ฃผ๋ฅผ ์œ„ํ•œ ๋„๊ตฌ๋กœ ์‚ผ๊ณ ์ž ํ•œ๋‹ค.I. ์„œ๋ก  1 II. ์ด๋ก ์  ๋ฐฐ๊ฒฝ 3 1. ์ดˆํ˜„์‹ค์ฃผ์˜(Surrealism) 3 2. 20C ์ดˆ๋ฐ˜ ์Œ์•…์— ๋‚˜ํƒ€๋‚œ ์ดˆํ˜„์‹ค์ฃผ์˜ ์‹œ 7 3. Max Jacob์˜ ์ดˆํ˜„์‹ค์ฃผ์˜ ์‹œ 10 4. Francis Poulenc์˜ ์˜ˆ์ˆ ๊ฐ€๊ณก 11 III. ์ž‘ํ’ˆ๋ถ„์„ 19 1. ใ€ŒCinq poรจmes de Max Jacobใ€์ž‘ํ’ˆ ๊ฐœ์š” 19 2. ์ž‘ํ’ˆ์—ฐ๊ตฌ 20 (1) Chanson bretonne (๋ธŒ๋ฅดํ†ต๋Š์˜ ๋…ธ๋ž˜) 20 (2) Cimetiere(๋ฌ˜์ง€) 29 (3) La Petite servante(์–ด๋ฆฐ ํ•˜๋…€) 37 (4) Berceuse(์ž์žฅ๊ฐ€) 47 (5) Souric et Mouric(์ˆ˜๋ฆฌํฌ์™€ ๋ฌด๋ฆฌํฌ) 54 IV. ๊ฒฐ๋ก  62 ์ฐธ๊ณ ๋ฌธํ—Œ 64 Abstract 66Maste
    • โ€ฆ
    corecore