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Abstract

On a sufficient condition for a Mittag-Leffler
function to have real zeros only, and the
Pólya-Wiman properties of differential

operators

Min-Hee Kim

Department of Mathematical Sciences

The Graduate School

Seoul National University

In this dissertation, we study the distribution of zeros of entire functions.

First, we study the reality of zeros of Mittag-Leffler functions. If α and β are

complex numbers with Re α > 0, the Mittag-Leffler function Eα,β is defined

by

Eα,β(z) =
∞∑
k=0

zk

Γ(β + αk)
.

One of the most recent results on the zeros of the Mittag-Leffler functions is

due to Popov and Sedletskii: if α > 2 and 0 < β ≤ 2α − 1 or if α > 4 and

0 < β ≤ 2α then Eα,β(z) has only real zeros. We improve the result by showing

that if α ≥ 4.07 and 0 < β ≤ 3α then Eα,β(z) has only real zeros.

Second, we study the Pólya-Wiman properties of differential operators. Let

ϕ(x) =
∑
αnx

n be a formal power series with real coefficients and let D denote

differentiation. It is shown that “for every real polynomial f there is a positive

integer m0 such that ϕ(D)mf has only real zeros whenever m ≥ m0” if and

only if “α0 = 0 or 2α0α2−α2
1 < 0”, and that if ϕ does not represent a Laguerre-

Pólya function, then there is a Laguerre-Pólya function f of genus 0 such that

for every positive integer m, ϕ(D)mf represents a real entire function having

infinitely many nonreal zeros.
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Finally, we prove the identity

sup{α ∈ R : eαD
2

cosD Mn has real zeros only} = 4λn
−2,

where Mn is the monic monomial of degree n, that is, Mn(z) = zn, and λn is

the largest zero of the 2n-th Hermite polynomial H2n given by

H2n(z) = (2n)!
n∑

k=0

(−1)k

k!(2n− 2k)!
(2z)2n−2k.

Key words:Mittag-Leffler functions, Pólya-Wiman Theorem, zeros of polyno-

mials and entire functions, linear differential operators, Laguerre-Pólya class,

Hermite polynomials, De Bruijn-Newman constant

Student Number: 2004-20349
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2.3 Pólya-Wiman property with respect to Laguerre -Pólya func-
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Introduction

Let f be an entire function. If there is a positive real number A such that

(1) |f(z)| = O(exp(|z|A)) as |z| → ∞,

then f is said to be of finite order. The order ρ of f is defined to be the greatest

lower bound of the set of all positive real numbers A which satisfy (1). If f is

of order ρ, 0 < ρ <∞, and there is a positive real number B such that

(2) |f(z)| = O(exp(B|z|ρ)) as |z| → ∞,

then f is said to be of finite type. The type τ of f is defined to be the greatest

lower bound of the set of all positive real number B which satisfy (2).

It is well known and easy to prove that

ρ = lim sup
r→∞

log logM(r; f)

log r
and τ = lim sup

r→∞

logM(r; f)

rρ

where M(r; f) = max|z|=r |f(z)|, r > 0. The order ρ and type τ of f can also

be represented in terms of the Taylor coefficients of f . If f(z) =
∑
anz

n then

(3) ρ = lim sup
n→∞

n log n

log(1/|an|)
and τ =

1

eρ
lim sup

n→∞
n|an|ρ/n.

For a proof of (3) see [2].

The genus of f is the smallest integer p such that f can be represented in

the form

(4) f(z) = zneP (z)
∏
j

(
1− z

aj

)
e

z
aj

+ 1
2
( z
aj

)2+···+ 1
p
( z
aj

)p

,
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INTRODUCTION

where P (z) is a polynomial of degree ≤ p and n is a nonnegative integer.

Note that if f is of genus p and aj, j = 1, 2, . . . are the zeros of f then the

convergence of the infinite product in (4) implies that
∑

aj ̸=0 |aj|−p−1 <∞.

The order and the genus are closely related, as seen by the following theo-

rem.

Hadamard’s Theorem. The genus p and the order ρ of an entire function

satisfy the double inequality

p ≤ ρ ≤ p+ 1.

If α, β ∈ C, and Reα > 0, then it is known that the series

∞∑
k=0

zk

Γ(β + αk)

represents a transcendental entire function of order 1/(Reα) and type 1 [11,

Proposition 3.1]. The entire function is denoted by Eα,β and called a Mittag-

Leffler function. If α > 0, then Eα,1 is called a classical Mittag-Leffler function.

If Reα > 1, then Eα,β is of order < 1, hence Hadamard’s factorization theorem

implies that Eα,β(z) has infinitely many zeros.

Let

W = {(α, β) : α, β > 0 and all the zeros of Eα,β(z) are negative and simple}.

In 1905, A. Wiman asserted that if α ≥ 2, then (α, 1) ∈ W [33]. Since he only

gave some plausible arguments, several mathematicians doubted the validity

of Wiman’s proof. Later G. Pólya proved that if α is an integer ≥ 2, then

(α, 1) ∈ W [25]. It follows from an asymptotic formula for Eα,β(z) that if

0 < α < 2 and (α, β) /∈ {(1,m) : m = 1, 0,−1,−2, . . .} then Eα,β(z) has

infinitely many zeros but has only a finite number of real zeros [29, Theorem

2.1.1]; and we have

E1,m(z) = z1−mez (m = 1, 0,−1,−2, . . .).

2



INTRODUCTION

Hence (1, 1) ∈ W and (α, β) /∈ W whenever α ∈ (0, 1) ∪ (1, 2). In 1997,

Ostrovskii and Peresyolkova proved that

W ⊃
∞⋃
n=1

{(α, β) : α = 2n, 0 < β < 1 + α}.

(Especially, if α = 2 and 0 < β < 3 then (α, β) ∈ W . After that, Popov and

Sedletskii proved that if α = 2 and β ≥ 3 then (α, β) /∈ W [29].) They also

proved that (α, 1), (α, 2) ∈ W for all α ≥ 2 [22, Theorem 2 and Corollary 3].

In particular, they gave a rigorous proof of Wiman’s result.

We put

ξn = ξn(α, β) = π

(
n+

1

α
(β − 1)

)
csc
(π
α

)
(n = 1, 2, . . . ;α > 2, β > 0),

and

W0 = {(α, β) : α > 2, β > 0 and (−1)nEα,β(−ξnα) > 0 for all n ∈ N}.

If (α, β) ∈ W0 then the intermediate value theorem and the inequality Eα,β(0) >

0 imply that Eα,β(z) has at least n zeros in (−ξnα, 0) for every n. On the other

hand, Popov and Sedletskii proved that if α > 2 then Eα,β(z) has exactly

n zeros (counting multiplicities) in |z| ≤ ξn
α for all sufficiently large n [29,

Theorem 2.1.4 and Theorem 2.2.2]. Hence we see that W0 ⊂ W . In the same

paper, they refined the result of Ostrovskii and Peresyolkova by showing that

if α > 2 and 0 < β ≤ 2α − 1 or if α ≥ 4 and 0 < β ≤ 2α, then (α, β) ∈ W0,

and that if α > 2 and β ≥ (log 2)−1α2−α+0.9, then (α, β) /∈ W [29, Theorem

3.1.1 and Theorem 3.1.4]. In Chapter 1, we improve the result of Popov and

Sedletskii by showing that if α ≥ 4.07 and 0 < β ≤ 3α then (α, β) ∈ W0 .

A real entire function is an entire function which takes real values on the

real axis. If f is a real entire function, we denote the number of nonreal zeros

(counting multiplicities) of f by ZC(f). (If f is identically equal to 0, we set

ZC(f) = 0.) A real entire function f is said to be of genus 1∗ if it can be

expressed in the form

f(x) = e−γx2

g(x),

3



INTRODUCTION

where γ ≥ 0 and g is a real entire function of genus at most 1. If f is a real

entire function of genus 1∗ and ZC(f) = 0, then f is called a Laguerre-Pólya

function and we write f ∈ LP . We denote by LP∗ the class of real entire

functions f of genus 1∗ such that ZC(f) <∞. It is well known that f ∈ LP if

and only if there is a sequence ⟨fn⟩ of real polynomials such that ZC(fn) = 0

for all n and fn → f uniformly on compact sets in the complex plane. (See

Chapter 8 of [19] and [20, 23, 27].) From this and an elementary argument

based on Rolle’s theorem, it follows that the classes LP and LP∗ are closed

under differentiation, and that ZC(f) ≥ ZC(f
′) for all f ∈ LP∗. The Pólya-

Wiman theorem states that for every f ∈ LP∗ there is a positive integer m0

such that f (m) ∈ LP for all m ≥ m0 [6, 7, 14, 17, 26]. On the other hand, it

follows from recent results of W. Bergweiler, A. Eremenko and J. Langley that

if f is a real entire function, ZC(f) < ∞ and f /∈ LP∗, then ZC(f
(m)) → ∞

as m→ ∞ [1, 18].

Let ϕ be a formal power series given by

ϕ(x) =
∞∑
n=0

αnx
n.

For convenience we express the n-th coefficient αn of ϕ as ϕ(n)(0)/n! even when

the radius of convergence is equal to 0. If f is an entire function and the series

∞∑
n=0

αnf
(n)

converges uniformly on compact sets in the complex plane, so that it represents

an entire function, we write f ∈ domϕ(D) and denote the entire function by

ϕ(D)f . For m ≥ 2 we denote by domϕ(D)m the class of entire functions f

such that f, ϕ(D)f, . . . , ϕ(D)m−1f ∈ domϕ(D). It is obvious that if f is a

polynomial, then f ∈ domϕ(D)m for all m. For more general restrictions on

the growth of ϕ and f under which f ∈ domϕ(D)m for all m, see [3, 5].

The following version of the Pólya-Wiman theorem for the operator ϕ(D)

was established by T. Craven and G. Csordas [5, Theorem 2.4].

Theorem A. Suppose that ϕ is a formal power series with real coefficients,

ϕ′(0) = 0 and ϕ′′(0)ϕ(0) < 0. Then for every real polynomial f there is

4



INTRODUCTION

a positive integer m0 such that all the zeros of ϕ(D)mf are real and simple

whenever m ≥ m0.

We also have the following version, which is a consequence of the results in

Section 3 of [5].

Theorem B. Suppose that ϕ ∈ LP (ϕ represents a Laguerre-Pólya function),

f ∈ LP∗, and that f is of order less than 2. Then f ∈ domϕ(D)m, ϕ(D)mf ∈
LP∗ and ZC(ϕ(D)mf) ≥ ZC(ϕ(D)m+1f) for all m. Furthermore, if ϕ is not

of the form ϕ(x) = ceγx with c ̸= 0, then ZC(ϕ(D)mf) → 0 as m→ ∞.

In Chpater 2, we complement Theorem A and Theorem B above. Let ϕ be

a formal power series with real coefficients and f be a real entire function. If

f ∈ domϕ(D)m for all m and ZC(ϕ(D)mf) → 0 as m → ∞, then we will say

that ϕ (or the corresponding operator ϕ(D)) has the Pólya-Wiman property

with respect to f . For instance, if f is a real entire function and ZC(f) < ∞,

then the operatorD (= d/dx) has the Pólya-Wiman property with respect to f

if and only if f ∈ LP∗. Theorem A gives a sufficient condition for ϕ to have the

Pólya-Wiman property with respect to arbitrary real polynomials. In Section

2.2, we prove that this is the case if and only if ϕ(0) = 0 or ϕ′′(0)ϕ(0)−ϕ′(0)2 <

0. In Section 2.3, we prove a strong version of the converse of Theorem B which

implies that if ϕ is a formal power series with real coefficients and ϕ does not

represent a Laguerre-Pólya function then ϕ does not have the Pólya-Wiman

property with respect to some (transcendental) Laguerre-Pólya functions of

genus 0

In Chapter 3, we introduce a result on the polynomials all of whose zeros

lie in the lower half plane. The result is due to Wall [32] in the case of poly-

nomials with real coefficients and to Frank [10] in the case of polynomial with

complex coefficients. By using the Wall-Frank Theorem, we obtain more pre-

cise asymptotic results on the distribution of zeros of ϕ(D)mP (z) as m → ∞
than the results obtained in Section 2.4.

A function of growth (2, 0) is a real entire function which is at most order

2 and type 0, that is,

f(z) = O(exp(ϵ|z|2)) (|z| → ∞)

5



INTRODUCTION

for every ϵ > 0. If f is of growth (2, 0) then it is known that f ∈ dom eαD
2

and eαD
2
f is of growth (2, 0) for every α ∈ C [3].

When f is a real entire function of growth (2, 0), we define λ(f) by

λ(f) = sup{α ∈ R : eαD
2

f has real zeros only}.

Let Ξ denote the Riemann Xi-function:

Ξ(t) =
s(s− 1)

2
Γ
(s
2

)
π−s/2ζ(s) (s =

1

2
+ it).

In [9], N. G. de Bruijn proved that λ(Ξ) ≥ −1/8 and that the Riemann

hypothesis is equivalent to the inequality λ(Ξ) ≥ 0. In [21], C. Newman

showed that λ(Ξ) < ∞, and conjectured the opposite inequality λ(Ξ) ≤ 0.

The inequality λ(Ξ) ≥ −1/8 has been improved to λ(Ξ) > −1/8 by Ki, Kim

and Lee [16]. The first upper bound was given by Csordas, Norfolk and Varga

in 1988 [8]. They denoted −4λ(Ξ) by Λ and established −50 < Λ. In the

same paper, they called Λ the de Bruijn-Newman constant. Lower bounds for

Λ have been computed by several authors. Recently, Saouter, Gourdon and

Demichel have shown that Λ > −1.14541× 10−11 [30].

We extend the notion of the de Bruijn-Newman constant to arbitrary real

entire functions of growth (2, 0) by calling −λ(f) the de Bruijn-Newman con-

stant of f .

For n = 0, 1, 2, . . . let Fn be the real polynomial defined by

Fn(z) =
1

2
((z + i)n + (z − i)n) = (cosD Mn)(z),

whereMn is the monic monomial of degree n, that is,Mn(z) = zn. In Chapter

4, we prove that the de Bruijn-Newman constant of the polynomial Fn is

−(2λn)
−2, where λn is the largest zero of the 2n-th Hermite polynomial H2n

given by

H2n(z) = (2n)!
n∑

k=0

(−1)k

k!(2n− 2k)!
(2z)2n−2k.

6



Chapter 1

Sufficient condition for a

Mittag-Leffler function to have

real zeros only

In this chapter, we study the reality of zeros of Mittag-Leffler functions.

One of the most recent results is due to Popov and Sedletskii: if α > 2 and

0 < β ≤ 2α − 1 or if α > 4 and 0 < β ≤ 2α then Eα,β(z) has only real zeros.

We improve the result by showing that if α ≥ 4.07 and 0 < β ≤ 3α then

Eα,β(z) has only real zeros.

1.1 Main result and sketch outline of the proof

If α, β ∈ C, and Reα > 0, then it is known that the series
∞∑
k=0

zk

Γ(β + αk)

represents a transcendental entire function of order 1/(Reα) and type 1 [11,

Proposition 3.1]. The entire function is denoted by Eα,β and called a Mittag-

Leffler fucntion. If α > 0, then Eα,1 is called a classical Mittag-Leffler function.

If Reα > 1, then Eα,β is of order < 1, hence Hadamard’s factorization theorem

implies that Eα,β(z) has infinitely many zeros.

7



CHAPTER 1. SUFFICIENT CONDITION FOR A MITTAG-LEFFLER
FUNCTION TO HAVE REAL ZEROS ONLY

We put

W = {(α, β) : α, β > 0 and all the zeros of Eα,β(z) are negative and simple},

and

W0 = {(α, β) : α > 2, β > 0 and (−1)nEα,β(−ξnα) > 0 for all n ∈ N},

where

ξn = ξn(α, β) = π

(
n+

1

α
(β − 1)

)
csc
(π
α

)
(n = 1, 2, . . . ;α > 2, β > 0).

If (α, β) ∈ W0 then the intermediate value theorem and the inequality Eα,β(0) >

0 imply that Eα,β(z) has at least n zeros in (−ξnα, 0) for every n. On the other

hand, Popov and Sedletskii proved the following theorem.

Theorem 1.1.1 ([29, Theorem 2.1.4 and Theorem 2.2.2]). If α > 2 then

Eα,β(z) has exactly n zeros (counting multiplicities) in |z| ≤ ξn
α for all suffi-

ciently large n.

Hence we see that W0 ⊂ W . In the same paper, they proved that if α > 2

and 0 < β ≤ 2α− 1 or if α ≥ 4 and 0 < β ≤ 2α, then (α, β) ∈ W0. Precisely,

Theorem 1.1.2 ([29, Theorem 3.1.1]). If α > 2 and 0 < β ≤ 2α − 1 or if

α ≥ 4 and 0 < β ≤ 2α, then all zeros of the function Eα,β(z) in C lie on

(−∞, 0) are simple, and if we denote them by {zn(α, β)}n∈N ordered as

z1(α, β) > z2(α, β) > · · · > zn(α, β) > · · · ,

they satisfy the inequalities

−ξ1α < z1(α, β) < −Γ(α + β)

Γ(β)
,

−ξnα < zn(α, β) < −ξn−1
α, (n ≥ 2).

In this chapter, we improve the result of Popov and Sedletskii by the fol-

lowing theorem.

8



CHAPTER 1. SUFFICIENT CONDITION FOR A MITTAG-LEFFLER
FUNCTION TO HAVE REAL ZEROS ONLY

Theorem 1.1.3. If α ≥ 4.07 and 0 < β ≤ 3α then (α, β) ∈ W.

This theorem is an immediate consequence of Theorem 1.1.4 and Theorem

1.1.5 stated below. Let

ϕ(α, β) =
1

α
ξ1

1+α−β exp
(
ξ1 cos

(π
α

))
Γ(β − α).

Theorem 1.1.4. If α ≥ 4, 2α < β ≤ 3α and ϕ(α, β) > 0.51 then (α, β) ∈ W0.

Theorem 1.1.5. We have ϕ(4.07, 12.21) > 0.512. Furthermore the function

α 7→ ϕ(α, 3α) is increasing on [4,∞) and for each fixed α ≥ 4 the function

β 7→ ϕ(α, β) is decreasing on (2α, 3α].

Remark. Theorem 1.1.5 implies that the inequality ϕ(α, β) > 0.512 holds for

α ≥ 4.07 and 2α < β ≤ 3α.

We sketch our proof of Theorem 1.1.4 in this section. The detailed proof

is given in Sections 1.2-1.4. Theorem 1.1.5 is proved in Section 1.4.

The main idea of the proof of Theorem 1.1.4 is almost identical with the

one given by Popov and Sedletskii [29]. In this section, we describe the differ-

ences of the proof of Theorem 1.1.4 in comparison with method of Popov and

Sedletskii. From now on, we restrict our attention to the case where α ≥ 4.

First, Popov and Sedletskii considered the case where 0 < β ≤ α. In order

to show that (α, β) ∈ W0, they used the following asymptotic expansion:

Theorem 1.1.6 ([29, Theorem 1.5.4]). For any α ≥ 5/2, 0 < β ≤ α, and

x > 0, the following representation holds:

Eα,β(−xα) = Sα,β(x) + ωα,β(x),

where

Sα,β(x) =
2

α
x1−β ×

⌊α/2⌋∑
k=1

exp

(
x cos

(
(2k − 1)π

α

))
cos

(
x sin

(
(2k − 1)π

α

)
+ (2k − 1)π

1− β

α

)
and

|ωα,β(x)| ≤ 0.74x−β (x > 0).

9
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FUNCTION TO HAVE REAL ZEROS ONLY

In the case of α < β ≤ 2α, they used the identity

(1.1) Eα,β(z) =
1

z

(
Eα,β−α(z)−

1

Γ(β − α)

)
.

Since 0 < β − α ≤ α, Theorem 1.1.6 can be applied to (1.1).

In the case of 2α < β ≤ 3α, we will use the following equality obtained

from identity (1.1),

(1.2) Eα,β(z) =
1

z2
Eα,β−2α(z)−

1

z2
1

Γ(β − 2α)
− 1

z

1

Γ(β − α)
.

Since 0 < β − 2α ≤ α, we can apply the asymptotic expansion in Theorem

1.1.6 to Eα,β−2α(z) in equality (1.2).

In Theorem 1.1.6, the first part of the remainder is equal to the product of

2x1−β/α and the sum

⌊α/2⌋∑
k=2

ak(x) cos

(
x sin

(
(2k − 1)π

α

)
+ (2k − 1)π

1− β

α

)
,

where

ak(x) = exp

(
x cos

(
(2k − 1)π

α

))
.

For fixed x > 0 and k ∈ N, we have

lim
α→∞

ak+1(x)

ak(x)
= 1 uniformly with respect to 0 ≤ x ≤ o(α2),

and we cannot obtain the required estimate. Thus, in the case of 2α < β ≤
3α, we will show that if ϕ(α, β) > 0.51 then (−1)nEα,β(−ξnα) > 0 holds for

n ≥ ⌊α/4⌋. For the notational simplicity, we put

Rn = Rn(α, β) =
Γ(β + nα)

Γ(β + (n− 1)α)
(n ∈ N).

With this notation, we will prove the following:

(1.3) (−1)n−1Eα,β(−Rn) > 0 (1 ≤ n ≤ ⌊α/4⌋),

10
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(1.4) (−1)nEα,β(−
√
2Rn) > 0 (1 ≤ n < ⌊α/4⌋),

and

(1.5) ξn−1
α < Rn <

√
2Rn < ξn

α (α ≥ 8; 1 ≤ n ≤ ⌊α/4⌋)

(we assume that ξ0 = 0). These inequalities imply that Eα,β(z) has at least

⌊α/4⌋ zeros in the interval [−ξ⌊α/4⌋α, 0]. It is important that the signs of the

function at the points −R⌊α/4⌋ and −ξ⌊α/4⌋α are distinct and

−ξ⌊α/4⌋α < −R⌊α/4⌋ < −ξ⌊α/4⌋−1
α.

Thus we must verify inequality (1.3) for n = ⌊α/4⌋; for n = ⌊α/4⌋, we may

omit the proof of inequality (1.4). Then, by Theorem 1.1.1, we complete the

proof of Theorem 1.1.4.

In fact, in the case of α ≥ 6 and 0 < β ≤ 2α, Popov and Sedletskii chose

⌊α/3⌋ instead of ⌊α/4⌋ and obtained the same result mentioned above (In this

case, the condition ϕ(α, β) > 0.51 is not required).

1.2 Sufficient condition to have real zeros only

We denote by ψ the logarithmic derivative of the Γ-function and use the

following expansion:

ψ(z) =
Γ′(z)

Γ(z)

= −γ − 1

z
−

∞∑
n=1

(
1

n+ z
− 1

n

)
(z ∈ C \ {0,−1,−2, . . . , })(1.6)

where γ is the Euler constant. From (1.6), it follows the identity

(1.7) ψ′(z) =
∞∑
k=0

(k + z)−2.

The following lemma will be needed throughout Chapter 1.

11
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Lemma 1.2.1 ([29, Lemma 3.4.2]). The logarithmic derivative of the Γ-function

satisfies the following estimates:

−(2t− 1)−1 + log t < ψ(t) < log t (t > 1/2).

We first prove some propositions.

Proposition 1.2.2. If x ≥ 4, then

1 < ξ1
x Γ(x)

Γ(2x)

where ξ1 = ξ1(x, 3x).

Proof. We put

f(x) = ξ1
x Γ(x)

Γ(2x)
,

g(x) = x log(4x− 1) + log Γ(x)− log Γ(2x),

and

h(x) = log π − log x− log
(
sin

π

x

)
.

Then we obtain the equality

log f(x) = g(x) + xh(x).

To prove the proposition, it is enough to show that g(x) and h(x) is positive

for x ≥ 4.

First, we take the derivative of g(x),

g′(x) = log(4x− 1) +
1

4x− 1
+ ψ(x)− 2ψ(2x) + 1.

Then by Lemma 1.2.1, we obtain

g′(x) ≥ log(4x− 1) +
1

4x− 1
− 1

2x− 1
+ log x− 2 log(2x) + 1

≥ log

(
1− 1

4x

)
+

1

4x− 1
− 1

2x− 1

≥ log
15

16
− 1

7
+ 1 > 0.7 > 0.

12
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Thus g(x) increases and hence g(x) ≥ g(4) > 4.

Second, since

xh′(x) = −1 +
π

x
cot

π

x
≤ 0

and

lim
x→∞

h(x) = lim
x→∞

log
(π
x
csc

π

x

)
= 0,

we have h(x) ≥ 0.

Therefore, log f(x) > 0 and we obtain f(x) > 1.

Proposition 1.2.3. If α ≥ 4 and 2α < β ≤ 3α, then

1 < ξ1
αΓ(β − 2α)

Γ(β − α)
.

Proof. Let

fα(x) = ξ1(α, x)
αΓ(x− 2α)

Γ(x− α)
(2α < x ≤ 3α).

If Fα(x) denotes the logarithmic derivative of fα(x), then

Fα(x) =
α

x+ α− 1
+ ψ(x− 2α)− ψ(x− α).

By (1.7), we obtain

F ′
α(x) = − α

(x+ α− 1)2
+

∞∑
n=0

1

(n+ x− 2α)2
−

∞∑
n=0

1

(n+ x− α)2

≥ − α

(x+ α− 1)2
+

∫ ∞

x−2α

1

t2
dt−

∫ ∞

x−α−1

1

t2
dt

≥ − α

(x+ α− 1)2
+

1

x− 2α
− 1

x− α− 1

≥ −x2 + (5α2 − 3α + 2)x+ (−α3 − 5α2 + 3α− 1)

(x+ α− 1)2(x− 2α)(x− α− 1)
.(1.8)

Since
5α2 − 3α + 2

2
> 3α (α ≥ 4),

13



CHAPTER 1. SUFFICIENT CONDITION FOR A MITTAG-LEFFLER
FUNCTION TO HAVE REAL ZEROS ONLY

the numerator of (1.8) has minimum at 2α and

−x2 + (5α2 − 3α + 2)x+ (−α3 − 5α2 + 3α− 1) ≥ 9α3 − 15α2 + 7α− 1.

Also, 9α3 − 15α2 + 7α − 1 is increasing on [4,∞) and has minimum 363 at

α = 4. Thus F ′
α(x) > 0 and Fα(x) ≤ Fα(3α). By Lemma 1.2.1, we obtain

Fα(3α) ≤
α + 1

4α− 1
− log 2 ≤ 1

3
− log 2 < 0.

Hence f ′
α(x) < 0 and fα(x) ≥ fα(3α). Therefore, the proof is completed by

Proposition 1.2.2.

Proposition 1.2.4. Let α ≥ 4 and 2α < β ≤ 3α. If we put

fα,β(x) = x1−β exp
(
x cos

π

α

)
,

then fα,β(x) is increasing on [ξ1,∞).

Proof. Since

f ′
α,β(x) = x−β cos

(π
α

)
exp

(
x cos

π

α

)(
x− (β − 1) sec

π

α

)
,

fα,β(x) increases for x > (β − 1) sec(π/α). It is enough to show that ξ1 >

(β − 1) sec(π/α), i.e. π(α + β − 1) − (β − 1)α tan(π/α) > 0. To prove the

inequality, for each α ≥ 4, we put

gα(x) = π(x+ α− 1)− (x− 1)α tan
π

α
(2α < x ≤ 3α).

Since g′α(x) = π − α tan(π/α) < 0, we have gα(x) ≥ gα(3α). Also,

gα(3α) = π(4α− 1)− (3α− 1)α tan
π

α
≥ π(4α− 1)− 4(3α− 1)

≥ (4π − 12)α + (4− π) ≥ 15π − 44 > 0.

Therefore, gα(x) > 0 for 2α < x ≤ 3α, which proves the proposition.
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Proposition 1.2.5. If we put

f(x) = ξ1(x, 2x)
−xΓ(x)

then f(x) is decreasing on [4,∞).

Proof. We put

g(x) = − log

(
3− 1

x

)
and

h(x) = ψ(x)− 1

3x− 1
+ log sin

π

x
− log π.

Then we obtain
f ′(x)

f(x)
= g(x) + h(x)− π

x
cot

π

x
.

Since

− log

(
3− 1

x

)
≤ − log

11

4
< 0,

we have g(x) < 0. Now, it remains to prove h(x) ≤ 0. By Lemma 1.2.1, we

obtain

h(x) ≤ log
(x
π
sin

π

x

)
− 1

3x− 1
.

Since
x

π
sin

π

x
and − 1

3x− 1

is increasing on [4,∞] and

lim
x→∞

(
log
(x
π
sin

π

x

)
− 1

3x− 1

)
= 0,

we have h(x) ≤ 0. Therefore, f ′(x) < 0.

Proposition 1.2.6. If α ≥ 4 and 2α < β ≤ 3α, then

1 + 0.74 ξ1
α−β Γ(β − α) < 1.0002.
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Proof. For α ≥ 4, let

fα(x) = log(ξ1(α, x)
α−x Γ(x− α)) (2α < x ≤ 3α).

Then we have

f ′
α(x) = ψ(x− α)− log(x+ α− 1)− x− α

x+ α− 1
− log

(π
α
csc

π

α

)
.

By Lemma 1.2.1, we obtain

f ′
α(x) ≤ log

(
x− α

x+ α− 1

)
− x− α

x+ α− 1
− log

(π
α
csc

π

α

)
.

Since log t < t and log(t csc t) ≥ 0 for t > 0, f ′
α(x) ≤ 0. Hence, by Proposition

1.2.5, we get

fα(x) ≤ fα(2α) ≤ f4(8).

Therefore,

1 + 0.74 exp(fα(β)) ≤ 1 + 0.74 exp(f4(8)) < 1.0002.

Now, we prove that if n ≥ ⌊α/4⌋ and ϕ(α, β) > 0.51 then (−1)nEα,β(−ξnα) >
0 holds.

From the following relations,

ξn(α, β) = ξn+2(α, β − 2α) = ξn (n ≥ 1),

and

(α, β − 2α) ∈ W0,

we obtain

(−1)n Eα,β−2α(−ξnα) > 0.

To prove the theorem, we will find a condition which implies the following

equalities:

(1.9) sgn Eα,β(−ξnα) = sgn Eα,β−2α(−ξnα) = (−1)n (n ≥ ⌊α/4⌋).
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For this, we use the identity (1.2). Since 0 < β − 2α ≤ α, by Theorem 1.1.6,

we obtain for x > 0,

Eα,β−2α(−xα) = Sα,β−2α(x) + ωα,β−2α(x), |ωα,β−2α(x)| ≤ 0.74x−(β−2α).

We put

L(ξn) = ξn
−2αSα,β−2α(ξn)

and

R(ξn) = ξn
−2αωα,β−2α(ξn)− ξn

−2α 1

Γ(β − 2α)
+ ξn

−α 1

Γ(β − α)
.

Then

Eα,β(−ξnα) = L(ξn) +R(ξn).

If we show

(1.10) |R(ξn)| < |L(ξn)| (n ≥ ⌊α/4⌋),

then sgn Eα,β(−ξnα) is determined by L(ξn).

On the other hand, by Theorem 1.1.6, we obtain

L(ξn) =
2

α
ξn

1−β

(−1)n exp
(
ξn cos

(π
α

))
+

⌊α/2⌋∑
k=2

sk

 ,

where

sk = exp

(
ξn cos

(
(2k − 1)π

α

))
cos

(
ξn sin

(
(2k − 1)π

α

)
+ (2k − 1)π

1− β

α

)
.

If we put

ak = exp

(
ξn cos

(
(2k − 1)π

α

))
,

then

|L(ξn)| ≥
2

α
ξn

1−β

a1 − ⌊α/2⌋∑
k=2

ak

 .

17
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If n ≥ ⌊α/4⌋ and k ≥ 1, then

ak+1

ak
= exp

(
−2ξn sin

(π
α

)
sin

(
2kπ

α

))
= exp

(
−2π

(
n+

1

α
(β − 1)

)
sin

(
2kπ

α

))
≤ exp

(
−2π

(
α

4
+ 1− 1

α

)
sin

(
2π

α

))
≤ exp

(
−2π

(
α

4
+ 1− 1

α

)
4

α

)
≤ exp

(
−8π

(
1

4
+

1

α
− 1

α2

))
≤ exp(−2π).

Thus we have

a1 −
⌊α/4⌋∑
k=2

ak ≥ a1 −
∞∑
k=2

ak

≥ 1− 2 exp(−2π)

1− exp(−2π)
a1 > 0.

Hence, we obtain

(1.11) sgn L(ξn) = (−1)n

and

|L(ξn)| ≥ 2 · 1− 2 exp(−2π)

1− exp(−2π)
· 1
α
ξn

1−β exp
(
ξn cos

π

α

)
.

By Proposition 1.2.4,

|L(ξn)| ≥ 2 · 1− 2 exp(−2π)

1− exp(−2π)
· 1
α
ξ1

1−β exp
(
ξ1 cos

π

α

)
.

Now,

|R(ξn)| ≤ ξn
−α

∣∣∣∣ 1

Γ(β − α)
− ξn

−α 1

Γ(β − 2α)

∣∣∣∣+ ξn
−2α|ωα,β−2α(ξn)|.
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By Proposition 1.2.3 and Theorem 1.1.6,

|R(ξn)| ≤ ξn
−α

(
1

Γ(β − α)
− ξn

−α 1

Γ(β − 2α)
+ 0.74ξn

−β+α

)
≤ ξn

−α

(
1

Γ(β − α)
+ 0.74ξn

−β+α

)
.

Since ξn ≥ ξ1 (n ∈ N) and α− β ≤ 0,

|R(ξn)| ≤ ξ1
−α

(
1

Γ(β − α)
+ 0.74ξ1

−β+α

)
≤ ξ1

−α 1

Γ(β − α)

(
1 + 0.74ξ1

−β+αΓ(β − α)
)
.

From Proposition 1.2.6, we obtain

|R(ξn)| ≤ 1.0002ξ1
−α 1

Γ(β − α)
.

If (α, β) satisfies the inequality

1.0002ξ1
−α 1

Γ(β − α)
≤ 2 · 1− 2 exp(−2

√
2π)

1− exp(−2
√
2π)

· 1
α
ξ1

1−β exp
(
ξ1 cos

π

α

)
,

i.e.,

0.51 ≤ 1

α
ξ1

1−β exp
(
ξ1 cos

π

α

)
Γ(β − α),

then (1.10) holds and (1.10) and (1.11) imply (1.9).

In the next section, we will prove (1.3) through (1.5).

1.3 Proof of Theorem 1.1.4 in the case n <

⌊α/4⌋
The following argument is almost identical with the one given in [29, pp.

294-305]. But there are only two differences that ⌊α/3⌋ is replaced by ⌊α/4⌋
and the upper bound of β/α is changed from 2 to 3. We include it here for

the readers convenience.
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Lemma 1.3.1 ([29, Lemma 3.4.5]). For any a, b > 0, a < b, we have the

inequality
log Γ(b)− log Γ(a)

b− a
< log

(
a+ b

2

)
.

If 2 ≤ a < b ≤ 2a, then

−2(b− a)2

3(a+ b)2
+ ψ

(
a+ b

2

)
<

log Γ(b)− log Γ(a)

b− a
.

If 4 ≤ α < 8, we have proved that (−1)nEα,β(−ξnα) > 0 for all n ≥
⌊α/4⌋ = 1 in Section 1.2. So, we restrict α ≥ 8. We have divided the proof

into a sequence of propositions.

Proposition 1.3.2. If α ≥ 8, 2α < β ≤ 3α, and 1 ≤ n ≤ ⌊α/4⌋, then

ξn−1
α < Rn <

√
2Rn < ξn

α.

Proof. We obtain the following inequalities by taking logarithm:

log
(π
α
csc
(π
α

))
+ log(α(n− 1) + β − 1)

<
1

α
(log Γ(β + nα)− log Γ(β + (n− 1)α)) (2 ≤ n ≤ ⌊α/4⌋)

and

1

2α
log 2 +

1

α
(log Γ(β + nα)− log Γ(β + (n− 1)α))

< log
(π
α
csc
(π
α

))
+ log(αn+ β − 1) (1 ≤ n ≤ ⌊α/4⌋).

We simplify the above inequalities by using the estimate

0 < log
(π
α
csc
(π
α

))
<

2

α2
(α ≥ 2),

and Lemma 1.3.1 taking

a = β + α(n− 1), b = β + nα.
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We arrive at the proof of the inequalities

(1.12)
2

α2
+ log(α(n− 1) + β − 1)

< − 1

6(n− (1/2) + (α/β))2
+ ψ

(
β + α

(
n− 1

2

))
(2 ≤ n ≤ ⌊α/4⌋)

and

1

2α
log 2 + log

(
β + α

(
n− 1

2

))
< log(αn+ β − 1) (1 ≤ n ≤ ⌊α/4⌋).

By Lemma 1.2.1, we obtain the following inequalities:

2

α2
+

1

6((α/β) + n− (1/2))2
+

1/α

2((β/α) + n− (1/2))− (1/α)

< log

(
(β/α) + n− (1/2)

(β/α) + n− 1− (1/α)

)
(2 ≤ n ≤ ⌊α/4⌋)

and
1

2α
log 2 < log

(
(β/α) + n− (1/α)

(β/α) + n− (1/2)

)
(1 ≤ n ≤ ⌊α/4⌋).

If we put y = (β/α) + n− (1/2), then we obtain

(1.13)
2

α2
+

1

6y2
+

1/α

2y − (1/α)
< log

(
y

y − (1/2)− (1/α)

)
(2 ≤ n ≤ ⌊α/4⌋)

and

(1.14)
1

2α
log 2 < log

(
y + (1/2)− (1/α)

y

)
(1 ≤ n ≤ ⌊α/4⌋).

Since (y + (1/2) − (1/α))/y is decreasing on the ray 0 < y < +∞, it suffices

to prove inequality (1.14) for the maximal value of y, i.e.,

1

2α
log 2 < log

(
1 +

(1/2)− (1/α)

n+ (5/2)

)
(n = ⌊α/4⌋).

From the fact that log(1 + t) > 0.9t for 0 < t ≤ 0.2 and the inequality

log 2

2

n

α
<

log 2

8
< 0.09,
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we obtain

n log

(
1 +

(1/2)− (1/α)

n+ (5/2)

)
>

0.9n((1/2)− (1/α))

n+ (5/2)

>
(27/80)n

n+ (5/2)
>

27

280
> 0.09 >

log 2

2

n

α
.

Thus (1.14) is proved.

To prove (1.13), we use the estimate

log
y

y − 2h
>

2h

y − h
(0 < h < y/2).

Then we obtain

log

(
y

y − (1/2)− (1/α)

)
>

1 + (2/α)

2y − (1/2)− (1/α)
>

1 + (2/α)

2y − (1/α)
.

Now, it remains to prove the inequality

2

α2
+

1

6y2
<

1 + (1/α)

2y − (1/α))
,

i.e.,

(1.15)
2

α

( y
α

)
+

1

6y
<

1 + (1/α)

2− (1/(αy))
.

Since
y

α
≤ 1

α

(
α

4
+

5

2

)
≤ 1

4
+

5

16
=

9

16
(y ≥ 5/2),

we have
9

8α
+

1

15
<

9

64
+

1

15
<

1

2
<

1 + (1/α)

2
(α ≥ 8).

Thus (1.15) is valid, and the proof of (1.5) is complete.

In order to prove (1.3) and (1.4), we need the following results.

Proposition 1.3.3 ([29, Corollary 3.3.1]). For any β > 0 and α > 0, Eα,β(z)

is positive on [−R1,∞).
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Lemma 1.3.4 ([29, Lemma 3.9.1]). For any α, β > 0, and n ∈ N, the following
inequality holds:

Rn

Rn+1

< exp

(
− α

n+ (β/α)

)
.

Until the end of this section, we use the notation

Ak =
1

Γ(β + kα)
,

so that

Rn =
An−1

An

, Eα,β(−x) =
∞∑
k=0

(−1)kAkx
k.

Also, we omit the arguments α and β in the notation of Ak.

Proposition 1.3.5. If α ≥ 8 and 2α < β ≤ 3α then Eα,β(−R2) < 0.

Proof. We have

(1.16) Eα,β(−R2) = A0 −A1R2 +A2R2
2 −A3R2

3 +A4R2
4 +

∞∑
k=5

(−1)kAkR2
k.

The last term on the right-hand side of (1.16) is negative; this follows from

the fact that the sequence {AkR2
k}∞k=5 is decreasing, which is equivalent to the

inequality

(1.17) R2 < Rk (k ≥ 6).

From Lemma 1.3.4, we know that {Rk} is increasing sequence. Thus (1.17) is

valid. Since R2 = A1/A2, we have A2R2
2 − A1R2 = 0. Therefore,

(1.18) Eα,β(−R2) < A0 − A3R2
3 + A4R2

4.

Inequality (1.18) can be rewritten in the form

A3
−1R2

−3Eα,β(−R2) < −1 + (A0/A3)R2
−3 + (A4/A3)R2.
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If we put

B =

(
A0

A3

)
R2

−3 = A0A1
−3A2

3A3
−1,

then we obtain

A3
−1R2

−3Eα,β(−R2) < −1 +B +R2/R4

and

logB = log Γ(β + 3α)− 3 log Γ(β + 2α) + 3 log Γ(β + α)− log Γ(β).

By the mean value theorem applied to the third difference of the function

log Γ(z) at the point β with step α, for some ξ ∈ (β, β + 3α), we obtain

logB = α3ψ′′(ξ) = −2α3

∞∑
k=0

(k + ξ)−3.

This implies

(1.19)

logB < −2α3

∞∑
k=0

(k + β + 3α)−3

< −2α3

∫ ∞

0

(t+ β + 3α)−3dt

= −α3(β + 3α)−2 = −α
(
β

α
+ 3

)−2

.

Since β/α ≤ 3 and α ≥ 8, we obtain

(1.20) B < exp

(
−2

9

)
.

By Lemma 1.3.4, we have

R2

R3

< exp

(
−8

5

)
and

R3

R4

< exp

(
−4

3

)
.

Therefore,

(1.21)
R2

R4

=
R2

R3

R3

R4

< exp

(
−44

15

)
.
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From (1.20) and (1.21), we obtain

A3
−1R2

−3Eα,β(−R2) < −1 + exp

(
−2

9

)
+ exp

(
−44

15

)
< 0,

i.e., Eα,β(−R2) < 0, which was required.

Proposition 1.3.6. If α ≥ 8 and 2α < β ≤ 3α then Eα,β(−
√
2R1) < 0 and

Eα,β(−
√
2R2) > 0.

Proof. We have

(1.22) Eα,β(−
√
2R1) = A0 − A1

√
2R1 + 2A2R1

2 +
∞∑
k=3

(−1)kAk(
√
2R1)

k
.

The last term on the right-hand side of (1.22) is negative; this follows from

the fact that the sequence {Ak

√
2R1

k}∞k=3 is decreasing, which is equivalent to

the inequality

(1.23)
√
2R1 < Rk (k ≥ 4).

From Lemma 1.3.4, we obtain

R1

Rk

<
R1

R2

< exp

(
− α

1 + (β/α)

)
.

Since β/α ≤ 3 and α ≥ 8,

R1

R2

< exp(−2) < 0.14 <
1√
2

and (1.23) is valid.

Since the last term in the right hand side of (1.22) is negative, we obtain

(1.24) Eα,β(−
√
2R1) < A0−A1

√
2R1+2A2R1

2 = A0−
√
2A0+2A2(A0/A1)

2.

Multiplying both sides of (1.24) by A0
−1 = Γ(β), we obtain

Γ(β)Eα,β(−
√
2R1) < 1−

√
2 + 2(R1/R2) < 1−

√
2 + 0.28 < 0,
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i.e., Eα,β(−
√
2R1) < 0.

Second, we have

Eα,β(−
√
2R2) = A0 −

√
2A1R2 + 2A2R2

2 − 2
√
2A3R2

3 +
∞∑
k=4

(−1)kAk(
√
2R2)

k
.

The sequence {Ak(
√
2R2)

k}∞k=4 is decreasing since the ratio of its elements with

numbers k and k+1 is equal to
√
2R2/Rk+1 ≤

√
2R2/R4 and is less than 1 by

(1.21). Therefore, the sum

∞∑
k=4

(−1)kAk(
√
2R2)

k

is positive and we obtain the inequality

1

2
A2

−1R2
−2Eα,β(−

√
2R2) > 1− 1√

2
−
√
2
R2

R3

.

In this case, by the restriction n ≤ ⌊α/4⌋ − 1, α ≥ 12 holds. Thus by Lemma

1.3.4, we have
R2

R3

≤ exp

(
−12

5

)
.

Therefore,

1

2
A2

−1R2
−2Eα,β(−

√
2R2) > 1− 1√

2
−
√
2 exp

(
−12

5

)
> 0,

i.e.,

Eα,β(−
√
2R2) > 0.

Proposition 1.3.7. If α ≥ 12, 2α < β ≤ 3α, and 3 ≤ n ≤ ⌊α/4⌋, then

(−1)nEα,β(−
√
2Rn) > 0.
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Proof. We express (−1)n Eα,β(−
√
2Rn) as

(−1)n Eα,β(−
√
2Rn) = Sn,0−An−1(

√
2Rn)

n−1+An(
√
2Rn)

n−An+1(
√
2Rn)

n+1+Sn,1,

where

Sn,0 =
n−2∑
k=0

(−1)k−nAk(
√
2Rn)

k and Sn,1 =
∞∑

k=n+2

(−1)k−nAk(
√
2Rn)

k.

We prove that the sums Sn,0 and Sn,1 are positive. Since they are alternating

and the terms with numbers k = n±2 are positive, it suffices to prove that the

sequence Ak(
√
2Rn)

k increases for 0 ≤ k ≤ n− 2 and decreases for k ≥ n+ 2.

The ratio of the elements of this sequence with numbers k + 1 and k is equal

to

(1.25) dk =
Ak+1(

√
2Rn)

k+1

Ak(
√
2Rn)k

=
√
2
Rn

Rk+1

.

By Lemma 1.3.4, we obtain

(1.26)
Rn

Rn+1

< exp

(
− α

n+ 3

)
= exp

(
− 1

(n/α) + (3/α)

)
≤ exp(−2).

The equality (1.25) with (1.26) and the fact that Rk increases imply the esti-

mates

dk >
√
2 > 1 (0 ≤ k ≤ n− 2) and dk ≤

√
2
Rn

Rn+1

<
√
2e−2 < 1 (k ≥ n+ 2),

which prove the required assertion. Since Sn,0, Sn,1 > 0, we have

(1.27)

(−1)n Eα,β(−
√
2Rn) > −An−1(

√
2Rn)

n−1 + An(
√
2Rn)

n − An+1(
√
2Rn)

n+1.

By dividing both sides of (1.27) by An(
√
2Rn)

n, we obtain

(−1)nAn
−1(

√
2Rn)

−n Eα,β(−
√
2Rn) > 1− 1√

2
−
√
2
Rn

Rn+1

> 1− 1√
2
−
√
2e−2 > 0.

Thus Proposition 1.3.7 is completely proved.
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Proposition 1.3.8. Let

vν(x) = An+νx
n+ν − An−ν−1x

n−ν−1.

Then, the following inequalities hold:

0 < vν+1(Rn) < vν(Rn) (1 ≤ ν ≤ n− 2; 3 ≤ n ≤ ⌊α/4⌋),(1.28)

A2nRn
2n < vn−1(Rn) (3 ≤ n ≤ ⌊α/4⌋).(1.29)

We will prove the Proposition 1.3.8 in the next section.

Proposition 1.3.9. If α ≥ 12, 2α < β ≤ 3α, and 3 ≤ n ≤ ⌊α/4⌋ then

(−1)n−1Eα,β(−Rn) > 0.

Proof. We have

(1.30) Eα,β(−Rn) =

n−2∑
k=0

(−1)kAkRn
k + (−1)n−1(An−1Rn

n−1 − AnRn
n) +

∞∑
k=n+1

(−1)kAkRn
k.

By grouping in (1.30) terms with numbers k = n − ν − 1 and k = n + ν

(1 ≤ ν ≤ n− 1), and using the equality

An−1Rn
n−1 − AnRn

n = AnRn
n−1

(
An−1

An

−Rn

)
= 0,

we obtain

Eα,β(−Rn) = (−1)n+1

n−1∑
ν=1

(−1)ν−1vν(Rn) +
∞∑

k=2n

(−1)kAkRn
k,

where

vν(x) = An+νx
n+ν − An−ν−1x

n−ν−1.

Then,

(1.31) (−1)n−1Eα,β(−Rn) =
n−1∑
ν=1

(−1)ν−1vν(Rn) + (−1)n−1

∞∑
k=2n

(−1)kAkRn
k.
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By using the Proposition 1.3.8, we can prove that the sums in the right hand

side of (1.31) are positive. Indeed, by (1.28), the absolute value of terms in

the alternating sum
n−1∑
ν=1

(−1)ν−1vν(Rn)

decrease and the first them is positive. Therefore,

n−1∑
ν=1

(−1)ν−1vν(Rn) > 0 (3 ≤ n ≤ ⌊α/4⌋).

This immediately implies the required assertion for odd n since

∞∑
k=2n

(−1)kAkRn
k

is also an alternating series which has terms with decreasing absolute value

and the first term is positive. If n is even, then

n−2∑
ν=1

(−1)ν−1vν(Rn) > 0 and (−1)n−1

∞∑
k=2n+1

(−1)kAkRn
k > 0

by the same reasoning as above. Furthermore, by (1.29)

(−1)n−2vn−1(Rn) + (−1)3n+1A2nRn
2n = vn−1(Rn)− A2nRn

2n > 0,

and we also obtain that (1.31) is positive.

Hence, (1.3) and (1.4) are proved by Propositions 1.3.3-1.3.9. Consequently,

(1.5) is proved by Proposition 1.3.2 and the proof of Theorem 1.1.4 is com-

pleted.

1.3.1 Proof of Proposition 1.3.8

In this section, we will prove Proposition 1.3.8. The proof will be divided

into three propositions.

We let

vν(x) = An+νx
n+ν − An−ν−1x

n−ν−1.
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Proposition 1.3.10. If 1 ≤ ν ≤ n− 1 then vν(Rn) > 0.

Proof. From the identities

(1.32)
An−ν−1

An+ν

=
n+ν∏

p=n−ν

Rp = Rn

ν∏
j=1

(Rn−jRn+j),

we obtain

0 < vν(Rn) ⇐⇒ An−ν−1

An+ν

< Rn
2ν+1

⇐⇒
ν∏

j=1

(Rn−jRn+j)Rn
2ν

⇐⇒
ν∑

j=1

(logRn+j − 2 logRn + logRn−j) < 0;

the last inequality follows from the concavity of the sequence {logRn} (the

concavity follows from ψ′′ < 0).

We next show that

(1.33) vν+1(Rn) < vν(Rn),

which is equivalent to the inequality

An−ν−1Rn
n−ν−1 − An−ν−2Rn

n−ν−2 < An+νRn
n+ν − An+ν+1Rn

n+ν+1.

By applying (1.32), we can rewrite (1.33) in the form

(1.34)

(
1− Rn−ν−1

Rn

) ν∏
j=1

(Rn+jRn
−2Rn−j) < 1− Rn

Rn+ν+1

.

For notational simplicity, we put

an,ν =
Rn−ν−1

Rn

, bn,ν =
Rn

Rn+ν+1

, and un,j = Rn+jRn
−2Rn−j,
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so that (1.34) takes the form

(1− an,ν)
ν∏

j=1

un,j < 1− bn,ν .

Dividing by 1− bn,ν and using the identity

(1− a)(1− b)−1 = 1 + b(1− b)−1(1− a/b),

we obtain

(1.35) (1 + bn,ν(1− bn,ν)
−1(1− un,ν+1)

ν∏
j=1

un,j < 1,

which is equivalent to (1.34). Note that by the concavity of the sequence

{logRn}, we have un,j < 1. To prove (1.33), we need the inequality

(1.36) (1 + bn,ν(1− bn,ν)
−1)un,1 < 1,

which is even stronger than (1.35). To prove this, we introduce some lemmas.

Lemma 1.3.11. Let h > 0, x ∈ R, and I = [x − 2h, x + 2h]. And let

g(I) ⊂ R, g ∈ C(4)(I), and g(4) be positive and decrease on I. Then the

following inequality holds:

3g(x+ 2h)− 10g(x+ h) + 12g(x)−6g(x− h) + g(x− 2h)

< 2h3g(3)(x) + h4
(
7

4
g(4)(x) +

2

3
g(4)(x− 2h)

)
.

Proof. See [29, p.299]

Lemma 1.3.12. If α ≥ 12, 2α < β ≤ 3α, and m ≥ 5, then

um+1,1
3 < um,1.

Proof. We have

(1.37)

um+1
3

um
=

(
Rm+2Rm

Rm+1
2

)3
Rm

2

Rm−1Rm+1

=

(
Am+1

Am+2

)3(
Am

Am+1

)−7(
Am−1

Am

)5(
Am−2

Am−1

)−1

,
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where Ak = 1/Γ(β + kα). Taking the logarithm of both sides of (1.37), we

obtain

log

(
um+1

3

um

)
= 3 logΓ(β + (m+ 2)α)− 10 log Γ(β + (m+ 1)α)

+ 12 log Γ(β +mα)− 6 log Γ(β + (m− 1)α) + log Γ(β + (m− 2)α).

We take g(t) = log Γ(t), x = β +mα, and h = α. Since g′(t) = ψ(t),

g(4) = ψ(3)(t) = 6
∞∑
k=0

(k + t)−4

is positive and decrease. Thus, by Lemma 1.3.11, we obtain

log

(
um+1

3

um

)
< 2α3ψ′′(x) + α4

(
7

4
ψ(3)(x) +

2

3
ψ(3)(x− 2α)

)
.

Since

ψ′′(x) =
∞∑
k=0

−2

(k + x)3
< −2

∫ ∞

x

1

t3
dt = − 1

x2
(x > 0)

and

ψ(3)(x) =
∞∑
k=0

6

(k + x)3
< 6

∫ ∞

x−1

1

t4
dt =

2

(x− 1)3
(x > 1),

we obtain

log

(
um+1

3

um

)
< −2

α3

x2
+ α4

(
7

2(x− 1)3
+

4

3(x− 2α− 1)3

)
.

To complete the proof, we must show that the last expression is negative, i.e.,

(1.38)
7

2(x− 1)3
+

4

3(x− 2α− 1)3
<

2

αx2
.

(1.38) can be rewritten in the form

(1.39)
7

2

(
α

x− 1

)(
x

x− 1

)2

+
3

4

(
α

x− 2α− 1

)(
x

x− 2α− 1
.

)2

< 2.
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The function t/(t − a) (a > 0) is decreasing on t > a, and by the condition

m ≥ 5, the inequality x = β +mα ≥ (m + 2)α ≥ 7α ≥ 84 holds. Hence, the

following estimates hold:

1

α
(x− 1) =

x

α
− 1

α
≥ 7− 1

12
=

83

12
,

1

α
(x− 2α− 1) ≥ 7− 2− 1

12
=

59

12
,

x

x− 1
<

84

83
,

and
x

x− 2α− 1
<

7α

5α− 1
=

7

5− (1/α)
≤ 7

5− (1/12)
≤ 84

59
.

This implies that the left-hand side of (1.39) does not exceed

7

2

(
12

83

)(
84

83

)2

+
4

3

(
12

59

)(
84

59

)2

< 2.

The lemma is proved.

Proposition 1.3.13. Let α ≥ 12 and 2α < β ≤ 3α. If 3 ≤ n ≤ ⌊α/4⌋ and

1 ≤ ν ≤ n− 2 , the inequality (1.35) holds, i.e.,

(1 + bn,ν(1− bn,ν)
−1(1− un,ν+1)

ν∏
j=1

un,j < 1.

Proof. The proof will be divided into three cases.

Case 1. 3 ≤ n ≤ 12 and 1 ≤ ν ≤ n− 2.

Case 2. 13 ≤ n ≤ ⌊α/4⌋ and (n/2)− 1 ≤ ν ≤ n− 2.

Case 3. 13 ≤ n ≤ ⌊α/4⌋ and 1 ≤ ν < (n/2)− 1.

In the Cases 1 and 2, we will prove (1.36) instead of (1.35).
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We first consider Case 1. Since

un,1 = Rn+1Rn
−2Rn−1 = An+1

−1An
3An−1

−3An−2,

we have

log un,1 = log Γ(β+(n+1)α)−3 log Γ(β+nα)+3 log Γ(β+(n−1)α)−log Γ(β+(n−2)α).

Then, we obtain that for some ξ ∈ ((n− 2)α, (n+ 1)α),

log un,1 = α3(log Γ(β + z))(3)|z=ξ = α3ψ′′(β + ξ) = −2α3

∞∑
k=0

(k + β + ξ)−3.

This implies the estimate

(1.40)

log un,1 < −2α3

∞∑
k=0

(k + β + (n+ 1)α)−3

< −2α3

∫ ∞

0

(t+ β + (n+ 1)α)−3dt = −α
(
β

α
+ n+ 1

)−2

(n ∈ N).

Since β/α ≤ 3 and α ≥ 12, we obtain

(1.41) un,1 < exp

(
− 3

64

)
< exp

(
− 1

25

)
(n ≤ 12).

By Lemma 1.3.4, for any n, ν ∈ N, we have

bn,ν =
Rn

Rn+ν+1

≤ Rn

Rn+2

=
Rn

Rn+1

Rn+1

Rn+2

≤ exp

(
− 1

(n/α) + (3/α)
− 1

(n/α) + (4/α)

)
.

Since n/α ≤ 1/4 and α ≥ 12, we have

bn,ν < exp

(
−26

7

)
<

1

26
.

This implies

(1.42) bn,ν(1− bn,ν)
−1 <

1

25
(n ≤ ⌊α/4⌋, α ≥ 12, 1 ≤ ν ≤ n− 2).
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From (1.41) and (1.42), we conclude that if 3 ≤ n ≤ 12, then the left-hand

side of (1.36) does not exceed

26

25
exp

(
− 1

25

)
< 1.

This finishes the proof in Case 1.

In Case 2, by Lemma 1.3.4. we obtain

bn,ν =
ν∏

j=0

(
Rn+j

Rn+j+1

)
< exp

(
−α

ν∑
j=0

1

n+ j + (β/α)

)
≤ exp

(
−α · ν + 1

n+ ν + (β/α)

)
≤ exp

(
−α · ν + 1

n+ ν + 3

)
≤ exp

(
−α · n

4n+ 2

)
≤ exp

(
−α
5

)
.

Since x/(1−x) < 2x (0 < x < (1/2)) and x < exp(x/5) (x ≥ 52), the following

estimate hold:

(1.43) bn,ν(1− bn,ν)
−1 < 2 exp

(
−α
5

)
<

2

α
.

Now, from (1.40) we obtain

un,1 < exp

(
− α

(n+ 4)2

)
= exp

(
− 1

α((n/α) + (4/α))2

)
.

Recall that n/α ≤ 1/4 and α ≥ 52; then ((n/α)+(4/α))2 ≤ 289/52 and hence

un,1 < exp(−2/α). Therefore,

(1 + bn,ν(1− bn,ν)
−1)un,1 <

(
1 +

2

α

)
exp

(
− 2

α

)
< 1.

This completes the proof in Case 2.

Finally, we consider Case 3. From the inequality (1.42), we obtain the

following inequality

(1.44)

(
1 +

1

25
(1− un,ν+1)

) ν∏
j=1

un,j < 1.
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We will prove (1.44) by using the estimate (See [29, p.304])

(1.45) un,ν
6 < un,ν+1 (1 ≤ ν <

1

2
n− 1;n ≥ 13).

(Note that Lemma 1.3.12 is the key to prove inequality (1.45).) It allows one

to replace inequalities (1.44) by stronger inequalities

(1.46)

(
1 +

1

25
(1− un,ν

6)

)
un,ν < 1.

It is enough to prove (1.46). Consider the function

f(t) =

(
1 +

1

25
(1− t6)

)
t (0 < t < 1).

Then f(t) is increasing on [0, 1], and since f(1) = 1, we see that f(t) < 1 for

all t ∈ (0, 1). From this and the fact un,ν < 1, we obtain (1.46). Thus we

obtain the desired result in the last case too.

Proposition 1.3.14. Let α ≥ 12 and 2α < β ≤ 3α. If 3 ≤ n ≤ ⌊α/4⌋, then

A2nRn
2n < vn−1(Rn).

Proof. By the definition of vν(x), we have

A2nRn
2n < A2n−1Rn

2n−1 − A0.

And we obtain (
A0

A2n−1

)
Rn

1−2n +

(
A2n

A2n−1

)
Rn < 1,

which can be rewritten in the following form:

(1.47)
n−1∏
j=1

un,j +
Rn

R2n

< 1.

Representing un,j by formula

un,j = un,1
j

j−1∏
k=1

(un−k,1un+k,1)
j−k,
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omitting factors less than 1, and using the fact that {Rk} is increasing, we

strengthen inequality (1.47):

(1.48) un,1
n(n−1)

2 +
Rn

Rn+1

< 1.

To obtain an upper estimate of the left-hand side of (1.48) (we denote it by

Un), we use inequalities (1.26) and (1.40). We have

Un < exp(−2)+exp

(
− αn(n− 1)

2((β/α) + n+ 1)2

)
< exp(−2)+exp

(
−αn(n− 1)

2(n+ 4)2

)
.

Since
n(n− 1)

(n+ 4)2
>

6

49
(n ≥ 3)

and α ≥ 12 we have

Un < exp(−2) + exp

(
−36

49

)
< 1,

which was required.

Therefore, Propositions 1.3.10-1.3.14 complete the proof of Proposition

1.3.8.

1.4 Proof of Theorem 1.1.5

We first prove that α 7→ ϕ(α, 3α) is increasing on [4,∞). Let f(α) =

ϕ(α, 3α). Then the logarithmic derivative of f(α) can be expressed as follows:

f ′(α)

f(α)
= 2f1(α) + 2f2(α) + f3(α) + 2f4(α)

where

f1(α) = −π
α
cot

π

α
+ 1,

f2(α) = − log(4α− 1) +
1

4α− 1
+ ψ(2α) + log 2,
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f3(α) = −π
2

α3
csc2

π

α
+ 4

π2

α2
csc2

π

α
− 1.8 log π + log 2− 2.38,

and

f4(α) = logα− 1

α
+ log sin

π

α
+

π

α2
cot

π

α
− 0.1 log π − 1.5 log 2 + 0.19.

In order to prove that f ′ ≥ 0, we will show that f1, f2, f3 and f4 ≥ 0 for α ≥ 4.

Since tan t > t for all t ∈ (0, π/4], we have f1(α) > 0. And by Lemma

1.2.1, we obtain

f2(α) ≥ − log

(
2− 1

2α

)
+ log 2 ≥ 0.

In the case of f3 and f4, we put π/α = t. Then we obtain

f3

(π
t

)
=

(
t

sin t

)2(
4− t

π

)
− 1.8 log π − log 2− 2.38 (0 < t ≤ π

4
).

Since t/(sin t) is increasing on (0, π/4] and approaches to 1 as t→ 0,

f3

(π
t

)
≥ 15

4
− 1.8 log π + log 2− 2.38 > 0.002.

And we also have

f4

(π
t

)
= − log t+log sin t− t

π
+
t2

π
cot t+0.9 log π−1.5 log 2+0.19 (0 < t ≤ π

4
).

If we write f4(π/t) = g(t), we obtain

g′(t) =

(
cot t− 1

t

)
+

2

π
t cot t− 1

π

(
t

sin t

)2

− 1

π
.

Since t cot t < 1 and t/(sin t) is increasing on (0, π/4], we have g′(t) ≤ 0. Thus

g(t) ≥ g(π/4) > 0.02.

Therefore, f ′(α) > 0, which completes the first part of proof.

We next show that for each fixed α ≥ 4 the function β 7→ ϕ(α, β) is

decreasing on (2α, 3α]. For each fixed α ≥ 4, let

hα(x) = ϕ(α, x) (2α < x ≤ 3α).
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Then we have
h′α(x)

hα(x)
= kα(x) + c(α)

where

kα(x) =
2α

x+ α− 1
− log(x+ α− 1) + ψ(x− α)

and

c(α) = log
(α
π
sin

π

α

)
+
π

α
cot

π

α
− 1.

By Lemma 1.2.1, we obtain

kα(x) ≤
1

x+ α− 1
+

2α− 1

x+ α− 1
+ log

(
1− 2α− 1

x+ α− 1

)
.

Since t+ log(1− t) is decreasing on (0, 1) and

0 <
2α− 1

4α− 1
<

2α− 1

x+ α− 1
≤ 2α− 1

3α− 1
< 1,

we have

kα(x) ≤ 1

3α− 1
+

2α− 1

4α− 1
+ log

(
1− 2α− 1

4α− 1

)
≤ 1

11
+

1

2
+ log

(
8

15

)
< −0.03.

Now, we put α = π/t, so that we obtain

c(α) = c
(π
t

)
= log

(
sin t

t

)
+ t cot t− 1 (0 < t ≤ π

4
).

Since (sin t)/t is decreasing on (0, π/4] and approaches the limit 1 as t → 0,

we have log((sin t)/t) ≤ 0. Thus

c
(π
t

)
≤ t cot t− 1 ≤ 0.

Therefore, h′α(x) < 0 and the second part of proof is completed.

Lastly, we can compute ϕ(4.07, 12.21) > 0.512, which completes the proof.
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Chapter 2

Pólya-Wiman properties of

differential operators

Let ϕ(x) =
∑
αnx

n be a formal power series with real coefficients, and let

D denote differentiation. In this chapter, we will show that “for every real

polynomial f there is a positive integer m0 such that ϕ(D)mf has only real

zeros whenever m ≥ m0” if and only if “α0 = 0 or 2α0α2−α2
1 < 0”, and that if

ϕ does not represent a Laguerre-Pólya function, then there is a Laguerre-Pólya

function f of genus 0 such that for every positive integerm, ϕ(D)mf represents

a real entire function having infinitely many nonreal zeros.

2.1 Pólya-Wiman property

A real entire function is an entire function which takes real values on the

real axis. If f is a real entire function, we denote the number of nonreal zeros

(counting multiplicities) of f by ZC(f). (If f is identically equal to 0, we set

ZC(f) = 0.) A real entire function f is said to be of genus 1∗ if it can be

expressed in the form

f(x) = e−γx2

g(x),

where γ ≥ 0 and g is a real entire function of genus at most 1. If f is a real

entire function of genus 1∗ and ZC(f) = 0, then f is called a Laguerre-Pólya
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function and we write f ∈ LP . We denote by LP∗ the class of real entire

functions f of genus 1∗ such that ZC(f) <∞. It is well known that f ∈ LP if

and only if there is a sequence ⟨fn⟩ of real polynomials such that ZC(fn) = 0

for all n and fn → f uniformly on compact sets in the complex plane. (See

Chapter 8 of [19] and [20, 23, 27].) From this and an elementary argument

based on Rolle’s theorem, it follows that the classes LP and LP∗ are closed

under differentiation, and that ZC(f) ≥ ZC(f
′) for all f ∈ LP∗. The Pólya-

Wiman theorem states that for every f ∈ LP∗ there is a positive integer m0

such that f (m) ∈ LP for all m ≥ m0 [6, 7, 14, 17, 26]. On the other hand, it

follows from recent results of W. Bergweiler, A. Eremenko and J. Langley that

if f is a real entire function, ZC(f) < ∞ and f /∈ LP∗, then ZC(f
(m)) → ∞

as m→ ∞ [1, 18].

Let ϕ be a formal power series given by

ϕ(x) =
∞∑
n=0

αnx
n.

For convenience we express the n-th coefficient αn of ϕ as ϕ(n)(0)/n! even when

the radius of convergence is equal to 0. If f is an entire function and the series

∞∑
n=0

αnf
(n)

converges uniformly on compact sets in the complex plane, so that it represents

an entire function, we write f ∈ domϕ(D) and denote the entire function by

ϕ(D)f . For m ≥ 2 we denote by domϕ(D)m the class of entire functions f

such that f, ϕ(D)f, . . . , ϕ(D)m−1f ∈ domϕ(D). It is obvious that if f is a

polynomial, then f ∈ domϕ(D)m for all m. For more general restrictions on

the growth of ϕ and f under which f ∈ domϕ(D)m for all m, see [3, 5].

The following version of the Pólya-Wiman theorem for the operator ϕ(D)

was established by T. Craven and G. Csordas.

Theorem 2.1.1 ([5, Theorem 2.4]). Suppose that ϕ is a formal power series

with real coefficients, ϕ′(0) = 0 and ϕ′′(0)ϕ(0) < 0. Then for every real poly-

nomial f there is a positive integer m0 such that all the zeros of ϕ(D)mf are

real and simple whenever m ≥ m0.

41
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Remark. The assumption implies that ϕ(0) ̸= 0. On the other hand, if ϕ(0) =

0 and f is a real polynomial, then it is trivial to see that ZC(ϕ(D)mf) → 0 as

m→ ∞. (Recall that we have set ZC(f) = 0 if f is identically equal to 0.)

We also have the following version, which is a consequence of the results in

Section 3 of [5].

Theorem 2.1.2. Suppose that ϕ ∈ LP (ϕ represents a Laguerre-Pólya func-

tion), f ∈ LP∗, and that f is of order less than 2. Then f ∈ domϕ(D)m,

ϕ(D)mf ∈ LP∗ and ZC(ϕ(D)mf) ≥ ZC(ϕ(D)m+1f) for all m. Furthermore,

if ϕ is not of the form ϕ(x) = ceγx with c ̸= 0, then ZC(ϕ(D)mf) → 0 as

m→ ∞.

Remarks. (1) If ϕ(x) = ceγx, then

ϕ(D)f(x) =
∞∑
n=0

cγn

n!
f (n)(x) = cf(x+ γ)

for every entire function f . Hence ZC(ϕ(D)mf) = ZC(f) for all m whenever

c, γ ∈ R, c ̸= 0 and f is a real entire function. We also remark that ϕ(x) = ceγx

with c ̸= 0 if and only if ϕ(0) ̸= 0 and ϕ(n)(0)ϕ(0)n−1 − ϕ′(0)n = 0 for all n.

(2) From [5, Lemma 3.2], [15, Theorem 2.3] and the arguments given in [3],

it follows that the restriction “f is of order less than 2” can be weakened to

“ϕ or f is of genus at most 1”. See also [5, Theorem 3.3].

(3) In the case where ϕ is of genus 2, that is, ϕ is of the form ϕ(x) =

e−γx2
ψ(x), where γ > 0 and ψ ∈ LP is of genus at most 1, we have the following

stronger result: If f is a real entire function of genus at most 1, and if the

imaginary parts of the zeros of f are uniformly bounded, then f ∈ domϕ(D)m

and ZC(ϕ(D)mf) ≥ ZC(ϕ(D)m+1f) for all m, and ZC(ϕ(D)mf) → 0 as m →
∞, even when f has infinitely many nonreal zeros. See [3], [5, Lemma3.2], [9,

Theorems 9a, 13 and 14] and [15, Theorem 2.3].

In this chapter, we complement Theorem 2.1.1 and 2.1.2 above. Let ϕ be

a formal power series with real coefficients and f be a real entire function. If

f ∈ domϕ(D)m for all m and ZC(ϕ(D)mf) → 0 as m → ∞, then we will say
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that ϕ (or the corresponding operator ϕ(D)) has the Pólya-Wiman property

with respect to f . For instance, if f is a real entire function and ZC(f) < ∞,

then the operator D (= d/dx) has the Pólya-Wiman property with respect to

f if and only if f ∈ LP∗.

2.2 Pólya-Wiman property with respect to real

polynomials

Theorem 2.1.1 gives a sufficient condition for ϕ to have the Pólya-Wiman

property with respect to arbitrary real polynomials. The following two theo-

rems imply that this is the case if and only if ϕ(0) = 0 or ϕ′′(0)ϕ(0)−ϕ′(0)2 < 0.

Theorem 2.2.1. Suppose that ϕ is a formal power series with real coefficients,

ϕ(0) ̸= 0 and ϕ′′(0)ϕ(0) − ϕ′(0)2 < 0. Then for every real polynomial f there

is a positive integer m0 such that all the zeros of ϕ(D)mf are real and simple

whenever m ≥ m0.

Theorem 2.2.2. Suppose that ϕ is a formal power series with real coefficients,

ϕ(0) ̸= 0, ϕ′′(0)ϕ(0)− ϕ′(0)2 ≥ 0, ϕ is not of the form ϕ(x) = ceγx with c ̸= 0,

f is a real polynomial, and that

deg f ≥ min{n ≥ 2 : ϕ(n)(0)ϕ(0)n−1 − ϕ′(0)n ̸= 0}.

Then there is a positive integer m0 such that ZC(ϕ(D)mf) > 0 for all m ≥ m0.

If ϕ ∈ LP is not of the form ϕ(x) = ceγx with c ̸= 0, then it is easy to

see that ϕ(0) = 0 or ϕ′′(0)ϕ(0) − ϕ′(0)2 < 0 (for a proof, see [4, 13]); hence

Theorem 2.1.2 as well as Theorem 2.2.1 implies that ϕ has the Pólya-Wiman

property with respect to arbitrary real polynomials.

Theorems 2.2.1 and 2.2.2 are almost immediate consequences of Theorems

2.2.3 and 2.2.4 below, which are proved by refining the arguments of Craven

and Csordas given in Section 2 of [5].
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For notational clarity, we denote the monic monomial of degree d by Md,

that is, Md(x) = xd. With this notation, we have

(
exp (βDp)Md

)
(x) =

⌊d/p⌋∑
k=0

d!βk

k!(d− pk)!
xd−pk (β ∈ C; d, p = 1, 2, . . . ).

Theorem 2.2.3. Suppose that ϕ is a formal power series with complex coeffi-

cients, ϕ(0) = 1, ϕ is not of the form ϕ(x) = eγx,

p = min{n : n ≥ 2 and ϕ(n)(0) ̸= ϕ′(0)n},

α = ϕ′(0) and β =
(
ϕ(p)(0)− ϕ′(0)p

)
/p!. Suppose also that f is a monic

complex polynomial of degree d, and f1, f2, . . . are given by

(2.1) fm(x) = m−d/p (ϕ(D)mf) (m1/px−mα).

Then fm → exp (βDp)Md uniformly on compact sets in the complex plane.

Theorem 2.2.4. Suppose that d and p are positive integers, p ≥ 2, q = ⌊d/p⌋
and r = d− pq.

(1) If q = 0 (d < p), then exp (−Dp)Md =Md.

(2) If q ≥ 1, then exp (−Dp)Md has exactly q distinct positive zeros; and if

we denote them by ρ1, . . . , ρq, then

(
exp (−Dp)Md

)
(x) = xr

q∏
j=1

p−1∏
k=0

(
x− e2kπi/pρj

)
.

Remark. The d-th Hermite polynomial Hd is given by

Hd(x) =

⌊d/2⌋∑
k=0

(−1)kd!

k!(d− 2k)!
(2x)d−2k.

Thus we have
(
exp (−D2)Md

)
(x) = Hd(x/2) for all d, and Theorem 2.2.4

implies the well known fact that all the zeros of the Hermite polynomials are

real and simple.
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Corollary 2.2.5. If β > 0, then all the zeros of exp (−βD2)Md are real and

simple, and exp (βD2)Md has exactly 2⌊d/2⌋ distinct purely imaginary zeros;

and if β ̸= 0 and 3 ≤ p ≤ d, then exp (βDp)Md has nonreal zeros.

This corollary is an immediate consequence of Theorem 2.2.4 and the fol-

lowing relations which are trivially proved: If β > 0 and ρp = −1, then(
exp (−βDp)Md

)
(x) = βd/p

(
exp (−Dp)Md

)( x

β1/p

)
and (

exp (βDp)Md
)
(x) =

(
ρβ1/p

)d (
exp (−Dp)Md

)( x

ρβ1/p

)
.

Proof of Theorem 2.2.1. Let f be a (nonconstant) real polynomial. Since mul-

tiplication by a nonzero constant does not change the zeros of a polynomial,

we may assume that f is monic and ϕ(0) = 1. Let d = deg f , α = ϕ′(0),

β = (ϕ′′(0)− ϕ′(0)2) /2, and f1, f2, . . . be given by

(2.2) fm(x) = m−d/2 (ϕ(D)mf) (m1/2x−mα).

Then β < 0, and Theorem 2.2.3 implies that fm → exp (βD2)Md uniformly on

compact sets in the complex plane. We have deg fm = d = deg(exp (βD2)Md)

for all m; and since β < 0, the corollary to Theorem 2.2.4 implies that all

the zeros of exp (βD2)Md are real and simple. Hence the intermediate value

theorem implies that there is a positive integer m0 such that all the zeros of

fm are real and simple whenever m ≥ m0, and (2.2) shows that the same holds

for ϕ(D)mf .

Proof of Theorem 2.2.2. Again, we may assume that f is monic and ϕ(0) = 1.

Let d = deg f , and let p, α, β and the polynomials f1, f2, . . . be as in Theorem

2.2.3. We have β ̸= 0; and in the case where p = 2 we must have β > 0, because

we are assuming that ϕ′′(0)−ϕ′(0)2 ≥ 0. Hence the corollary to Theorem 2.2.4

implies that ZC

(
exp (βDp)Md

)
> 0. By Theorem 2.2.3, fm → exp (βDp)Md

uniformly on compact sets in the complex plane. Hence Rouche’s theorem

implies that there is a positive integer m0 such that ZC(fm) > 0 whenever

m ≥ m0, and (2.1) shows that the same holds for ϕ(D)mf .
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2.2.1 Proof of Theorem 2.2.3

In order to prove Theorem 2.2.3, we need some preliminaries. Let C[x]
denote the (complex) vector space of complex polynomials, let C[x]d denote the
(d+1)-dimensional subspace of C[x] whose members are complex polynomials

of degree ≤ d, and let ∥ ∥∞ denote the norm on C[x] defined by

∥f∥∞ = max{|f (k)(0)/k!| : 0 ≤ k ≤ deg f}.

Note that if ⟨fm⟩ is a sequence of polynomials in C[x]d, then ∥fm∥∞ → 0 if

and only if fm → 0 uniformly on compact sets in the complex plane. When

ϕ is a formal power series (with complex coefficients) and d is a nonnegative

integer, we denote the operator norm of ϕ(D)|C[x]d with respect to ∥ ∥∞ by

∥ϕ(D)∥d, that is,

∥ϕ(D)∥d = sup{∥ϕ(D)f∥∞ : f ∈ C[x]d and ∥f∥∞ ≤ 1}.

If we denote the d-th partial sum of ϕ by ϕ|d, that is,

ϕ|d(x) =
d∑

k=0

ϕ(k)(0)

k!
xk,

then the restriction of ϕ(D) to C[x]d is completely determined by ϕ|d. Hence

there are positive constants Ad and Bd such that

Ad∥ϕ(D)∥d ≤ ∥ϕ|d∥∞ ≤ Bd∥ϕ(D)∥d

for all ϕ.

For c ̸= 0 we define the dilation operator ∆c by

(∆cf) (x) = f(cx).

It is then easy to see that

(2.3) ∆c (ϕ(D)f) = ϕ(c−1D)(∆cf) (c ̸= 0),

whenever ϕ is a formal power series and f ∈ domϕ(D).
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Proof of Theorem 2.2.3. Let r = max{p, d}. If ϕ̃ is a formal power series and

ϕ̃|r = ϕ|r, then ϕ̃ satisfies the identical assumptions in the theorem that are

satisfied by ϕ, and we have ϕ̃(D)mf = ϕ(D)mf for all m. In other words,

the theorem is about the first r + 1 coefficients of ϕ only, and the coefficients

ϕ(n)(0)/n!, n > r, are irrelevant to the theorem. For this reason, we may

assume that ϕ(n)(0) = 0 for all n > r. Then there is a neighborhood U of 0 in

the complex plane and there is an analytic function ψ in U such that

log ϕ(x) = αx+ βxp + xp+1ψ(x) (x ∈ U).

We substitute m−1/px for x and multiply both sides by m to obtain

m log ϕ
(
m−1/px

)
= m1− 1

pαx+ βxp +m−1/pxp+1ψ
(
m−1/px

)
(x ∈ m1/pU).

If we put

exp
(
−m1− 1

pαx
)
ϕ
(
m−1/px

)m − exp (βxp) = Rm(x),

then Rm is an entire function and we have

Rm(x) = exp (βxp)
(
exp

(
m−1/pxp+1ψ

(
m−1/px

))
− 1
)

(x ∈ m1/pU).

It is then clear that

sup
|x|≤R

|Rm(x)| = O
(
m−1/p

)
(m→ ∞)

for every R > 0, and this implies that

(2.4)
∥∥∥exp(−m1− 1

pαD
)
ϕ
(
m−1/pD

)m − exp (βDp)
∥∥∥
d
= O

(
m−1/p

)
as m→ ∞. Since f is monic and of degree d, it follows that

(2.5)
∥∥m−d/p∆m1/pf −Md

∥∥
∞ = O

(
m−1/p

)
(m→ ∞).

It is easy to see that (2.1) is equivalent to

fm = m−d/p exp
(
−m1− 1

pαD
)
∆m1/p (ϕ(D)mf) ;
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CHAPTER 2. PÓLYA-WIMAN PROPERTIES OF DIFFERENTIAL
OPERATORS

and (2.3) implies that the right hand side is equal to

exp
(
−m1− 1

pαD
)
ϕ
(
m−1/pD

)m (
m−d/p∆m1/pf

)
.

Therefore we have∥∥fm − exp (βDp)Md
∥∥
∞ = O

(
m−1/p

)
(m→ ∞),

by (2.4), (2.5) and the triangle inequality. This proves the theorem.

2.2.2 Proof of Theorem 2.2.4

As we shall see soon, Theorem 2.2.4 is a consequence of a known result

on Jensen polynomials and the fact that all the zeros of the classical Mittag-

Leffler functions Ep,1, p = 1, 2, . . ., are negative and simple. The following is a

simplified version of [5, Proposition 4.1].

Proposition 2.2.6. Suppose that ϕ ∈ LP, q is a positive integer and f is

given by

f(x) =

q∑
k=0

(
q

k

)
ϕ(k)(0)xk.

Suppose also that ϕ(0) ̸= 0 and ϕ is not of the form ϕ(x) = p(x)eαx, where p

is a polynomial and α ̸= 0. Then all the zeros of f are real and simple.

Remark. The polynomial f is called the q-th Jensen polynomial associated

with ϕ.

For positive integers p and q, let J(p,q) denote the q-th Jensen polynomial

associated with the classical Mittag-Leffler function Ep,1:

J(p,q)(x) =

q∑
k=0

(
q

k

)
E(k)

p (0)xk =

q∑
k=0

q!xk

(q − k)!(pk)!
.

Proposition 2.2.7. The zeros of J(p,q) are all negative and simple for p =

2, 3, . . . and for q = 1, 2, . . . .
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Proof. Suppose that p ≥ 2 and q ≥ 1. Then Ep,1 is of order ≤ 1/2, hence it is

not of the form Ep,1(x) = p(x)eαx where p is a polynomial and α ̸= 0; and we

have Ep,1(0) = 1 ̸= 0. Since Ep,1 ∈ LP , Proposition 2.2.6 implies that all the

zeros of J(p,q) are real and simple. Finally, they are all negative, because the

coefficients of J(p,q) are all positive.

Proof of Theorem 2.2.4. We have d = pq + r, 0 ≤ r ≤ p− 1 and(
exp (−Dp)Md

)
(x) = xr

q∑
k=0

(−1)kd!

k!(d− pk)!
xp(q−k).

The right hand side is of the form xrf(xp), where f is a monic polynomial of

degree q and f(0) = (−1)qd!/(q!r!) ̸= 0. From this, we see that (1) is trivial,

exp (−Dp)Md has exactly r zeros at the origin, and that the second assertion

of (2) follows from the first one. If a ̸= 0 is a zero of exp (−Dp)Md, then so

are e2kπi/pa, k = 0, 1, . . . , p − 1, and they are distinct. Since exp (−Dp)Md

has exactly d = pq + r zeros in the whole plane and has exactly r zeros at

the origin, it follows that exp (−Dp)Md has at most q distinct positive zeros.

Hence it is enough to show that if q ≥ 1, then exp (−Dp)Md has (at least) q

distinct positive zeros.

Suppose that q ≥ 1. We first consider the case where d is a multiple of p.

In this case, we have d = pq, r = 0 and(
exp (−Dp)Md

)
(x) =

q∑
k=0

(−1)k(pq)!

k!(p(q − k))!
xp(q−k)

=

q∑
k=0

(−1)q−k(pq)!

(q − k)!(pk)!
xpk

= (−1)q
(pq)!

q!

q∑
k=0

q!

(q − k)!(pk)!
(−xp)k

= (−1)q
(pq)!

q!
J(p,q)(−xp).

Since p ≥ 2, Proposition 2.2.7 implies that all the zeros of J(p,q) are negative

and simple. Hence exp (−Dp)Md has exactly q (=deg J(p,q)) distinct positive

zeros.
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Finally, the result for the remaining case follows from an inductive ar-

gument based on Rolle’s theorem, because (exp (−Dp)Mpq+r) (0) = 0 for

1 ≤ r ≤ p− 1,

exp (−Dp)Md =
1

d+ 1
D
(
exp (−Dp)Md+1

)
,

and exp (−Dp)Mp(q+1) has exactly q + 1 distinct positive zeros.

2.2.3 Laguerre-Pólya class and Pólya-Wiman property

with respect to real polynomials

In this section, we establish the following proposition.

Proposition 2.2.8. Let ϕ be a formal power series with real coefficients. Then

the following hold:

(1) If ϕ ∈ LP, then ZC(ϕ(D)f) ≤ ZC(f) for every f ∈ R[x].

(2) If ϕ /∈ LP, then for every positive integer m there is an f ∈ R[x] such
that ZC(ϕ(D)mf) = 0 but ZC(ϕ(D)m+1f) > 0.

Let ϕ be a formal power series with real coefficients. For n = 1, 2, . . . we

define the polynomial J(ϕ,n) by

J(ϕ,n)(x) =
n∑

k=0

(
n

k

)
ϕ(k)(0)xk.

Thus J(ϕ,n) may be called the n-th Jensen polynomial associated with the

formal power series ϕ. From

(ϕ(D)Mn) (x) =
n∑

k=0

ϕ(k)(0)

k!

(
n!

(n− k)!
xn−k

)
=

n∑
k=0

(
n

k

)
ϕ(k)(0)xn−k,

we see that ZC(J(ϕ,n)) = ZC(ϕ(D)Mn) for all n.

The following characterization of the class LP was established by Pólya

and Schur [27].
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Theorem 2.2.9. We have ϕ ∈ LP if and only if ZC(J(ϕ,n)) = 0 for all n.

Corollary 2.2.10. We have ϕ ∈ LP if and only if ZC(ϕ(D)Mn) = 0 for all

n.

Remark. Since ZC(Df) ≤ ZC(f) for every f ∈ R[x], and since Dϕ(D)Mn =

nϕ(D)Mn−1, we see that if ϕ /∈ LP , then there is a positive integer n0 such

that ZC(ϕ(D)Mn) > 0 for all n ≥ n0.

The following two results are easily proved. (See, for instance, Problem 62

in Part V of [28] and Section 3 of [27], respectively.)

The Hermite-Poulain Theorem. If ϕ is a real polynomial whose zeros are

all real and f is a real polynomial, then ZC(ϕ(D)f) ≤ ZC(f).

Proposition 2.2.11. For each fixed k we have

lim
n→∞

(
∆1/nJ(ϕ,n)

)(k)
(0) = ϕ(k)(0).

As a consequence, we have

lim
n→∞

∥∥J(ϕ,n)(n−1D)f − ϕ(D)f
∥∥
∞ = 0

for every polynomial f .

If ϕ(x) =
∑∞

k=0 αkx
k and α0 ̸= 0, then the reciprocal ϕ−1 of ϕ is given as

ϕ−1(x) =
∑∞

k=0 βkx
k, where the coefficients β0, β1, β2, . . . are defined succes-

sively by

β0 = α−1
0 and βn = −α−1

0

n∑
k=1

αkβn−k (n = 1, 2, . . . ).

In this case, we have

α0β0 = 1 and
n∑

k=0

αkβn−k = 0 (n = 1, 2, . . . );

hence ϕ(D) (ϕ−1(D)f) = ϕ−1(D) (ϕ(D)f) = f for every polynomial f .
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Proof of Proposition 2.2.8. To prove (1), suppose that ϕ ∈ LP and f ∈ R[x].
We may assume that ϕ(D)f is not identically equal to 0. Then Proposition

2.2.11 implies that

ZC(ϕ(D)f) ≤ lim inf
n→∞

ZC(J(ϕ,n)(n
−1D)f).

Since ϕ ∈ LP , Theorem 2.2.9 implies that J(ϕ,n) ∈ R[x]0 for all n, hence we

have

ZC(J(ϕ,n)(n
−1D)f) ≤ ZC(f) (n = 1, 2, . . . ),

by the Hermite-Poulain theorem. This proves (1).

To prove (2), suppose that ϕ /∈ LP . Then there is a positive integer d such

that ZC(ϕ(D)Md) > 0, by the Corollary 2.2.10. In particular, ϕ(k)(0) ̸= 0 for

some k, and hence there is a nonnegative integer r and there is a formal power

series ψ such that ϕ(x) = xrψ(x) and ψ(0) ̸= 0.

Let m be a positive integer. If we put f = ψ−1(D)mMd+mr, then f is a

real polynomial of degree d+mr and we have

ϕ(D)mf = Dmrψ(D)mψ−1(D)mMd+mr =
(d+mr)!

d!
Md,

hence ZC(ϕ(D)mf) = 0, but

ϕ(D)m+1f =
(d+mr)!

d!
ϕ(D)Md

has a nonreal zero. This proves (2).

We have introduced the reciprocal of a formal power series above.

Proposition 2.2.12. Suppose that ϕ is a formal power series with real coeffi-

cients and ϕ(0) ̸= 0. Then each of the following implies the other two:

(1) ϕ−1 has the Pólya-Wiman property with respect to arbitrary real polyno-

mials.

(2) ϕ(0)ϕ′′(0)− ϕ′(0)2 > 0.

(3) For every f ∈ R[x] the sequence ⟨ZC(ϕ(D)mf)⟩ converges to 2⌊(deg f)/2⌋.
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Remark. Note that a real polynomial of degree d can have at most 2⌊d/2⌋
nonreal zeros and (since ϕ(0) ̸= 0) we have deg ϕ(D)mf = deg f for all m.

Proof. The equivalence (1)⇔(2) is a consequence of Theorem 2.1.2 and 2.2.1

and a simple calculation; and the implication (2)⇒(3) follows from Theorem

2.2.3 and Corollary 2.2.5.

To prove (3)⇒(2), suppose that (2) does not hold, that is, ϕ(0)ϕ′′(0) −
ϕ′(0)2 ≤ 0. If ϕ(0)ϕ′′(0) − ϕ′(0)2 < 0, then Theorem 2.2.1 implies that the

sequence ⟨ZC(ϕ(D)mf)⟩ converges to 0 for every f ∈ R[x]; and if ϕ(0)ϕ′′(0)−
ϕ′(0)2 = 0, then for every f ∈ R[x] of degree ≤ 2 we have

(ϕ(D)mf) (x) = ϕ(0)mf
(
x+ ϕ(0)−1ϕ′(0)m

)
(m = 1, 2, . . . ).

Hence it is clear that (3) does not hold.

The following is the reciprocal version of Proposition 2.2.8.

Proposition 2.2.13. Suppose that ϕ is a formal power series with real coeffi-

cients and ϕ(0) ̸= 0. Then the following hold:

(1) If ϕ−1 ∈ LP, then ZC(f) ≤ ZC(ϕ(D)f) for all f ∈ R[x].

(2) If ϕ−1 /∈ LP, then for every positive integer m there is an f ∈ R[x] such
that ZC(ϕ(D)mf) > 0 but ZC(ϕ(D)m+1f) = 0.

Proof. If ϕ−1 ∈ LP and f ∈ R[x], then (1) of Proposition 2.2.8 implies that

ZC(f) = ZC(ϕ
−1(D)ϕ(D)f) ≤ ZC(ϕ(D)f),

hence (1) is proved.

To prove (2), suppose that ϕ−1 /∈ LP . Then there is a positive integer d

such that ZC(ϕ
−1(D)Md) > 0, by the Corollary 2.2.10. Let m be a positive

integer. If we put f = ϕ−1(D)m+1Md, then f is a real polynomial of degree

d, ZC(ϕ(D)mf) = ZC(ϕ
−1(D)Md) > 0, but ZC(ϕ(D)m+1f) = ZC(M

d) = 0.

Hence the result follows.
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2.3 Pólya-Wiman property with respect to La-

guerre -Pólya functions of genus 0

There are plenty of formal power series ϕ with real coefficients which satisfy

ϕ(0) = 0 or ϕ′′(0)ϕ(0) − ϕ′(0)2 < 0, but do not represent Laguerre-Pólya

functions. The following theorem, which is a strong version of the converse of

Theorem 2.1.2, implies that if ϕ is one of such formal power series, then ϕ does

not have the Pólya-Wiman property with respect to some (transcendental)

Laguerre-Pólya function of genus 0, although it has the property with respect

to arbitrary real polynomials.

Theorem 2.3.1. Suppose that ϕ is a formal power series with real coefficients

and ϕ does not represent a Laguerre-Pólya function. Then there is a Laguerre-

Pólya function f of genus 0 such that f ∈ domϕ(D)m and ZC(ϕ(D)mf) = ∞
for all positive integers m.

Theorem 2.3.1 is a consequence of Pólya’s characterization of the class LP
given in [24, 27] and a diagonal argument.

Let ϕ be a formal power series. First of all, we need to find a sufficient

condition for an entire function f to be such that f ∈ domϕ(D)m and ϕ(D)mf

is not identically equal to 0 for all positive integers m. Let ⟨Cn⟩ be a sequence

of positive numbers. If |ϕ(n)(0)| < Cn for all n, we write ϕ ≪ ⟨Cn⟩. More

generally, if there are constants c and d such that c > 0, d ≥ 0 and ϕ ≪
⟨c(1 + n)dCn⟩, then we will write ϕ ≺ ⟨Cn⟩.

Lemma 2.3.2. Suppose that ⟨Bn⟩ is an increasing sequence of positive num-

bers,

(2.6) BmBn ≤ B0Bm+n (m,n = 0, 1, 2, . . . ),

ϕ and ψ are formal power series, ϕ, ψ ≺ ⟨n!Bn⟩, f is an entire function, and

that f ≺ ⟨(n!Bn)
−1⟩. Then ϕψ ≺ ⟨n!Bn⟩, f ∈ domϕ(D), ϕ(D)f ≺ ⟨(n!Bn)

−1⟩
and ψ(D)(ϕ(D)f) = (ϕψ)(D)f .
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Proof. Suppose that a, b are nonnegative constants, ϕ ≪ ⟨(1 + n)an!Bn⟩ and

ψ ≪ ⟨(1 + n)bn!Bn⟩. Then∣∣(ϕψ)(n)(0)∣∣ ≤ n∑
k=0

(
n

k

) ∣∣ϕ(k)(0)
∣∣ ∣∣ψ(n−k)(0)

∣∣
< B0(1 + n)a+b+1n!Bn (n = 0, 1, 2, . . . ),

hence ϕψ ≺ ⟨n!Bn⟩.
Now suppose that c is a nonnegative constant, f ≪ ⟨(1 + n)c(n!Bn)

−1⟩,
R > 0, and |x| ≤ R. Then

(2.7)

∣∣∣∣ϕ(n)(0)f (n+k)(0)xk

n!k!

∣∣∣∣ ≤ B0(1 + n)a+c(1 + k)cRk

n!(k!)2Bk

,

and we have∑
n,k≥0

B0(1 + n)a+c(1 + k)cRk

n!(k!)2Bk

≤
∞∑
n=0

(1 + n)a+c

n!

∞∑
k=0

(1 + k)cRk

(k!)2
<∞.

Hence the double series ∑
n,k≥0

ϕ(n)(0)f (n+k)(0)xk

n!k!

converges absolutely and uniformly on compact sets in the complex plane. As

a consequence, the series
∞∑
n=0

ϕ(n)(0)

n!
f (n)

converges uniformly on compact sets in the complex plane, that is, f ∈
domϕ(D). Furthermore, the absolute convergence of the double series implies

that

ϕ(D)f(x) =
∞∑
k=0

∞∑
n=0

ϕ(n)(0)f (n+k)(0)

n!

xk

k!
(x ∈ C),

from which we obtain

(ϕ(D)f)(k)(0) =
∞∑
n=0

ϕ(n)(0)f (n+k)(0)

n!
(k = 0, 1, 2, . . . ),
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and the assumptions imply that

∣∣(ϕ(D)f)(k)(0)
∣∣ < B0(1 + k)c

k!Bk

∞∑
n=0

(1 + n)a+c

n!
(k = 0, 1, 2, . . . ),

hence we have ϕ(D)f ≺ ⟨(n!Bn)
−1⟩.

Finally, an estimate which is similar to (2.7) shows that the triple series

∑
m,n,k≥0

ψ(m)(0)ϕ(n)(0)f (m+n+k)(0)xk

m!n!k!

converges absolutely for every x ∈ C, hence the last assertion follows.

Corollary 2.3.3. Suppose that ϕ, ψ, f and ⟨Bn⟩ are as in Lemma 2.3.2, µ is

a nonnegative integer, ϕ(x)ψ(x) = xµ, and that f is transcendental. Then f ∈
domϕ(D)m and ϕ(D)mf is not identically equal to 0 for all positive integers

m.

Proof. An inductive argument shows that f ∈ domϕ(D)m, ϕ(D)mf ∈ domψ(D)m,

and that ψ(D)m (ϕ(D)mf) = f (mµ) for all m. Since f is transcendental, f (mµ)

is not identically equal to 0 for all m, hence the same is true for ϕ(D)mf .

Lemma 2.3.4. Suppose that ⟨Bn⟩ and ϕ are as in Lemma 2.3.2, f is an entire

function, ⟨fN⟩ is a sequence of entire functions, fN ≪ ⟨(n!Bn)
−1⟩ for all N ,

and that fN → f as N → ∞ uniformly on compact sets in the complex plane.

Then f1, f2, . . . , f ∈ domϕ(D) and ϕ(D)fN → ϕ(D)f as N → ∞ uniformly

on compact sets in the complex plane.

Proof. First of all, Lemma 2.3.2 implies that fN ∈ domϕ(D) for all N . Since

fN → f uniformly on compact sets in the complex plane, and since

|f (n)
N (0)| < (n!Bn)

−1 (N = 1, 2, . . . ; n = 0, 1, 2, . . . ),

it follows that

|f (n)(0)| ≤ (n!Bn)
−1 (n = 0, 1, 2, . . . ),
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hence f ∈ domϕ(D), by Lemma 2.3.2.

To prove the uniform convergence on compact sets in the complex plane,

let R > 0 and ϵ > 0 be arbitrary. Suppose that a is a nonnegative constant

and ϕ≪ ⟨(1 + n)an!Bn⟩. If we put

b =
∞∑
k=0

B0R
k

(k!)2Bk

,

then it is easy to see that

|f (n)
N (x)| < b

n!Bn

(|x| ≤ R; N = 1, 2, . . . ; n = 0, 1, 2, . . . ),

and that

|f (n)(x)| ≤ b

n!Bn

(|x| ≤ R; n = 0, 1, 2, . . . ).

Let ν be a positive integer such that

b
∞∑

n=ν+1

(1 + n)a

n!
< ϵ.

Then there is a positive integer N0 such that∣∣∣∣∣
ν∑

n=0

ϕ(n)(0)

n!

(
f
(n)
N (x)− f (n)(x)

)∣∣∣∣∣ < ϵ (|x| ≤ R; N ≥ N0),

because fN → f uniformly on compact sets in the complex plane.

Now, suppose that |x| ≤ R and N ≥ N0. Then we have

|ϕ(D)fN(x)− ϕ(D)f(x)| ≤∣∣∣∣∣
ν∑

n=0

ϕ(n)(0)

n!

(
f
(n)
N (x)− f (n)(x)

)∣∣∣∣∣+ 2
∞∑

n=ν+1

|ϕ(n)(0)|
n!

b

n!Bn

< 3ϵ.

This completes the proof.

Corollary 2.3.5. Under the same assumptions as in Lemma 2.3.4, ϕ(D)mfN →
ϕ(D)mf as N → ∞ uniformly on compact sets in the complex plane for every

positive integer m.
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Proof. Lemma 2.3.2 implies that ϕm ≺ ⟨n!Bn⟩ for all positive integers m.

We denote the open disk with center at a and radius r by D(a; r), and its

closure by D̄(a; r). For a complex constant c we define the translation operator

T c by (T cf)(x) = f(x+ c). It is clear that if f is a monic polynomial of degree

d, then c−dT cf → 1 as |c| → ∞ uniformly on compact sets in the complex

plane. This observation leads to the following:

Lemma 2.3.6. Suppose that ϕ is a formal power series, f and g are polyno-

mials, a1, . . . , aN are zeros of ϕ(D)f , b is a zero of ϕ(D)g, and that neither

ϕ(D)f nor ϕ(D)g is identically equal to 0. Then for every c ∈ C the polyno-

mial ϕ(D)(fT cg) is not identically equal to 0, and for every ϵ > 0 there is an

R > 0 such that if |c| > R, then ϕ(D)(fT cg) has a zero in each of the disks

D(a1; ϵ), . . . , D(aN ; ϵ) and D(b− c; ϵ).

Proof. The assumptions imply that neither f nor g is identically equal to 0.

In particular, we have deg(fT cg) ≥ deg f , hence the first assertion follows,

because ϕ(D)f is not identically equal to zero.

Let ϵ > 0. We first observe that if c is a constant, then ϕ(D)(fT cg) has a

zero inD(b−c; ϵ) if and only if ϕ(D)(gT−cf) has a zero inD(b; ϵ). Since neither

f nor g is identically equal to 0, we may assume that f and g are monic. Then

c− deg gfT cg → f and (−c)− deg fgT−cf → g as |c| → ∞ uniformly on compact

sets in the complex plane. Hence there is an R > 0 such that if |c| > R,

then ϕ(D)(fT cg) has a zero in each of the disks D(a1; ϵ), . . . , D(aN ; ϵ) and

ϕ(D)(gT−cf) has a zero in D(b; ϵ).

The following characterization of the class LP given in [24, 27] will play a

crucial role in the proof of Theorem 2.3.1.

Theorem (Pólya). Let ϕ be a formal power series with real coefficients. Then

ϕ ∈ LP if and only if ZC(ϕ(D)Md) = 0 for all positive integers d.

Corollary 2.3.7. Suppose that ϕ is a formal power series with real coefficients

and ϕ does not represent a Laguerre-Pólya function. Then there is a positive

integer d0 such that ZC(ϕ(D)Md) > 0 for all d ≥ d0.
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Proof. By Pólya’s theorem, there is a positive integer d0 such that ZC(ϕ(D)Md0) >

0, and Rolle’s theorem implies that if ZC(ϕ(D)Md+1) = 0, then ZC(ϕ(D)Md) =

0.

Proof of Theorem 2.3.1. We will construct a sequence ⟨d(k)⟩ of positive inte-

gers and a sequence ⟨γ(k)⟩ of positive numbers such that
∑∞

k=1 d(k)γ(k) <∞
and the entire function f represented by

f(x) =
∞∏
k=1

(1 + γ(k)x)d(k)

has the desired property.

Since ϕ does not represent a Laguerre-Pólya function, it follows that nei-

ther does the formal power series ϕm for every positive integer m. Hence

the corollary to Pólya’s theorem implies that there is an increasing sequence

⟨d(m)⟩ of positive integers such that ZC(ϕ(D)mMd(m)) > 0 for all positive

integers m. Since ⟨d(m)⟩ is increasing, we have ZC(ϕ(D)mMd(k)) > 0 when-

ever m ≤ k. For each pair (m, k) of positive integers with m ≤ k choose

a nonreal zero of ϕ(D)mMd(k) in the upper half plane, denote it by a(m, k)

and set r(m, k) = Ia(m, k)/2. It is obvious that r(m, k) > 0, and that

D̄(a(m, k) − γ; r(m, k)) ∩ R = ∅ for all γ ∈ R. The assumption also im-

plies that ϕ(n)(0) ̸= 0 for some n, hence there is a nonnegative integer µ and

there is a formal power series ψ such that ϕ(x)ψ(x) = xµ. Choose an increas-

ing sequence ⟨An⟩ of positive numbers such that ϕ, ψ ≪ ⟨An⟩, and define ⟨Bn⟩
by B0 = A0, B1 = A1 and

Bn+1 = max
[
{An+1} ∪ {B−1

0 BkBn+1−k : k = 1, . . . , n}
]

(n = 1, 2, . . . ).

It is clear that ⟨Bn⟩ is an increasing sequence of positive numbers, ⟨Bn⟩ satisfies
(2.6), and that ϕ, ψ ≺ ⟨n!Bn⟩.

For k = 1, 2, . . . and for γ > 0 define gk,γ by

gk,γ(x) = (1 + γx)d(k) ,

that is, gk,γ = γd(k)T 1/γMd(k). From the definition, it follows that gk,γ is a real

polynomial of degree d(k), gk,γ(0) = 1, ϕ(D)mgk,γ is not identically equal to 0
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for 1 ≤ m ≤ k,

(2.8) (ϕ(D)mgk,γ)
(
a(m, k)− γ−1

)
= 0 (1 ≤ m ≤ k),

and that gk,γ → 1 as γ → 0 uniformly on compact sets in the complex plane.

Since g1,γ(0) = 1 < 2 and g1,γ is a polynomial of degree d(1) for every

γ > 0, and since g1,γ → 1 as γ → 0 uniformly on compact sets in the complex

plane, there is a positive number γ(1) such that g1,γ(1) ≪ ⟨2B0(n!Bn)
−1⟩.

From the definition, the polynomial ϕ(D)g1,γ(1) is not identically equal to 0,

and from (3.3) we have
(
ϕ(D)g1,γ(1)

)
(a(1, 1)− γ(1)−1) = 0. Now suppose that

γ(1), . . . , γ(N) are positive numbers,

(2.9)
N∏
k=1

gk,γ(k) ≪ ⟨2B0(n!Bn)
−1⟩,

and that for each m ∈ {1, . . . , N} the closures of the disks

(2.10) D
(
a(m, k)− γ(k)−1; r(m, k)

)
(m ≤ k ≤ N)

are mutually disjoint and the polynomial ϕ(D)m
(∏N

k=1 gk,γ(k)

)
has a zero in

each of these disks. Suppose also that the polynomials ϕ(D)m
(∏N

k=1 gk,γ(k)

)
,

m = 1, . . . , N are not identically equal to 0. Since
∏N

k=1 gk,γ(k) is a polynomial,

gN+1,γ is a polynomial of degree d(N+1) for every γ > 0, and since gN+1,γ → 1

as γ → 0 uniformly on compact sets in the complex plane, (2.9) implies that

there is a δ > 0 such that

(2.11)

(
N∏
k=1

gk,γ(k)

)
gN+1,γ ≪ ⟨2B0(n!Bn)

−1⟩ (0 < γ < δ).

From Lemma 2.3.6, it follows that for each m ∈ {1, . . . , N} there is an

Rm > 0 such that if |c| > Rm, then ϕ(D)m
((∏N

k=1 gk,γ(k)

)
T cMd(N+1)

)
has

a zero in each of the disks given in (2.10) and also has a zero in the disk

D (a(m,N + 1)− c; r(m,N + 1)), because ϕ(D)m
(∏N

k=1 gk,γ(k)

)
has a zero in
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each of the disks given in (2.10) and
(
ϕ(D)mMd(N+1)

)
(a(m,N + 1)) = 0. By

taking Rm sufficiently large, we may assume that

D̄
(
a(m, k)− γ(k)−1; r(m, k)

)
∩ D̄ (a(m,N + 1)− c; r(m,N + 1)) = ∅

for |c| > Rm and for m ≤ k ≤ N . Since ϕ(D)N+1Md(N+1) has a zero at

a(N +1, N +1) and r(N +1, N +1) > 0, Lemma 2.3.6 implies that there is an

RN+1 > 0 such that if |c| > RN+1, then ϕ(D)N+1
((∏N

k=1 gk,γ(k)

)
T cMd(N+1)

)
has a zero in D (a(N + 1, N + 1)− c; r(N + 1, N + 1)). Let γ(N + 1) be such

that 0 < γ(N + 1) < min{δ, R−1
1 , . . . , R−1

N , R−1
N+1}. Then (2.11) implies that

N+1∏
k=1

gk,γ(k) ≪ ⟨2B0(n!Bn)
−1⟩.

The construction shows that for each m ∈ {1, . . . , N + 1} the closures of the

disks

D
(
a(m, k)− γ(k)−1; r(m, k)

)
(m ≤ k ≤ N + 1)

are mutually disjoint and the polynomial ϕ(D)m
(∏N+1

k=1 gk,γ(k)

)
has a zero

in each of these disks. Finally, the polynomials ϕ(D)m
(∏N+1

k=1 gk,γ(k)

)
, m =

1, . . . , N + 1, are not identically equal to 0, by Lemma 2.3.6.

By induction, this process produces a sequence ⟨γ(k)⟩ of positive numbers

which has the following properties:

(1) For each positive integer N we have

N∏
k=1

gk,γ(k) ≪ ⟨2B0(n!Bn)
−1⟩.

(2) For each positive integer m the closed disks

(2.12) D̄
(
a(m, k)− γ(k)−1; r(m, k)

)
(k = m,m+ 1,m+ 2, . . . )

are mutually disjoint.
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(3) For each positive integer m the polynomial ϕ(D)m
(∏N

k=1 gk,γ(k)

)
has a

zero in each of the disks given in (2.10), whenever N ≥ m.

For N = 1, 2, . . . we set fN =
∏N

k=1 gk,γ(k), that is,

fN(x) =
N∏
k=1

(1 + γ(k)x)d(k) .

From (1), it follows that

(2.13) 0 ≤ f
(n)
N (0) < 2B0(n!Bn)

−1 (N = 1, 2, . . . ; n = 0, 1, 2, . . . ).

In particular, we have

N∑
k=1

d(k)γ(k) = f ′
N(0) < 2B0/B1 (N = 1, 2, . . . ),

hence the infinite product
∏∞

k=1 (1 + γ(k)x)d(k) represents an entire function

of genus 0. Let f denote the entire function. It is then obvious that f is

transcendental, f ∈ LP , fN → f uniformly on compact sets in the complex

plane, and that

0 < f (n)(0) ≤ 2B0(n!Bn)
−1 (n = 0, 1, 2, . . . ).

To complete the proof, let m be a positive integer. From the corollary to

Lemma 2.3.2, it follows that f ∈ domϕ(D)m and ϕ(D)mf is not identically

equal to 0; and from (2.13) and the corollary to Lemma 2.3.4, we see that

ϕ(D)mfN → ϕ(D)mf as N → ∞ uniformly on compact sets in the complex

plane. Furthermore, ϕ(D)mfN has a zero in each of the disks given in (2.10)

whenever N ≥ m. Hence ϕ(D)mf has a zero in each of the closed disks given in

(2.12) which are mutually disjoint and do not intersect the real axis. Therefore

ZC(ϕ(D)mf) = ∞.
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2.4 Asymptotic behavior of distribution of ze-

ros of ϕ(D)mf as m→ ∞
In this section, we conclude chpater 2 with some consequences of Theo-

rems 2.2.3 and 2.2.4 on the asymptotic behavior of the distribution of zeros

of ϕ(D)mf as m → ∞, in the case where the coefficients of ϕ are complex

numbers and f is a complex polynomial. When f is an entire function, we

denote its zero set by Z(f), that is, Z(f) = {z ∈ C : f(z) = 0}, and for

a ∈ Z(f) the multiplicity by m(a, f).

Let ϕ, p, α, β, f , d and f1, f2, . . . be as in Theorem 2.2.3. Then β ̸= 0 and

fm → exp(βDp)Md uniformly on compact sets in the complex plane. We also

have

(2.14) Z(ϕ(D)mf) = −mα +m1/pZ(fm)

and

(2.15) m(a, ϕ(D)mf) = m(m−1/p(a+mα), fm)

for all a ∈ Z(ϕ(D)mf)). Let ϵ > 0 be so small that the disks D(b; ϵ), b ∈
Z
(
exp(βDp)Md

)
, are mutually disjoint. Then Rouche’s theorem implies that

there is a positive integer m0 such that

(2.16)
∑

c∈D(b;ϵ)∩Z(fm)

m(c, fm) = m
(
b, exp(βDp)Md

)
holds for all b ∈ Z

(
exp(βDp)Md

)
for all and m ≥ m0. As a consequence, we

have

(2.17) Z(fm) ⊂ D(0; ϵ) + Z
(
exp(βDp)Md

)
for all m ≥ m0. Let γ be a complex number such that γp = −β. Then γ ̸= 0

and we have

Z
(
exp(βDp)Md

)
= γZ

(
exp(−Dp)Md

)
,

because (
exp(βDp)Md

)
(x) = γd

(
exp(−Dp)Md

)
(x/γ).
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Now, (2.14) and (2.17) imply that

(2.18) Z(ϕ(D)mf) ⊂ −mα +m1/p
(
D(0; ϵ) + γZ

(
exp(−Dp)Md

))
holds for all m ≥ m0.

With the aid of Theorem 2.2.4, the above results give us some information

on the zeros of ϕ(D)mf for large values of m. From Theorem 2.2.4, it follows

that

Z
(
exp(−Dp)Md

)
⊂ Sp,

where

Sp =

p−1⋃
k=0

{
re2kπi/p : r ≥ 0

}
.

It also follows from Theorem 2.2.4 that if d ≡ 0 or 1 mod p, then all the zeros

of exp(−Dp)Md are simple. Hence (2.18) implies that for every ϵ > 0 there is

a positive integer m0 such that

Z(ϕ(D)mf) ⊂ −mα +N(0,m1/pϵ) + γSp

for all m ≥ m0, and (2.14) through (2.16) imply that if d ≡ 0 or 1 mod p,

then all the zeros of ϕ(D)mf are simple whenever m becomes sufficiently large.
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Chapter 3

Asymptotic behavior of

distribution of the zeros of a

one-parameter family of

polynomials

Let ϕ(z) =
∑∞

k=0 akz
k/k! be a real power series with a0 = 1 and a1 = 0.

In this chapter, when P is a polynomial of degree at least two, the asymptotic

behavior of distribution of the zeros of ϕ(D)mP (z) for m → ∞ is described,

where D denotes differentiation.

3.1 Asymptotic behavior of distribution of the

zeros of ϕ(D)mf as m→ ∞
Let P be an arbitrary polynomial of degree d with leading coefficient α.

If z1, z2, . . . , zd are zeros of P then the arithmetic mean of zeros Ap is given

by 1
d

∑d
k=1 zk. We consider the polynomial 1

α
P (z + i Im Ap) =

∑d
k=0 αkz

d−k,

α0 = 1. By translation, it is clear that α1 is real. If α1, . . . , αµ−1 are all real

and αµ is the first nonreal coefficient, then we define IAp = µ, (2 ≤ µ ≤ d).

If there is no such a µ, we can apply Theorem 2.1.1 to P (z + i Im Ap). Let
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WH(P ) = sup{|Im(Ap − z)| : P (z) = 0}. Then we obtain the following result.

Theorem 3.1.1. Let ϕ(z) =
∑∞

k=0 akz
k/k! be a real power series with a0 = 1,

a1 = 0, and a2 < 0. Let P (z) =
∑d

k=0 αkz
d−k be a polynomial of degree at least

two and IAp = µ, (2 ≤ µ ≤ d). Then, for positive integer m,

lim
m→∞

m(µ−1)/2WH(ϕ(D)mP (z)) <∞,

lim
m→∞

mδWH(ϕ(D)mP (z)) = ∞, ∀δ > µ− 1

2
.

Let Hn(z) be the nth Hermite polynomial defined by

Hn(z) = (−1)nez
2

Dne−z2 .

It is known that Hn(z) has only real and simple zeros. From this, the next

theorem gives more specific result on the distribution of zeros of ϕ(D)mP (z)

for sufficiently large m.

Theorem 3.1.2. Let ϕ(z) =
∑∞

k=0 akz
k/k! be a real power series with a0 = 1,

a1 = 0, and a2 < 0. Let P (z) =
∑d

k=0 αkz
d−k be a polynomial of degree at least

two and IAp = µ, (2 ≤ µ ≤ d). Let ρ1, ρ2, . . . , ρd be distinct zeros of Hd(z)

and r := min{ |ρi−ρj |
2

: i ̸= j}. Then for every ϵ > 0, there is a positive integer

m0 such that each open square {z : |Im (z − Ap)| < ϵ, |Re z −
√
−2a2mρj| <

r
√
−2a2m} contains only one zero of ϕ(D)mP (z) for all m ≥ m0 and j =

1, 2, . . . , d.

3.2 Zeros of polynomials with complex coeffi-

cients

We begin with this section by introducing of Wall-Frank Theorem which

will be used in our proof of the Theorem 3.1.1. H. S. Wall proved theorem on

the zeros of polynomial with real coefficients [32] and then E. Frank extended

the result to polynomial with complex coefficients [10]. In original papers, the

theorem is related to necessary and sufficient condition that a polynomial shall
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have only zeros with negative real parts. But in this section, we reformulate

the necessary and sufficient condition that a polynomial shall have only zeros

with negative imaginary parts.

The Wall-Frank Theorem. Let P (z) =
∑d

k=0 αkz
d−k with α0 = 1. And let

(3.1) Q0 =
d∑

k=0

(−i)k(Re αk)z
d−k and Q1 =

d∑
k=1

(−i)k−1(Im αk)z
d−k.

Then all the zeros of P (z) have negative imaginary part if and only if the

quotient Q1/Q0 can be written in the continued fraction,

(3.2)
Q1

Q0

=
1

r1z + s1 +
1

r2z + s2 +
1

· · ·+
1

rdz + sd
with rj > 0 and sj is pure imaginary or zero for 1 ≤ j ≤ d.

The problem of determining rj, sj is equivalent to the problem of deriv-

ing polynomials Qj of degree d − j which are connected with Q0 and Q1 by

recurrence relations

(3.3)

{
Qj+1 = Qj−1 − (rjz + sj)Qj, (j = 1, . . . , d)

Qd+1 = 0 .

For convenience of notation, we denote the coefficient of zd−k of Qj by ej,k.

Then by (3.3), we obtain the following formulas :

(3.4)


ej+1,k = ej−1,k − rjej,k+1 − sjej,k

rj+1 = ej,j/ej+1,j+1

sj+1 = (ej,j+1 − rj+1ej+1,j+2)/ej+1,j+1

ej,k = 0 if k < j or k > d .

Thus r1, . . . , rd are determined completely by Q0, Q1, and (3.4). Since real and

pure imaginary coefficients appear alternatively in Q0 and Q1, we can check

easily that ej,k is pure imaginary or zero (resp. real) if j + k is odd (resp.

even). Accordingly, sj is a pure imaginary or zero.
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3.3 Proofs of Theorem 3.1.1 and Theorem 3.1.2

In the proof of Theorem 3.1.1, we will use the following lemma.

Lemma 3.3.1 ([5, Lemma 2.1 and 2.2]). Let

ϕ(z) =
∞∑
k=0

ak
k!
zk (a0 = 1, a1 = 0)

be a real power series and let

(3.5) ϕ(z)m =
∞∑
k=0

bk
k!
zk (bk = bk(m), m = 1, 2, 3, . . .).

Then

b0 = 1, bk =
1

k

k∑
j=1

(
k

j

)
[ j(m+ 1)− k ]ajbk−j (k = 1, 2, . . .)

and

b2k−1 = O(mk−1) , b2k =
(2k)!

k!

(a2
2

)k
mk+o(mk) (k = 1, 2, . . . ; m→ ∞).

To prove the Theorem 3.1.1 we need some preparations. For simplicity of

expression, we put Ej,k for j ≥ 0 as follows;

(3.6)

Ej,k =



k!

(k/2)!

(
−a2

2

) k
2

(
d

k

) j/2∏
l=1

k + 2l − j

d− 2l + 2
if j, k are even,

k!

((k − 1)/2)!

(
−a2

2

) k−1
2

(
d

k

) (j−1)/2∏
l=1

k + 2l − j

d− 2l + 1
if j, k are odd,

0 if k < j or k > d.

In (3.6), if j = 0 or 1, then empty product represents a unity. And let

(3.7) Rj+1 = Ej,j/Ej+1,j+1 .
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Then we check at once that

(3.8)

{
Ej+2,k = Ej,k −Rj+1Ej+1,k+1

Ed,d = Ed−2,d.

Using (3.6) and (3.7), for positive integer m, we put fm(j, k), gm(j, k), and

Rm(j) as follows;

(3.9)

fm(j, k) =

{
Ej,k m

k
2 + o(m

k
2 ) if k + j ∈ 2Z

Aj,k m
k−1
2 + o(m

k−1
2 ) if k + j /∈ 2Z

(m→ ∞),

gm(j, k) =

{
C Ej,k m

k
2 + o(m

k
2 ) if k + j ∈ 2Z

Aj,k m
k
2 + o(m

k
2 ) if k + j /∈ 2Z

(C > 0 ; m→ ∞),

where Aj,k is an appropriate pure imaginary constant or may be zero, and

(3.10) Rm(j) = Rj m
− 1

2 + o(m− 1
2 ) (m→ ∞).

IfEj,k andRj in (3.9), (3.10) are replaced by Ej,k+O(C
−1), andRj+O(C

−1) (C →
∞), then we write f ∗

m(j, k), g
∗
m(j, k), andR

∗
m(j) instead of fm(j, k), gm(j, k), andRm(j).

And if O(C−1) is replaced by O(C−2) then we use double star ∗∗.

Proof of Theorem 3.1.1. There is no loss of generality in assuming α0 = 1 and α1 =

0. Then Ap = 0 and Im αµ ̸= 0. Let ϕ(z)m be the form (3.5). And consider

the polynomial

(3.11) Pm(z) = ϕ(D)mP (z).

For positive numbers C and δ, we can write

(3.12) Pm(z + iCm−δ) =
d∑

k=0

γkz
d−k

where γ0, . . . , γd are given by

(3.13) γk =
k∑

ν=0

bνβk−ν

(
d− k + ν

ν

)
, βl =

l∑
τ=0

ατ

(
d− τ

l − τ

)
(iCm−δ)l−τ .
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For polynomial (3.12), Q0 and Q1 are obtained in the manner indicated in

(3.1). Let e0,k and e1,k be coefficients of zd−k of Q0 and Q1, respectively. Then

by (3.4), we get the continued fraction (3.2). It suffices to show that there is a

C0 > 0 such that all rj in (3.2) are positive for C > C0 asm→ ∞. Throughout

the proof, we use the induction on j. From (3.1), (3.13) and Lemma 3.3.1, we

see that

(3.14) e0,k = fm(0, k), (e0,0 = 1, e0,1 = 0).

Let µ > 2, δ = (µ− 1)/2 and k ≤ µ− 2. Then we have

(3.15) e1,k = Cm−δ− 1
2fm(1, k)(e1,2 = 0), r1 = C−1mδ+ 1

2Rm(1), s1 = 0.

In fact, A0,k and A1,k of (3.9), which are related to (3.14) and (3.15) respec-

tively, are both independent of C. So, from now on, we assume that Aj,k is

independent of C for all j and k. (But we need not know its exact value.)

This condition is essential to the proof. To simplify notation, we put

Sm(j) = Sj m
− 1

2 + o(m− 1
2 ) (m→ ∞).

Here, Sj is independent of C. Then by (3.4) and (3.8), if j ≤ µ/2 and k+j < µ,

we get

(3.16)

ej,k =

{
fm(j, k) if j ∈ 2Z
C m−δ− 1

2fm(j, k) if j /∈ 2Z,
rj =

{
C m−δ− 1

2Rm(j) if j ∈ 2Z
C−1 mδ+ 1

2Rm(j) if j /∈ 2Z.

And for j < µ/2,

(3.17) sj = C m−δ− 1
2Sm(j) (j ∈ 2Z), sj = C−1 mδ+ 1

2Sm(j) (j /∈ 2Z).

Assume that µ is even. If k ≥ µ − 1 then e1,k = m−µ
2 gm(j, k). From this,

if j ≤ µ/2 and j + k ≥ µ then

(3.18) ej,k =

{
C−1 gm(j, k) if j ∈ 2Z,
m−µ

2 gm(j, k) if j /∈ 2Z.
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If j = µ/2 then

(3.19) sj =

{
m

1−µ
2 Sm(j) if j ∈ 2Z,

C−2 m
µ+1
2 Sm(j) if j /∈ 2Z.

Hence, for j > µ/2, ej,k is the form in (3.18) with gm(j, k) replaced by g∗∗m (j, k).

And rj is the form in (3.16) with Rm(j) replaced by R∗∗
m (j), sj is same as (3.19).

If µ is odd, e1,k = C m−µ
2 f ∗

m(1, k), for k ≥ µ − 1. (Here, A1,k in (3.9)

related to f ∗
m(1, k) depends on C. But it does not affect the result.) And for

j + k ≥ µ, ej,k and rj are the same as the form (3.16) replaced by f ∗
m(j, k),

R∗
m(j).

If µ = 2 then e1,k = m−1gm(j, k), r1 = C−1mRm(1), and s1 = C−2m
3
2Sm(1).

Thus for j > 1, we can apply the above result to ej,k, rj, and sj.

In any case, we can find C0 > 0 such that rj > 0 for all C > C0 as

m → ∞. Thus by Wall-Frank Theorem, all the zeros of Pm(z) are in the

{z; Im z < C m−µ−1
2 } as m → ∞. And if we consider Pm(−z) then we can

obtain the same result with Pm(z) and the first part of proof is completed.

Next, suppose that δ > (µ − 1)/2 in (3.12). Let µ ≥ 2 and δ ≤ µ/2. We

get (3.15) for k ≤ µ − 1. But, if µ = 2, s1 in (3.15) is removed. If µ is even

then

e1,µ = (−1)
µ
2 Im αµi+ o(1), e1,µ+1 = O(m−δ+ k−1

2 ), (m→ ∞),

if µ is odd then

e1,µ = (−1)
µ−1
2 Im αµ + o(1), e1,µ+1 = O(1), e1,µ+2 = O(m), (m→ ∞).

By (3.4) and induction on j, if j + k ≤ µ and j ≤ µ/2 then we obtain (3.16)

and (3.17). If j + k = µ + 1, then there exists a nonzero constant Tj,k such

that

(3.20) ej,k =

{
Tj,k m

δ+1− j
2 + o(mδ+1− j

2 ) if j ∈ 2Z
Tj,k m

− j−1
2 + o(m− j−1

2 ) if j /∈ 2Z.
(m→ ∞)

We first do the case of even µ. If j + k = µ+ 2 and j ≤ µ/2 then

ej,k = O(m
k
2 ) (j ∈ 2Z), ej,k = O(m−δ+ k−1

2 ) (j /∈ 2Z), (m→ ∞).
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Let j = µ/2. Then the leading term of sj is determined by the second term of

sj in (3.4), thereby leading term of ej+1,j+1 is determined by

−sjej,j+1 =
rj
ej,j

(ej,j+1)
2.

From (3.20), ej,j+1 is nonzero pure imaginary. Hence, for all C > 0, we obtain

ej+1,j+1 < 0 as m→ ∞.

In the case of odd µ, if j + k = µ+ 2 and j ≤ µ/2 then

ej,k = O(mδ+1− j
2 ) (j ∈ 2Z), ej,k = O(m− j−1

2 ) (j /∈ 2Z), (m→ ∞),

and if j + k = µ+ 3 and j ≤ µ/2 then

ej,k = O(mδ− j
2
+2) (j ∈ 2Z), ej,k = O(m− j−1

2 ) (j /∈ 2Z), (m→ ∞).

Let j = µ+1
2
. Then the leading term of ej,jej+1,j+1 is determined by

−rj−1(ej−1,j+1)
2.

Thus ej,jej+1,j+1 < 0 for sufficiently large m.

In any case, for all C > 0, there exists j such that rj+1 < 0 as m → ∞.

We can also apply the same argument to the case of δ > µ/2 and obtain the

same result. Therefore, we complete the proof of Theorem 3.1.1.

Proof of Theorem 3.1.2. Let ϕ(z)m and Pm(z) be the forms of (3.5) and (3.11)

respectively. Let hm,k = ϕ(D)mzk. Then by Lemma 3.3.1,

lim
m→∞

hk,m(z
√
m)

mk/2
= α0

(
−a2

2

)k/2
Hk

(
z√
−2a2

)
(k ≥ 1).

Thus we can show that m−d/2Pm(z
√
m) converges to

(3.21) α0

(
−a2

2

) d
2
Hd

(
z√
−2a2

)
uniformly on compact sets in the complex plane as m → ∞. For r > 0, we

denote the disc with center ρj
√
−2a2m and radius r

√
−2a2m by Dj. Then

each D1, . . . , Dd contains only one zero of Pm(z) for sufficiently large m. Thus

the proof is completed by Theorem 3.1.1.
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Remark. Let P (z) be a real polynomial. Then there is no such a µ in Theorem

3.1.1. In the proof of Theorem 3.1.1, let C and δ be arbitrary positive numbers.

Then we can see that (3.14)-(3.17) hold for all j and k. Hence, there exists

m1 > 0 such that ∀rj > 0 for all m ≥ m1. Therefore, we can also obtain the

Theorem 2.1.1 of Craven and Csordas . In fact, we can know the simplicity of

zeros by the same method as in the proof of Theorem 3.1.2.

Analogously to IAp , we can define I i
Ap
. Let P be a polynomial of degree

d with leading coefficient α. Consider the polynomial 1
α
P (z + Re Ap) =∑d

k=0 αkz
d−k, α0 = 1. Obviously, Re α1 = 0. If there is a µ such that, for

1 ≤ k ≤ µ − 1, Im (ikαk) = 0 and Im (iµαµ) ̸= 0, we set I i
Ap

= µ. Let

Wv(P ) = sup{|Re(Ap − z)| : P (z) = 0}. Then we state the analogue of

Theorem 3.1.1 when a2 > 0 as a corollary.

Corollary 3.3.2. Let ϕ(z) =
∑∞

k=0 a2kz
2k/(2k)! be an even real power series

with a0 = 1, a2 > 0. Let P (z) =
∑d

k=0 αkz
d−k be a polynomial of degree at

least two and I i
Ap

= µ, (2 ≤ µ ≤ d). Then, for positive integer m,

lim
m→∞

m(µ−1)/2Wv([ϕ(D)]mP (z)) <∞,

lim
m→∞

mδWv([ϕ(D)]mP (z)) = ∞, ∀δ > µ− 1

2
.

From (3.21), we can rephrase Theorem 3.1.2 as follows.

Corollary 3.3.3. Let ϕ(z) =
∑∞

k=0 a2kz
2k/(2k)! be an even real power series

with a0 = 1, a2 > 0. Let P (z) =
∑d

k=0 αkz
d−k be a polynomial of degree at least

two and I i
Ap

= µ, (2 ≤ µ ≤ d). Let ρ1, ρ2, . . . , ρd be distinct zeros of Hd(z) and

r := min{ |ρi−ρj |
2

: i ̸= j}. Then for every ϵ > 0, there is a positive integer m0

such that each open square {z : |Re (z−Ap)| < ϵ, |Im z−
√
2a2mρj| < r

√
2a2m}

contains only one zero of ϕ(D)mP (z) for all m > m0 and j = 1, 2, . . . , d.

Remark. In Corollary 3.3.2 and 3.3.3, if there is no such a µ, there exists a

m1 > 0 such that, for all m ≥ m1, the zeros of the polynomial ϕ(D)mP (z) are

simple and all lie on the Re z = Re Ap.
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Example 3.3.4. Corollary 3.3.2 and above remark do not extend to arbitrary

real power series ϕ(z). Let ϕ(z) = 1+z2+z3 and P (z) = z3+1. Then Ap = 0,

I i
Ap

= 3. Let Pm(z) = [ϕ(D)]mP (z). Consider (−i)3Pm(iz− 1
2
). By Wall-Frank

Theorem, we can see that Pm(z) has a zero in the Re z < −1/2 as m→ ∞.

If Q(z) = z3 + i, then Ap = 0 and ̸ ∃I i
AQ

. We can also obtain the same

result as P (z).
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Chapter 4

De Bruijn-Newman constant of

the polynomial (z + i)n + (z − i)n

Let λn be the largest zero of 2n-th Hermite polynomial. In this chapter, We

prove that the de Bruijn-Newman constant of the polynomial (z+ i)n+(z− i)n
is −(2λn)

−2.

4.1 Main Result

A function of growth (2, 0) is a real entire function which is at most order

2 and type 0, that is,

f(z) = O(exp(ϵ|z|2)) (|z| → ∞)

for every ϵ > 0. If f is of growth (2, 0) then it is known that f ∈ dom eαD
2
and

eαD
2
f is of growth (2, 0) for every α ∈ C [3]. When f is a real entire function

of growth (2, 0), we define λ(f) by

λ(f) = sup{α ∈ R : eαD
2

f has real zeros only}.

We extend the notion of the de Bruijn-Newman constant to arbitrary real entire

functions of growth (2, 0) by calling −λ(f) the de Bruijn-Newman constant of

f .
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For n = 0, 1, 2, . . . let Fn be the real polynomial defined by

Fn(z) =
1

2
((z + i)n + (z − i)n) = (cosD Mn)(z),

where Mn is the monic monomial of degree n, that is, Mn(z) = zn. We will

establish the following:

Theorem 4.1.1. Let λn be the largest zero of H2n(z) where H2n(z) is the

2n-th Hermite polynomial defined by H2n(z) = ez
2
D2ne−z2. Then λ(F2n) =

λ(F2n+1) = (2λn)
−2.

In fact, it is well known [31, (6.32.5)] that H2n(z) has only real and simple

zeros, especially

λn =
√
4n+ 1− 6−1/3(4n+ 1)−1/6(i1 + ϵ),

where ϵ→ 0, as n→ ∞ and i1 = 3.372134408 . . ..

We obtain the following corollary.

Corollary 4.1.2. λ(F2n) ∼ 1
16n

as n→ ∞.

If x ∈ R, then Fn(x) = Re (x+ i)n; hence we have

F2n(x) = (−1)n(1 + x2)n cos(2n tan−1 x)

=
n∏

k=1

(
x2 − tan2 (2k − 1)π

4n

)
,

and
F2n+1(x) = (−1)n

√
1 + x2(1 + x2)n sin((2n+ 1) tan−1 x)

= x

n∏
k=1

(
x2 − tan2 kπ

2n+ 1

)
.

This factorization formula exhibits the location of zeros of Fn explicitly. In

particular, all the zeros of Fn are real and simple. However, it will not be used

in our proof of Theorem 4.1.1.
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4.2 Preliminaries

We denote the function z 7→ zn by Mn. A direct calculation shows that

(4.1) Fn = cosD Mn.

If ⟨αk⟩ = ⟨αk⟩∞k=0 is a sequence of numbers and if f is a polynomial, we define

⟨αk⟩f by

⟨αk⟩f =
∞∑
k=0

αkf
(k)(0)

k!
Mk.

In other words, if f(z) = a0 + a1z + · · ·+ anz
n, then

⟨αk⟩f(z) = α0a0 + α1a1z + · · ·+ αnanz
n.

A real entire function ϕ is said to be a Laguerre-Pólya function if there

are real polynomials f1, f2, . . . such that fn → ϕ uniformly on compact sets in

the complex plane and that all the zeros of f1, f2, . . . are real; if all the zeros

of f1, f2, . . . are real and of the same sign, then ϕ is called a Laguerre-Pólya

function of the first kind.

The Pólya-Schur Theorem. If ϕ is a Laguerre-Pólya function of the first

kind, and f is a real polynomial with real zeros only, then ⟨ϕ(k)(0)⟩f has real

zeros only.

Proof. See [27].

For α ∈ R define sg α by

(4.2) sg α =

{
0 (α = 0),

|α|/α (α ̸= 0).

Suppose ⟨sk⟩ = ⟨sk⟩nk=0 is a finite sequence such that sk ∈ {−1, 0, 1} for every k

and sn ̸= 0. For example, if f is a real polynomial of degree n and a ∈ R, then
⟨sg f (k)(a)⟩ is such a sequence. For k = 0, 1, . . . , n define s+k and s−k as follows:

If sk ̸= 0, s+k = s−k = sk; otherwise, s
+
k = sk+l and s

−
k = (−1)lsk+l, where l is
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the smallest positive integer such that sk+l ̸= 0. Thus s+k , s
−
k ̸= 0 for all k.

We denote the new sequences ⟨s+k ⟩ and ⟨s−k ⟩ by ⟨sk⟩+ and ⟨sk⟩−, respectively.
If sk ̸= 0 for all k, we denote by W ⟨sk⟩ the number of sign-changes in ⟨sk⟩,
that is,

W ⟨sk⟩ =
∞∑
k=1

1− sk−1sk
2

.

If f is a non-constant real polynomial and a ∈ R, then

⟨sg f (k)(a)⟩+ = ⟨sg f (k)(a+ ϵ)⟩ and ⟨sg f (k)(a)⟩− = ⟨sg f (k)(a− ϵ)⟩

for all sufficiently small ϵ > 0. Thus we may state the Budan-Fourier-Hurwitz

theorem in the following form:

The Budan-Fourier-Hurwitz Theorem. If f is a non-constant real poly-

nomial and a < b, then

N (f ; (a, b)) = W ⟨sg f (k)(a)⟩+ −W ⟨sg f (k)(b)⟩− − 2K (f ; (a, b)) .

Here, N(f, I) denotes the number of zeros of f in the interval I, and K(f, I)

denotes the number of critical points of f in the interval I.

Proof. See [12].

4.3 Proof of the main result

If ϕ is analytic at 0, f is an entire function and the series

∞∑
n=0

ϕ(n)(0)

n!
f (n)

converges absolutely and uniformly on compact sets in the complex plane, then

we denote the resulting entire function by ϕ(D)f and say that ϕ(D)f is well

defined. If f is a polynomial, it is obvious that ϕ(D)f is well defined and is a

polynomial.
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If ϕ is analytic at 0, then

ϕ(D)Mn(z) =
n∑

l=0

ϕ(l)(0)

l!

n!

(n− l)!
zn−l = n!

n∑
k=0

ϕ(n−k)(0)

(n− k)!

zk

k!
,

ϕ(D2)M2n(z) =
n∑

l=0

ϕl(0)

l!

(2n)!

(2n− 2l)!
z2n−2l

= (2n)!
n∑

k=0

ϕ(n−k)(0)

(n− k)!

(z2)k

(2k)!
,

and

ϕ(D2)M2n+1(z) =
n∑

l=0

ϕ(l)(0)

l!

(2n+ 1)!

(2n+ 1− 2l)!
z2n+1−2l

= (2n+ 1)!z
n∑

k=0

ϕ(n−k)(0)

(n− k)!

(z2)k

(2k + 1)!
;

hence

(4.3)
n!

(2n)!
ϕ(D2)M2n(z) =

〈
k!

(2k)!

〉
ϕ(D)Mn(z2),

and

(4.4)
n!

(2n+ 1)!
ϕ(D2)M2n+1(z) = z

〈
k!

(2k + 1)!

〉
ϕ(D)Mn(z2).

For λ ∈ R let Ψλ be the real entire function defined by

Ψλ(z) = eλz cos
√
z.

It is clear that Ψλ is a Laguerre-Pólya function. Since

eλDf(z) =
∞∑
n=0

λn

n!
f (n)(z) = f(z + λ)

for every entire function f , we have

Ψλ(D)f(z) = Ψ0f(z + λ),
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whenever Ψ0(D)f is well defined. In fact, it is known that Ψ0(D)f is well

defined for every entire function f . For a proof, see [3].

From (4.1), we have eλD
2
Fn = Ψλ(D

2)Mn; hence (4.3) and (4.4) imply

n!

(2n)!
eλD

2

F2n(z) =

〈
k!

(2k)!

〉
Ψλ(D)Mn(z2)

and
n!

(2n+ 1)!
eλD

2

F2n+1(z) = z

〈
k!

(2k + 1)!

〉
Ψλ(D)Mn(z2).

For simplicity, put

(4.5) f = Ψλ(D)Mn, g =

〈
k!

(2k)!

〉
f and h =

〈
k!

(2k + 1)!

〉
f,

so that

eλD
2

F2n(z) =
(2n)!

n!
g(z2) and eλD

2

F2n+1(z) =
(2n+ 1)!

n!
zh(z2).

Since

(4.6) f(z) = Ψλ(D)Mn(z) = Ψ0(D)Mn(z + λ)

and

(4.7) Ψ0(D)Mn(z) = n!
n∑

k=0

(−1)n−k

(2n− 2k)!

zk

k!
= (−1)n

n!

(2n)!
znH2n

(
1

2
√
z

)
whereH2n(z) is the 2n-th Hermite polynomial (cf.[31, (5.5.4)]), f has real zeros

only. Since the functions

z 7→
∞∑
k=0

k!

(2k)!

zk

k!
= cosh

√
z and z 7→

∞∑
k=0

k!

(2k + 1)!

zk

k!
=

sinh
√
z√

z

are Laguerre-Pólya functions of the first kind, the Pólya-Schur theorem implies

that g and h also have real zeros only. Thus eλD
2
F2n and eλD

2
F2n+1 have

exactly 2N(g; (−∞, 0)) and 2N(h; (−∞, 0)) non-real zeros, respectively; and

all the non-real zeros are purely imaginary.
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It is obvious that f , g and h are polynomials of the same degree n, and

that

⟨sg fk(0)⟩ = ⟨sg gk(0)⟩ = ⟨sg hk(0)⟩.

Since f , g and h haver real zeros only, they have no critical points. Hence, by

the Budan-Fourier-Hurwitz theorem, they have the same number of negative

real zeros. In particular, the following are equivalent: (i) eλD
2
F2n has non-real

zeros, (ii) eλD
2
F2n+1 has non-real zeros, and (iii) f has a negative (real) zero.

From (4.6), f has a negative zero if and only if λ is greater than the smallest

zeros of (4.7). Thus if λn is the largest zero of 2n-th Hermite polynomial,

λ(F2n) = λ(F2n+1) =
1

(2λn)2
.
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Tôhoku Math. J. 19 (1921), 241–248.

[26] , Some problems connected with Fourier’s work on transcendental

equations, Quart. J. Math. Oxford Ser. 1 (1930), 21–34.
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국문초록

본 논문에서는 정함수의 영점분포에 관해 연구하였다. 우선, 미탁-레플러

함수의 영점에 대해 연구하였다. 만약 α와 β가 복소수이고 Re α > 0 일때,

미탁-레플러 함수 Eα,β는 다음과 같이 주어진다.

Eα,β(z) =
∞∑
k=0

zk

Γ(β + αk)
.

미탁-레플러 함수의 근에 관한 가장 최근의 결과는 α > 2이고 0 < β ≤ 2α − 1

이거나 α > 4이고 0 < β ≤ 2α이면 Eα,β(z)는 오직 실근만을 갖는다는 것이다.

이 결과를 개선하여 α ≥ 4.07이고 0 < β ≤ 3α이면 Eα,β(z)가 오직 실근만을

갖는다는 것을 보였다.

다음으로미분연산자의폴랴-위만성질에관해연구하였다. ϕ(x) =
∑
αnx

n

는실계수를갖는멱급수이고 D는미분연산자를의미한다. 모든실계수다항식

f에 대해서 양의정수 m0가 존재하여 m ≥ m0인 모든 정수 m에 대해 새로

운 다항식 ϕ(D)mf이 오직 실근만을 갖기위한 필요충분 조건은 α0 = 0 또는

2α0α2 − α2
1 < 0 임을 보였다. 또한, ϕ가 라귀에르-폴랴 함수가 아닐때, 종수가

0인 라귀에르-폴랴 함수 f가 존재하여 모든 양의 정수 m에 대해 ϕ(D)mf가

무한히 많은 허근을 갖는 정함수가 된다는 것을 보였다.

λn은 다음과 같이 정의된 에르미트 다항식 H2n

H2n(z) = (2n)!
n∑

k=0

(−1)k

k!(2n− 2k)!
(2z)2n−2k,

의 가장 큰 근이고 Mn(z) = zn일때, 다음 등식이 성립함을 보였다.

sup{α ∈ R : eαD
2

cosD Mn이 오직 실근만을 갖는다.} = 4λn
−2.

주요어휘: 미탁-레플러 함수, 폴랴-위만 정리, 다항식과 정함수의 근, 선형 미분

연산자, 라귀에르-폴랴 클래스, 에르미트 다항식, 드브루인-뉴먼 상수

학번: 2004-20349
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