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Abstract

On a sufficient condition for a Mittag-Leffler
function to have real zeros only, and the
Pdélya-Wiman properties of differential
operators

Min-Hee Kim

Department of Mathematical Sciences
The Graduate School
Seoul National University

In this dissertation, we study the distribution of zeros of entire functions.
First, we study the reality of zeros of Mittag-Leffler functions. If o and [ are
complex numbers with Re a > 0, the Mittag-Leffler function E, 5 is defined
by

FBaglz) =Y —— .
8(2) kzz(]r(5+a’f)

One of the most recent results on the zeros of the Mittag-Lefler functions is
due to Popov and Sedletskii: if « > 2 and 0 < § < 2o — 1 or if @ > 4 and
0 < 8 < 2a then E, g(z) has only real zeros. We improve the result by showing
that if @ > 4.07 and 0 < 8 < 3a then E, 5(z) has only real zeros.

Second, we study the Pélya-Wiman properties of differential operators. Let
¢(r) = > a,x™ be a formal power series with real coefficients and let D denote
differentiation. It is shown that “for every real polynomial f there is a positive
integer my such that ¢(D)™f has only real zeros whenever m > my” if and
only if “ag = 0 or 2apas —a? < 07, and that if ¢ does not represent a Laguerre-
Poélya function, then there is a Laguerre-Pélya function f of genus 0 such that
for every positive integer m, ¢(D)™ f represents a real entire function having
infinitely many nonreal zeros.



Finally, we prove the identity
sup{a € R : e*P* cos D M™ has real zeros only} = 4\, %,

where M"™ is the monic monomial of degree n, that is, M™(z) = 2z, and )\, is
the largest zero of the 2n-th Hermite polynomial Hs, given by

Hy,(2) = (2n)! Z ﬁ@z)%—%.

Key words: Mittag-Lefler functions, Pélya-Wiman Theorem, zeros of polyno-
mials and entire functions, linear differential operators, Laguerre-Pdlya class,
Hermite polynomials, De Bruijn-Newman constant
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Introduction

Let f be an entire function. If there is a positive real number A such that
(1) |f(2)] = Ofexp(|21)) as |2 — oo,

then f is said to be of finite order. The order p of f is defined to be the greatest
lower bound of the set of all positive real numbers A which satisfy (1). If f is
of order p, 0 < p < oo, and there is a positive real number B such that

(2) [f(2)] = O(exp(B2]°)) as [2] = o0,

then f is said to be of finite type. The type 7 of f is defined to be the greatest
lower bound of the set of all positive real number B which satisfy (2).
It is well known and easy to prove that

, log log M (r; f) . log M (r; f)
p = limsup and 7 =limsup ——=
7—00 10g r r—00 rP

where M (r; f) = max,—, | f(2)|, 7 > 0. The order p and type 7 of f can also
be represented in terms of the Taylor coefficients of f. If f(z) = > a,z" then
) nlogn 1.
3 =limsup————— and 7= — lim sup nla,|”’".
R Y] o 2R e
For a proof of (3) see [2].

The genus of f is the smallest integer p such that f can be represented in
the form

z 4+1(4)2+...+l(4)p
(4) f(z) = 2" (1——>e% G

J



INTRODUCTION

where P(z) is a polynomial of degree < p and n is a nonnegative integer.
Note that if f is of genus p and a;, j = 1,2,... are the zeros of f then the
convergence of the infinite product in (4) implies that Zaﬂéo |la;| 7P~ < oo

The order and the genus are closely related, as seen by the following theo-
rem.

Hadamard’s Theorem. The genus p and the order p of an entire function
satisfy the double inequality

p<p<p+1l

If a, 8 € C, and Rea > 0, then it is known that the series
—~T(8 + k)

represents a transcendental entire function of order 1/(Rea) and type 1 [11,
Proposition 3.1]. The entire function is denoted by E, s and called a Mittag-
Leffler function. If o > 0, then E, ; is called a classical Mittag-Leffler function.
If Rea > 1, then E, g is of order < 1, hence Hadamard’s factorization theorem

implies that E, s(2) has infinitely many zeros.
Let

W = {(a,f) : o, 8 > 0 and all the zeros of E, g(z) are negative and simple}.

In 1905, A. Wiman asserted that if o > 2, then («, 1) € W [33]. Since he only
gave some plausible arguments, several mathematicians doubted the validity
of Wiman’s proof. Later G. Pdlya proved that if o is an integer > 2, then
(a,1) € W [25]. It follows from an asymptotic formula for E, s(z) that if
0 < a< 2and (o,8) ¢ {(I,m) : m = 1,0,—1,-2,...} then E,s(z) has
infinitely many zeros but has only a finite number of real zeros [29, Theorem
2.1.1]; and we have

Eym(2) = 21 7e? (m=1,0,—-1,-2,...).
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Hence (1,1) € W and («,5) ¢ W whenever a € (0,1) U (1,2). In 1997,
Ostrovskii and Peresyolkova proved that

WD G{(a,ﬁ):azQ”, 0<fB<1+al.
n=1

(Especially, if « =2 and 0 < 8 < 3 then («, 3) € W. After that, Popov and
Sedletskii proved that if @« = 2 and 5 > 3 then (o, 5) ¢ W [29].) They also
proved that (a,1),(a,2) € W for all @ > 2 [22, Theorem 2 and Corollary 3.
In particular, they gave a rigorous proof of Wiman’s result.

We put

&n =&, B) ZW(nJré(ﬁ—l)) csc <§) (n=12,...;a>28>0),
and
Wo={(a,B) :a>2,>0and (—1)"E,z(—¢§.") >0 for all n € N}.

If (o, B) € W), then the intermediate value theorem and the inequality E, 3(0) >
0 imply that E, s(z) has at least n zeros in (—¢,%,0) for every n. On the other
hand, Popov and Sedletskii proved that if @ > 2 then E, 3(z) has exactly
n zeros (counting multiplicities) in |z| < &,* for all sufficiently large n [29,
Theorem 2.1.4 and Theorem 2.2.2]. Hence we see that Wy C W. In the same
paper, they refined the result of Ostrovskii and Peresyolkova by showing that
ifa>2and0< f<2a—1orifa>4and0 < f < 2a, then (o, 8) € W,
and that if « > 2 and 8 > (log2)~'a? —a+0.9, then (a, 3) ¢ W [29, Theorem
3.1.1 and Theorem 3.1.4]. In Chapter 1, we improve the result of Popov and
Sedletskii by showing that if &« > 4.07 and 0 < 8 < 3« then (o, 8) € W .

A real entire function is an entire function which takes real values on the
real axis. If f is a real entire function, we denote the number of nonreal zeros
(counting multiplicities) of f by Zo(f). (If f is identically equal to 0, we set
Zo(f) = 0.) A real entire function f is said to be of genus 1* if it can be

expressed in the form
2

f(z) =" g(z),
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where v > 0 and g is a real entire function of genus at most 1. If f is a real
entire function of genus 1* and Zg(f) = 0, then f is called a Laguerre-Pélya
function and we write f € LP. We denote by LP* the class of real entire
functions f of genus 1* such that Zo(f) < oco. It is well known that f € LP if
and only if there is a sequence (f,) of real polynomials such that Zo(f,) = 0
for all n and f,, — f uniformly on compact sets in the complex plane. (See
Chapter 8 of [19] and [20, 23, 27].) From this and an elementary argument
based on Rolle’s theorem, it follows that the classes LP and LP* are closed
under differentiation, and that Zo(f) > Zo(f') for all f € LP*. The Pdlya-
Wiman theorem states that for every f € LP* there is a positive integer my
such that f™ € LP for all m > mq [6, 7, 14, 17, 26]. On the other hand, it
follows from recent results of W. Bergweiler, A. Eremenko and J. Langley that
if f is a real entire function, Zo(f) < oo and f ¢ LP*, then Zo(f™) — oo
as m — oo [1, 18].
Let ¢ be a formal power series given by

o(r) = Z apx™.
n=0

For convenience we express the n-th coefficient a, of ¢ as ¢™(0)/n! even when
the radius of convergence is equal to 0. If f is an entire function and the series

io: a, f(n)
n=0

converges uniformly on compact sets in the complex plane, so that it represents
an entire function, we write f € dom ¢(D) and denote the entire function by
¢(D)f. For m > 2 we denote by dom ¢(D)™ the class of entire functions f
such that f,¢(D)f,...,¢(D)™ 'f € dom¢(D). It is obvious that if f is a
polynomial, then f € dom ¢(D)™ for all m. For more general restrictions on
the growth of ¢ and f under which f € dom ¢(D)™ for all m, see [3, 5].

The following version of the Pélya-Wiman theorem for the operator ¢(D)
was established by T. Craven and G. Csordas [5, Theorem 2.4].

Theorem A. Suppose that ¢ is a formal power series with real coefficients,
¢'(0) = 0 and ¢"(0)p(0) < 0. Then for every real polynomial f there is
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a positive integer mo such that all the zeros of ¢(D)™f are real and simple
whenever m > my.

We also have the following version, which is a consequence of the results in
Section 3 of [5].

Theorem B. Suppose that ¢ € LP (¢ represents a Laguerre-Pélya function),
f € LP*, and that f is of order less than 2. Then f € dom ¢(D)™, ¢(D)™f €
LP* and Zc(¢p(D)"f) > Zo(p(D)™ L f) for all m. Furthermore, if ¢ is not
of the form ¢(x) = ce?™ with ¢ # 0, then Zc(d(D)"f) — 0 as m — oo.

In Chpater 2, we complement Theorem A and Theorem B above. Let ¢ be
a formal power series with real coefficients and f be a real entire function. If
[ € dom¢(D)™ for all m and Za(d(D)™f) — 0 as m — oo, then we will say
that ¢ (or the corresponding operator ¢(D)) has the Pdlya- Wiman property
with respect to f. For instance, if f is a real entire function and Zq(f) < oo,
then the operator D (= d/dx) has the Pdlya-Wiman property with respect to f
if and only if f € LP*. Theorem A gives a sufficient condition for ¢ to have the
Pélya-Wiman property with respect to arbitrary real polynomials. In Section
2.2, we prove that this is the case if and only if ¢(0) = 0 or ¢”(0)¢(0)—¢'(0)? <
0. In Section 2.3, we prove a strong version of the converse of Theorem B which
implies that if ¢ is a formal power series with real coefficients and ¢ does not
represent a Laguerre-Pélya function then ¢ does not have the Pdélya-Wiman
property with respect to some (transcendental) Laguerre-Pélya functions of
genus 0

In Chapter 3, we introduce a result on the polynomials all of whose zeros
lie in the lower half plane. The result is due to Wall [32] in the case of poly-
nomials with real coefficients and to Frank [10] in the case of polynomial with
complex coefficients. By using the Wall-Frank Theorem, we obtain more pre-
cise asymptotic results on the distribution of zeros of ¢(D)™P(z) as m — oo
than the results obtained in Section 2.4.

A function of growth (2,0) is a real entire function which is at most order
2 and type 0, that is,

f(z) = O(exp(e|z[*)) (|2 = o)
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for every € > 0. If f is of growth (2,0) then it is known that f € dom e*P”
and e*”” f is of growth (2,0) for every a € C [3].
When f is a real entire function of growth (2,0), we define A(f) by

A(f) = sup{e € R : ¢*P” f has real zeros only}.

Let = denote the Riemann Xi-function:

s(s —1)
2

(1]

() =

In [9], N. G. de Bruijn proved that A(Z) > —1/8 and that the Riemann
hypothesis is equivalent to the inequality A(Z) > 0. In [21], C. Newman

r (g) 20 (s) (s = % +it).

showed that A\(Z) < oo, and conjectured the opposite inequality A(Z) < 0.
The inequality A(Z) > —1/8 has been improved to A\(Z) > —1/8 by Ki, Kim
and Lee [16]. The first upper bound was given by Csordas, Norfolk and Varga
in 1988 [8]. They denoted —4A(Z) by A and established —50 < A. In the
same paper, they called A the de Bruijn-Newman constant. Lower bounds for
A have been computed by several authors. Recently, Saouter, Gourdon and
Demichel have shown that A > —1.14541 x 10~ [30].

We extend the notion of the de Bruijn-Newman constant to arbitrary real
entire functions of growth (2,0) by calling —A(f) the de Bruijn-Newman con-
stant of f.

For n =10,1,2,... let F}, be the real polynomial defined by

Fu(2) = 5((z +0)" + (= = i)") = (cos D M")(2),

where M™ is the monic monomial of degree n, that is, M™(z) = z". In Chapter
4, we prove that the de Bruijn-Newman constant of the polynomial F, is
—(2X\,) 72, where ), is the largest zero of the 2n-th Hermite polynomial Hs,
given by

Hy,(2) = (2n)! Z ﬁ@z)%—%.



Chapter 1

Sufficient condition for a
Mittag-Leftler function to have
real zeros only

In this chapter, we study the reality of zeros of Mittag-Lefler functions.
One of the most recent results is due to Popov and Sedletskii: if @ > 2 and
0<p<2a—1lorifa>4and0<f <2athen E,s(z) has only real zeros.
We improve the result by showing that if « > 4.07 and 0 < 8 < 3a then
E, s(z) has only real zeros.

1.1 Main result and sketch outline of the proof

If a, 8 € C, and Rea > 0, then it is known that the series

00
Zk:

L(5 + ak)

represents a transcendental entire function of order 1/(Re«) and type 1 [11,
Proposition 3.1]. The entire function is denoted by E, s and called a Mittag-
Leffler fucntion. If a > 0, then E,, ; is called a classical Mittag-Leffler function.
If Rea > 1, then E,, g is of order < 1, hence Hadamard’s factorization theorem

k=0

implies that E, s(z) has infinitely many zeros.



CHAPTER 1. SUFFICIENT CONDITION FOR A MITTAG-LEFFLER
FUNCTION TO HAVE REAL ZEROS ONLY

We put
W = {(a,f) : o, > 0 and all the zeros of E, g(z) are negative and simple},
and

Wo={(a,B) :a>2,>0and (—1)"E,z(—¢£,") >0 for all n € N},

where

fnzgn(a,ﬁ):ﬂ'(n—i-é(ﬁ—l)) csc(f) (n=1,2,...;a>208>0).

(07

If (o, B) € W), then the intermediate value theorem and the inequality E, 3(0) >
0 imply that E, 3(z) has at least n zeros in (—¢,%,0) for every n. On the other
hand, Popov and Sedletskii proved the following theorem.

Theorem 1.1.1 ([29, Theorem 2.1.4 and Theorem 2.2.2]). If a > 2 then
E. 5(z) has exactly n zeros (counting multiplicities) in |z| < &,* for all suffi-
ciently large n.

Hence we see that W, C W. In the same paper, they proved that if o > 2
and 0 < f<2a—1lorif >4 and 0 < f < 2a, then (a, 8) € Wy. Precisely,

Theorem 1.1.2 ([29, Theorem 3.1.1]). If & > 2 and 0 < f < 2a — 1 or if
a >4 and 0 < B < 2a, then all zeros of the function E, 3(z) in C lie on
(—00,0) are simple, and if we denote them by {z,(«, ) }nen ordered as

Zl(avﬁ) > 22(a7ﬂ) > > Zn(Oé,B) >
they satisfy the inequalities

P ()
gl < 1( a5)< F(ﬁ) >

&% < zp(a, B) < =&1%, (n>2).

In this chapter, we improve the result of Popov and Sedletskii by the fol-
lowing theorem.



CHAPTER 1. SUFFICIENT CONDITION FOR A MITTAG-LEFFLER
FUNCTION TO HAVE REAL ZEROS ONLY

Theorem 1.1.3. If a > 4.07 and 0 < § < 3a then (o, B) € W.

This theorem is an immediate consequence of Theorem 1.1.4 and Theorem
1.1.5 stated below. Let
1 _ m
P(a, B) = afllﬂ ¥ exp (fl Cos (a)) (B —a).
Theorem 1.1.4. If a > 4, 2a < § < 3« and ¢(a, B) > 0.51 then («, ) € W.

Theorem 1.1.5. We have ¢(4.07,12.21) > 0.512. Furthermore the function
a — ¢(a,3a) is increasing on [4,00) and for each fized o > 4 the function
B — ¢(a, B) is decreasing on (2a, 3a].

Remark. Theorem 1.1.5 implies that the inequality ¢(ca, 5) > 0.512 holds for
a > 4.07 and 2a < 8 < 3a.

We sketch our proof of Theorem 1.1.4 in this section. The detailed proof
is given in Sections 1.2-1.4. Theorem 1.1.5 is proved in Section 1.4.

The main idea of the proof of Theorem 1.1.4 is almost identical with the
one given by Popov and Sedletskii [29]. In this section, we describe the differ-
ences of the proof of Theorem 1.1.4 in comparison with method of Popov and
Sedletskii. From now on, we restrict our attention to the case where o > 4.

First, Popov and Sedletskii considered the case where 0 < 8 < «. In order
to show that («, 3) € W, they used the following asymptotic expansion:

Theorem 1.1.6 ([29, Theorem 1.5.4]). For any o > 5/2, 0 < f < «, and
x > 0, the following representation holds:

Eop(—2%) = Sap(x) + wa p(z),

where

2
Sap(z) = aml_ﬁ X

k=1

and
|wa,5(7)| < 0.7427° (x> 0).

7 cap (e (2297 ) o i (217 4 =)
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In the case of a < § < 2a, they used the identity

(11) Bl = 1 (Bai-old) ~ 55 )

Since 0 <  — o < «, Theorem 1.1.6 can be applied to (1.1).
In the case of 2a < 8 < 3a, we will use the following equality obtained
from identity (1.1),

1 1 1 1 1
(1.2) E.p(z) = ﬁEa,ﬁ—za(Z) - ;F(ﬂ — 2a) - ;[‘(5 —a)’

Since 0 < 8 — 2a < «, we can apply the asymptotic expansion in Theorem
1.1.6 to E, s-24(%) in equality (1.2).

In Theorem 1.1.6, the first part of the remainder is equal to the product of
22'7# /o and the sum

la/2| s -
kz; ax () cos (:csin (%Tl)) +(2k — 1) — 5) |

) s s (2207 ).

For fixed z > 0 and k € N, we have

where

lim Af+1 ('f)

=1 uniformly with respect to 0 < x < o(a?),
a—r00 ak(l‘)

and we cannot obtain the required estimate. Thus, in the case of 2a < § <
3a, we will show that if ¢(a, f) > 0.51 then (—1)"E, 3(—£,“) > 0 holds for
n > |a/4|. For the notational simplicity, we put

['(8+ na)
Rn = Rn ) = N).
(o, B) T8 + (n—1)a) (n € N)
With this notation, we will prove the following:
(1.3) (—=1)" ' Eap(—Ry) >0 (1<n< [o/4)),

10

&

| &1
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(1.4) (=1)"E,3(—V2R,) >0 (1 <n<|a/4]),
and
(1.5) £n1® < Ry, < V2R, < &% (a>81<n<|a/d])

(we assume that & = 0). These inequalities imply that E, 3(z) has at least
la/4] zeros in the interval [—&|4/4)%,0]. It is important that the signs of the
function at the points —R|,/4) and —§|q/4)" are distinct and

—Ela/4)® < —Rjaja) < —lajaj-1"

Thus we must verify inequality (1.3) for n = |a/4]; for n = |a/4], we may
omit the proof of inequality (1.4). Then, by Theorem 1.1.1, we complete the
proof of Theorem 1.1.4.

In fact, in the case of @ > 6 and 0 < 8 < 2a, Popov and Sedletskii chose
|a/3] instead of |«/4] and obtained the same result mentioned above (In this
case, the condition ¢(«, 5) > 0.51 is not required).

1.2 Sufficient condition to have real zeros only

We denote by 1 the logarithmic derivative of the I'-function and use the
following expansion:

I"(2)
1 [ 1 1
1. =—y——— - — —-1,-2,...
(16) (RFRD I CLbt) BN CLLAVCE RIS
where 7y is the Euler constant. From (1.6), it follows the identity
(1.7) ()= (k+2)7
k=0

The following lemma will be needed throughout Chapter 1.

11
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Lemma 1.2.1 ([29, Lemma 3.4.2]). The logarithmic derivative of the I'-function
satisfies the following estimates:

—(2t — 1)  +logt < (t) <logt  (t>1/2).
We first prove some propositions.

Proposition 1.2.2. If x > 4, then

L=< 51%1?((2[12)
where & = &(z,32).
Proof. We put
) = 6"

g(x) = xlog(4xr — 1) +log I'(z) — log I'(2z),
and -
h(z) =logm — logz — log (sin E> )
Then we obtain the equality

log f(z) = g(x) + zh(z).

To prove the proposition, it is enough to show that g(x) and h(x) is positive
for x > 4.
First, we take the derivative of g(x),

g'(z) =log(dz — 1) + +(x) — 20(22) + 1.

4 — 1
Then by Lemma 1.2.1, we obtain

n 1 1
dr—1 22 -1

- ] 1 n 1 1

O PR — JR—

- & 4x r—1 2x—1
15

1
> log— —=-+1>0.7>0.
T 7+

g (x) > log(4r —1)

+logx — 2log(2x) + 1

12

&

| &1



CHAPTER 1. SUFFICIENT CONDITION FOR A MITTAG-LEFFLER
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Thus ¢(z) increases and hence g(z) > g(4) > 4.
Second, since
T o.m
zh'(r) = -1+ —cot — <0
r

and
lim h(z) = lim log (E csc E) =0,
T—00 T—00 €T €T

we have h(x) > 0.

Therefore, log f(x) > 0 and we obtain f(z) > 1. O

Proposition 1.2.3. If a > 4 and 2a < 8 < 3a, then

ar(ﬁ B 2&)

1<§1 F(ﬁ—a)

Proof. Let
[Nz —2
foc(x) = 61(04, w)al"(éj—_(j))

If F,,(z) denotes the logarithmic derivative of f,(x), then

(2a <z < 3a).

Fo(z) = ﬁ + (2 — 2a) — ¥(z — a).

By (1.7), we obtain

o

/ _ @ 1 —1
Fo(z) = _m+;m_;(n+x—a)2

o >~ 1 <1
SR — —dt — —dt
(33' +a— 1)2 * /m—2a t2 /z—a—l t2

S « + 1 _ 1

- (r+a—-12 z-20 z—a-1

—2? + (5% — 3a + 2)z + (—a® — 5a? + 3a — 1)
(x+a—1)2(z—2a)(z—a—1) '

o0

v

(1.8)

v

Since
502 — 3+ 2

5 > 3o (v > 4),

13
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the numerator of (1.8) has minimum at 2« and
—2% + (50 — 3a + 2)z + (—a® — 5a® + 3a — 1) > 9a® — 15a* + 7o — 1.

Also, 903 — 150 + 7a — 1 is increasing on [4,00) and has minimum 363 at
a =4. Thus F/(x) > 0 and F,(z) < F,(3a). By Lemma 1.2.1, we obtain

a+1 1
E < —log2 < - —log2 .
Oé(3oz)_4()é_1 0g2 < 3 —log <0
Hence f!(z) < 0 and f,(x) > f.(3a). Therefore, the proof is completed by

Proposition 1.2.2. O]
Proposition 1.2.4. Let a > 4 and 2a < B < 3a. If we put
fap(x) = 2P exp <x cos z),
«

then fo 5(z) is increasing on [£1, 00).

Proof. Since

=it (Jon o) (-0

fos(x) =277 cos (a exp (zcos — ) (2 (B —1)sec ~)
fap(z) increases for x > (8 — 1)sec(m/a). It is enough to show that & >
(8 — 1)sec(m/a), ie. mla+ B —1)— (f — 1)atan(w/a) > 0. To prove the
inequality, for each o > 4, we put

9o () :77(:6+oz—1)—(x—1)atang (2o <z < 3a).

Since ¢/ (x) =7 — atan(r/a) < 0, we have g,(x) > go(3a). Also,

9a(3a) = mw(da—1)— (Ba— 1)« tang

> 7m(da—1) —4(3a —1)
> (dr—12)a+ (4 —7) > 15m — 44 > 0.
Therefore, g,(x) > 0 for 2a < x < 3a, which proves the proposition. ]

14
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Proposition 1.2.5. If we put

f(@) = & (z, 22) " T(x)

then f(z) is decreasing on [4,00).

g(z) = —log (3 - i)

Proof. We put

and -
h(z) = ¥(z) — T + log sin P log 7.
Then we obtain ()
T T T
o = 9l@) + h(w) = Teot T

Since
1 11
—log (3— —) < —log— <0,
T 4

we have g(x) < 0. Now, it remains to prove h(x) < 0. By Lemma 1.2.1, we
obtain

r . m 1
h(z) < log (;sm;) ~3. 1

Since
r .7 1
—sin— and —
s x 3r—1

is increasing on [4, oo] and

T T 1
lim (1 (— i —>— — 0,
ﬁ&(c’g 7oty 3:1;—1)

we have h(x) < 0. Therefore, f'(z) < 0. O

Proposition 1.2.6. If a > 4 and 2a < 8 < 3a, then

140.74 7P T(B — a) < 1.0002.

15
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Proof. For a > 4, let
fo(z) =log(&(a, 2)* " T'(z — «)) (2a < x < 3a).
Then we have

fi(x) =v(x—a)—log(zr+a—1)— % — log (g CSC%) :

By Lemma 1.2.1, we obtain

fé($)§10g< roa ) i —log<zcscz>.

r+a—1 _x—i—a—l Qo o

Since logt < t and log(tcsct) > 0 for ¢t > 0, f/(z) < 0. Hence, by Proposition
1.2.5, we get

fa(x) < fa(2a) < f4(8)

Therefore,
1+ 0.74exp(fa(B)) <14 0.74exp(f4(8)) < 1.0002.
O

Now, we prove that if n > [a/4] and ¢(«, 5) > 0.51 then (—1)"E, g(—£,%) >
0 holds.
From the following relations,

fn(aaﬂ) = €n+2(a75 - 205) = én (n > 1)7

and

(o, B —2a) € W,
we obtain
(—1)" Eap-2a(—&") > 0.
To prove the theorem, we will find a condition which implies the following
equalities:

(1.9)  sgn Eap(=6") = sen Eopoa(=6") = (1) (n 2> |a/4]).

16
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For this, we use the identity (1.2). Since 0 < § — 2a < «, by Theorem 1.1.6,
we obtain for z > 0,

Eop-2a(—2%) = Sap-24(T) + wa p—24(2), |Wa, g2 ()] < 0.742~ B2
We put
L(éun) = £n_2aSa,B—2a(€n)
and
—2a —2a 1 —a 1
R(Sn) = gn wa,ﬁ—2a(§n) - Sn m + Sn m
Then
Ea,ﬁ(_gna) = L(fﬂ) + R(fn)
If we show
(1.10) [R(&)| < [L(E)] (n = [a/4]),

then sgn E, 3(—¢,“) is determined by L(&,).
On the other hand, by Theorem 1.1.6, we obtain

ey = 2 (<1>"exp (e (D)) + 3 ) |

k=2

where

Sk = exp (gn cos (@)) cos (gn sin (@) + (2k — 1)7r1 ;5) .

If we put

e (51))

then
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If n > |a/4] and k > 1, then

2
Dkt _ exp (—2§n sin <z> sin (—]WT))
ag o o
1

2k
= exp (—27T <n +—(8— 1)) sin (—W>)
«
< exp (—27‘(’ (g +1-— l) sin (Z—W))
4 o} «
« 1\ 4
<exp|(—2r({—-+1——)—
4 a/) «
g 1 n 1 1
exp|—871(-+———
= &P 4 o ao?
< exp(—2m)
Thus we have
la/4] 0o
ay — Zakzal—zak
k=2 k=2
1-2 -2
= eXp( 77) a; > 0.
1 — exp(—2m)
Hence, we obtain
(1.11) sen L(&) = (—1)"
and 1= 2exp(—2m) 1
— 2exp(—27 1-8 ( 7r)
L&) > 2- =& nCOS — ) .
L)) 2 2 T 1P e (g cos

By Proposition 1.2.4,

1 —2exp(—2m) 1

_ T
|L(&)] > 2 = exp(—27) agll ’Bexp (fl cos a) )
Now,
R < —a 1 —a 1 —2a
RE <67 sy — 6 Trmamg | + 6 b6
18
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By Proposition 1.2.3 and Theorem 1.1.6,
1 1
LB — a) I'(5 —2a)

—a 1 —B+a
<&, (m + 0.74&, + ) .

Since &, > & (ne€N)and a — 5 <0,

[B(&n)] < 67" ( —& + 0.74511/”“)

(6] < 6 (g 01

p—a)

1
< gﬁvm (140.74&, 77T (8 — a)) .

From Proposition 1.2.6, we obtain

R < 100026 " s

If («, 5) satisfies the inequality

1 <3, 1 — 2exp(—2v/2n)

1.000251_ar(6 —a) ~ 1— exp(—Q\/ﬁﬂ')

1
e e (o)
(6% (6%

ie.,
1
0.51 < =& Pexp (fl cos Z) (B —a),
o (6]

then (1.10) holds and (1.10) and (1.11) imply (1.9).
In the next section, we will prove (1.3) through (1.5).

1.3 Proof of Theorem 1.1.4 in the case n <
[av/4]

The following argument is almost identical with the one given in [29, pp.
294-305]. But there are only two differences that |«/3] is replaced by |o/4]
and the upper bound of 3/« is changed from 2 to 3. We include it here for
the readers convenience.

19
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Lemma 1.3.1 ([29, Lemma 3.4.5]). For any a,b > 0, a < b, we have the
imequality

logf‘(b[)) —logT'(a) <log <a + b) ‘
—a

If2 <a<b<2a, then

2(b — a)? a+b log['(b) — logI'(a)
_3(a+b)2+¢( 2 )< Era—

If 4 < a < 8, we have proved that (—1)"E,3(—¢§,"*) > 0 for all n >
|la/4] = 1 in Section 1.2. So, we restrict & > 8. We have divided the proof
into a sequence of propositions.

Proposition 1.3.2. Ifa > 8, 2a < < 3a, and 1 <n < |a/4], then
£n1® < Ry < V2R, < &,°.
Proof. We obtain the following inequalities by taking logarithm:
log <z csc (Z)) +log(a(n—1)+ 8 —1)
« a
1

<a(logf(ﬂ—l—na) —logI'(B+ (n —1)a)) (2<n<|a/d)])
and
1 1
% log2 + a(log I'(B+na) —logl'(B+ (n—1)a))

< log (Ecsc (E)) +log(an + - 1) (1<n<|a/d)).
a a

We simplify the above inequalities by using the estimate

0 < log (gcsc (g)) <% (> 2),

and Lemma 1.3.1 taking

a=p+an—1), b=75+nao

20
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We arrive at the proof of the inequalities
(1.12)

% +log(a(n — 1)+ —1)

<mmmmramrt Prelrmg))  esnstow

and
%logﬂ—i—log <ﬁ+a (n— %)) <log(an +p —1) (1<n<|a/d)).

By Lemma 1.2.1, we obtain the following inequalities:
3+ 1 N 1/«
a® 6((a/B)+n—(1/2))*  2((8/a) +n—(1/2)) = (1/a)
<

(8/a) +n— (1/2)
<10g<<5/a>+n—1—<1/a>) (2<n<la/d))

and

! (3/a) +n—(1/a)
st <o () (0Sns Lo/

If we put y = (8/a) +n — (1/2), then we obtain

2, t, Yo y 0 < o
13 G4 e T 2y — ey <! g(y—u/z) —<1/a>) @2<nsla/))
and

(1.14) % log 2 < log (y il (1/2;_ (1/@)) (1<n<|a/d]).

Since (y + (1/2) — (1/«))/y is decreasing on the ray 0 < y < +o00, it suffices
to prove inequality (1.14) for the maximal value of y, i.e.,

%log2<log (14—%) (n=la/4]).

From the fact that log(1 +¢) > 0.9¢ for 0 < ¢ < 0.2 and the inequality

log 2 log 2
ogﬁ<og

< 0.09
2 « 8 ’

21
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we obtain
(1/2) = (1/a) 0.9n((1/2) — (1/a))
o (1+ ) > e
(27/80)n 27 log2n
6 7 a0 7

Thus (1.14) is proved.
To prove (1.13), we use the estimate

log _th > yz_hh (0 < h<y/2).
Then we obtain
o y 14 (2/a) 1+ (2/a)
o (y— (1/2) - (1/a)) 2y— (1/2) = (1/a) ~ 2y— (1/a)

Now, it remains to prove the inequality

2 1 1+ (Yo
2 G S 2y - (1/a))

ie.,

2 1 1+(
(1.15) 20y L 1+ {/a)
al\a/ 6y  2—(1/(ay))
Since | . .
Y Q
Yo (9i2)y <222 > 5/2
a_a(4+2)_4+16 6 W25/
vehave 1 14 (1)
+ Q
B e E L S A > 8).
T VI T (> 8)

Thus (1.15) is valid, and the proof of (1.5) is complete.

In order to prove (1.3) and (1.4), we need the following results.

Proposition 1.3.3 ([29, Corollary 3.3.1]). For any 8> 0 and o > 0, E, g(z)
is positive on [—Ry,00).

22
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Lemma 1.3.4 ([29, Lemma 3.9.1]). For any o, > 0, andn € N, the following
inequality holds:

n

Ry - G%) '

Until the end of this section, we use the notation

1
P —
"B+ ka)’
so that
A, >
R, = Anl, Eop(—1) =) (—1)F Aga”.

k=0
Also, we omit the arguments o and [ in the notation of Ay.

Proposition 1.3.5. If a > 8 and 2o < § < 3a then E, g(—R3) < 0.

Proof. We have
(1.16) Eqap(—Ra) = Ao — ARy + Ay Ry® — AsRy® + ARy + ) (—=1)F ARy,
k=5

The last term on the right-hand side of (1.16) is negative; this follows from
the fact that the sequence {Akng}?zg) is decreasing, which is equivalent to the
inequality

(1.17) Ry <R, (k>6).

From Lemma 1.3.4, we know that { Ry} is increasing sequence. Thus (1.17) is
valid. Since Ry = A;/As, we have AsRy? — A1 Ry = 0. Therefore,

(118) Ea’ﬁ<_R2) < Ay — A3R23 + A4R24.
Inequality (1.18) can be rewritten in the form

A3 Ry P Eqp(—Ry) < =14 (Ag/A3) Ry 4 (A4 A3) Ry.

23
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If we put

B = (@) Ry ™3 = AgA; 3 A3 A5,
Az

then we obtain
A3 Ry P Eq5(—Ry) < =1+ B+ Ry /Ry
and
log B =logI'(5 + 3c) — 3log I'(B + 2a) + 3log I'(B + a) — log I'(B).

By the mean value theorem applied to the third difference of the function
logI'(2) at the point § with step «, for some £ € (5,8 + 3a), we obtain

log B = a’"(¢) = —20" ) (k+€)~".
k=0
This implies

log B < —2a° Z(k: + B+ 3a)7?

k=0

(1.19) < —2a3/ (t + B+ 3a)3dt
0 5 B
= —a*(f+3a)? =~ <a + 3) .
Since f/a < 3 and a > 8, we obtain

(1.20) B < exp (-S)

By Lemma 1.3.4, we have

el <ex 3 and R <ex 4
Ry ~ P\ 75 R, ~7P\73)
Therefore,

R, R R 44
1.21 By _ By Ry 4y
(1.21) Ri Ry Ry =P ( 15)

24
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From (1.20) and (1.21), we obtain

2 44
Ag—lR2—3Ea,5(—R2) < —1+exp (—5) + exp <_E> < 0,

i.e., Fqp(—Ry) < 0, which was required. ]

Proposition 1.3.6. If a > 8 and 2a < f < 3« then Ea”g(—ﬂRl) < 0 and
E,3(—V2Ry) > 0.

Proof. We have

(122)  Eos(—V2Ry) = A — AiV2Ry +245R% + 3 (~1) AL(V2R,)".
k=3

The last term on the right-hand side of (1.22) is negative; this follows from
the fact that the sequence {A \/§R1k}z°:3 is decreasing, which is equivalent to
the inequality

(1.23) V2R, < R, (k> 4).

From Lemma 1.3.4, we obtain

and (1.23) is valid.
Since the last term in the right hand side of (1.22) is negative, we obtain

(124) Ea”g(—\/iRl) < A() — Al\/§R1 +2A2R12 = AO — \/§A0 +2A2<A0/A1)2
Multiplying both sides of (1.24) by Ay~' = I'(3), we obtain

[(8)Eas(—V2R1) <1 —V2+42(Ry/Ry) <1 —v2+0.28 <0,
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i.e., Bos(—V2R;) < 0.
Second, we have

Eop(—V2Ry) = Ay = V2A1 Ry + 2A5Ry” — 2V243 Ry +Z 1)FAL(V2R,)".

k=4

The sequence { A (v/2R,)*}5°, is decreasing since the ratio of its elements with
numbers k£ and k£ + 1 is equal to \/ﬁRg/RkH < \/§R2/R4 and is less than 1 by
(1.21). Therefore, the sum

o0

Z )F Ay, \/_RQ)

k=4

is positive and we obtain the inequality

1 1 R
Ay Ry EE, 4(—V2Ry) > 1 — — — /252
542 2 8 V2 2) NG \/_R

In this case, by the restriction n < |a/4| — 1, @ > 12 holds. Thus by Lemma

1.3.4, we have
Ry < 12
— xp | —— | .
Ry — P\ 75
Therefore,
LR, (\/_R)>1———\/_ex LA
5 2 2 “Eap 2 \/— P 5 )
ie.,

Ea,ﬁ(_ﬁRQ) > O

Proposition 1.3.7. If a > 12, 2a < f < 3a, and 3 <n < |a/4], then

(=1)"E,3(—V2R,) >0
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Proof. We express (—1)" E, 3(—V2R,) as

(_1)71 Ea,ﬁ(_\/QRn) = Sn,O_An—l(\/§Rn)n_1+An(ﬁRn)n_An+l(\/§Rn)n+l+Sn,l7

where
n—2 00
Sno =Y (—DFTAVRR,)" and S,n = > (1) A(V2R,)E.
k=0 k=n+42

We prove that the sums S, o and S, ; are positive. Since they are alternating
and the terms with numbers £ = n=£2 are positive, it suffices to prove that the
sequence Ay (v2R,)" increases for 0 < k < n — 2 and decreases for k > n 4 2.
The ratio of the elements of this sequence with numbers k£ + 1 and k is equal
to

_ Ak+1(\/§Rn)k+1 _ \/5 Rn

1.25 d .
(1.25) * Ar(V2R,)k Ry

By Lemma 1.3.4, we obtain

(1.26) R}zl < exp (-%ﬁ) = exp (—(n/a) Jlr (3/a)) < exp(—2).

The equality (1.25) with (1.26) and the fact that Ry increases imply the esti-
mates

R,

n+1

dy>vV2>1 (0<k<n—2) and dp < V2 <V2e?<1 (k>n+2),

which prove the required assertion. Since S, ¢, Sp1 > 0, we have
(1.27)
(_1)n Ea,ﬁ(_\/iRn) > _An—l(\/ERn)n_l + An(\/iRn)n - An+1(\/§Rn)n+1-

By dividing both sides of (1.27) by A, (v/2R,)", we obtain

1 R 1
—1)"A, N (V2R,) T Eap(—V2R,) > 1——= V2" > 1= —/2e72 > 0.
(1A, (VAR Eop(—VER,) > 1= VA > 1
Thus Proposition 1.3.7 is completely proved. O]
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Proposition 1.3.8. Let
v, (7) = Apy 2™ — A, 2"
Then, the following inequalities hold:

(1.28) 0 < vy (Ry) < w(R) (1

<v<n-2 3<n<|a/4)),
(1.29) AR < v,_i(R)) (3<n

af4]).

We will prove the Proposition 1.3.8 in the next section.

v <
<

Proposition 1.3.9. If a > 12, 2a < < 3a, and 3 <n < |a/4] then
(=1)"'Eyp5(—R,) > 0.
Proof. We have

(1.30) E,p(—Rn) =

n—2 00
S (=DFARS + ()" A R T = AR + D (—1)FAR,E
k=0 k=n+1

By grouping in (1.30) terms with numbers k = n—v —1 and k = n+ v
(1 <v <n-—1), and using the equality

Anfann_l - Aann = Aann_l (h - Rn) = 07

A,
we obtain
n—1 e}
Eap(=Ry) = (1) > (1) o, (Ra) + Y (=1 ALR,",
v=1 k=2n
where
UV(‘T") - An+uxn+y An—y—lxn_y_l
Then,
n—1 %s)
(1'31) (_1)n_1Ea,6(_Rn) = (_1)V_1UV(Rn) +( 1)n_1 Z( 1)kAkRnk
v=1 k=2n
28
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By using the Proposition 1.3.8, we can prove that the sums in the right hand
side of (1.31) are positive. Indeed, by (1.28), the absolute value of terms in
the alternating sum

n—1
Z(_l)yilUV(Rn)
v=1
decrease and the first them is positive. Therefore,
n—1
(1) (R) >0 (3<n< |a/4)).
v=1
This immediately implies the required assertion for odd n since
D (—DFAR,S
k=2n

is also an alternating series which has terms with decreasing absolute value
and the first term is positive. If n is even, then

[\

3

(=10, (Ry) >0 and  (=1)""" Y (=1)FARF >0
1 k=2n+1

N
Il

by the same reasoning as above. Furthermore, by (1.29)
<_1)n_2vn—1(Rn) + (_1)3n+1A2an2n — Un—l(Rn) - A2an2n > O,
and we also obtain that (1.31) is positive. O

Hence, (1.3) and (1.4) are proved by Propositions 1.3.3-1.3.9. Consequently,
(1.5) is proved by Proposition 1.3.2 and the proof of Theorem 1.1.4 is com-
pleted.

1.3.1 Proof of Proposition 1.3.8

In this section, we will prove Proposition 1.3.8. The proof will be divided

into three propositions.
We let
v, (7) = Apy ™™ — A, 2
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Proposition 1.3.10. If 1 <v <n—1 then v,(R,) > 0.

Proof. From the identities

v

An,,/, n+v
(1.32) i = [ Ry =R.[[(RaeiRuss).
n—+v p=n—v

j=1

we obtain

An—l/—l < Rn2u+1

0<v,(R,) < ™

= [[(RuejRus) B>
j=1

<— logR,.; —2log R, + log R,,_;) < O;
Z( g +7 g g 7

J=1

the last inequality follows from the concavity of the sequence {log R,} (the
concavity follows from 9" < 0). O

We next show that
(1.33) Oy11(Rn) < 0, (Rn),
which is equivalent to the inequality
Ay RV — Ay oR,TVTE < Ay R — Ay RV

By applying (1.32), we can rewrite (1.33) in the form

v

R\ _ R,
(1.34) (1 - 1) [[(RusiRaRoj) < 1—

Rn j=1 n+v—+1

For notational simplicity, we put

Rn v—1 Rn
o -2
Qppy = s bn,u = 5 and Up,; = Rn+jRn Rnf]ﬁ
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so that (1.34) takes the form

(1—an,) ﬁ Upj <1 — by,
j=1
Dividing by 1 — b,,, and using the identity
(1—a)(1—=b)"t=1+b(1-0b)""1-a/b),
we obtain

(1.35) (1 + b (1 = )™ (1= tnir) [ [ ums < 1,

Jj=1

which is equivalent to (1.34). Note that by the concavity of the sequence

{log R,,}, we have u,; < 1. To prove (1.33), we need the inequality

(1.36) (L4 b (1 = byp) Duna < 1,

which is even stronger than (1.35). To prove this, we introduce some lemmas.

Lemma 1.3.11. Let h > 0, x € R, and I = [x — 2h,x + 2h].
g(I) C R, g € CW(I), and g¥ be positive and decrease on I. Then the

following inequality holds:
3g(x +2h) — 10g(x + h) + 12g(x)—6g(x — h) + g(x — 2h)

7
< 2138 (z) + h* (19(4)

Proof. See [29, p.299]
Lemma 1.3.12. Ifa > 12, 2a < f < 3a, and m > 5, then
Um+1,13 < Um,1-
Proof. We have
Uppir® (Rm+2Rm>3 R,
R

2
U, Rm+1 m—lRm—H

(1.37)
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where Ay = 1/T'(8 + ka)). Taking the logarithm of both sides of (1.37), we
obtain

log <UTZ+13) = 3logl'(B + (m + 2)a) — 10log I'(8 + (m + 1))

+121logI'(B + ma) — 6log I'(5 + (m — 1)a) + log I'(5 + (m — 2)a).
We take g(t) = logI'(t), x = f + ma, and h = «. Since ¢'(t) = (),

gV =@t =6 (k+1)"*

k=0

is positive and decrease. Thus, by Lemma 1.3.11, we obtain

Um+13 3,0 A (7 (3) 2 (3)
log( ” ) <2a°Y"(x) + « (—w (x)—l—gw (:U—2a)>.

m 4
Since
> =2 |
"x) = -2 —dt = —— 0
VO =Y < wi=m @0
and .
¢(3)(q;)zz 0 <6/OO —dt = 2 (x> 1)
prd (k+ x)3 oo t4 (x —1)3 ’
we obtain

3 3
um+l o Oé_ 4 7 4
log( U, ) = 2x2+a (2(x—1)3+3(x—204—1)3)'

To complete the proof, we must show that the last expression is negative, i.e.,

7 4 2
1.38 .
(1.38) 2(x —1)3 N 3z —2a—1)3 < ot

(1.38) can be rewritten in the form

o 1) G5) ) ) <2
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The function ¢/(t — a) (a > 0) is decreasing on ¢ > a, and by the condition
m > 5, the inequality =  + ma > (m + 2)a > 7o > 84 holds. Hence, the
following estimates hold:

1 z 1 1 83
r—1N=2_Z>7_ - _2
JED=0 02T =15
1 1 59
T2 -1 >T7-2_ — =2
GE—2a-1) 27 12 12’

x <84

r—1 83’

and x To 7 7 84

= < < —.
T-2a-1 5a—1 5-(/a) 5-(1/12) ~ 59
This implies that the left-hand side of (1.39) does not exceed

7 /12 [/84\° N 4 (12 [84\? _y
2 \ 83 83 3 \ 99 59 ‘
The lemma is proved. O

Proposition 1.3.13. Let o« > 12 and 2a < < 3a. If 3 < n < |a/4] and
1 <v<n-—2, the inequality (1.85) holds, i.e.,

(1 + b (1 = )~ (1 = thngr) [ [ mg < 1.

j=1

Proof. The proof will be divided into three cases.
Case 1. 3<n<12 and 1<v<n-—2.
Case 2. 13<n < |a/4| and (n/2)—1<v<n-2.
Case 3. 13<n < |a/4] and 1 <v < (n/2)— 1.

In the Cases 1 and 2, we will prove (1.36) instead of (1.35).

33
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We first consider Case 1. Since
Up,1 = RnJran_QRnfl = An+1_1An3An71_3An727
we have
log u,1 = log I'(B+(n+1)a)—3log I'(B+na)+3log I'(+(n—1)a)—log I'(+(n—2)a).
Then, we obtain that for some £ € ((n — 2)a, (n + 1)),
log ;= a’(logT(B+ 2)) P .o = ®P"(B+ &) = =227 Y “(k+B+&) 7"
k=0
This implies the estimate

(1.40)

log u, 1 < —2a® Z(kz + B+ (n+1)a)™?
k=0

00 ﬂ -2
<—2a3/ (t+ﬁ+(n—|—1)a)3dt:—a(a—|—n—|—1> (n € N).
0

Since f/a < 3 and a > 12, we obtain

3 1
(1.41) Up1 < €Xp <—a> < exp (—%> (n <12).

By Lemma 1.3.4, for any n, v € N, we have

y _ R _ R Ry Run _ (_ 1 - 1 )
" Rn+u+1 o Rn+2 Rn+1 Rn+2 - P (n/a) + (3/0[) (n/a) + (4/0[) .

Since n/a < 1/4 and a > 12, we have

( 26) 1
by <exp | ——= | < ==.

7 26

This implies

(142)  bpy(1—buy) ' < 2—15 (n<la/d], a>12, 1<v<n—2).
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From (1.41) and (1.42), we conclude that if 3 <n < 12, then the left-hand
side of (1.36) does not exceed

26 1 <1
25 “P\ 725 ) =
This finishes the proof in Case 1.
In Case 2, by Lemma 1.3.4. we obtain

v

. RnJr' X _ - ; X —Q - vil
b”?’/—H<Rn+]'il)<ep< a;nnLjJr(ﬁ/a)) Sep< ) ”+V+(B/O‘))

J=0

v+1 n Q
e (o g ) sew (o g ) sew(-5).

Since z/(1—z) <2z (0 < x < (1/2)) and « < exp(z/5) (z > 52), the following
estimate hold:

oy oy 2
(1.43) b (1 — by) <2€Xp< 5><a.

Now, from (1.40) we obtain

ot = P (‘ﬁ) - (‘a<<n/a> i <4/a>>2) |

Recall that n/a < 1/4 and « > 52; then ((n/a)+ (4/a))* < 289/52 and hence
Up1 < exp(—2/a). Therefore,

2 2
(14 bnp(1 = bnp) i < (1 + _> exp <__) <1
«Q o

This completes the proof in Case 2.
Finally, we consider Case 3. From the inequality (1.42), we obtain the
following inequality

1 174
(1.44) (1 +5(1- uwﬂ)) [T <1
j=1
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We will prove (1.44) by using the estimate (See [29, p.304])
1
(1.45) Uy’ < Up i (1<v< §n —1;n > 13).
(Note that Lemma 1.3.12 is the key to prove inequality (1.45).) It allows one

to replace inequalities (1.44) by stronger inequalities

1 6
(1.46) <1 + 2—5(1 — Upy )) Uy < 1.

It is enough to prove (1.46). Consider the function

£(t) = (1+%(1—t6)>t (0<t<1)

Then f(t) is increasing on [0, 1], and since f(1) = 1, we see that f(t) < 1 for
all t € (0,1). From this and the fact w,, < 1, we obtain (1.46). Thus we
obtain the desired result in the last case too. O

Proposition 1.3.14. Let a > 12 and 2a < < 3a. If3 <n < |a/4], then
AQanzn < Unfl(Rn»
Proof. By the definition of v, (x), we have

AQan2n < AQn—an2n_1 - AO-

R, "+ R, <1,
<A2n—1 Agpa

which can be rewritten in the following form:

And we obtain

n—1 R
(1.47) Huw—i—R—% < 1.
7j=1
Representing u,, ; by formula
j—1
Up,; = Un,lj H(un—k,lun+k,1)]_k7
k=1
36
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omitting factors less than 1, and using the fact that { Ry} is increasing, we
strengthen inequality (1.47):

n(n—1) Rn
_l’_

1.48 ni 2 < 1.
( ) " ! Rn+1

To obtain an upper estimate of the left-hand side of (1.48) (we denote it by
Uy,), we use inequalities (1.26) and (1.40). We have

an(n — 1) an(n — 1)
—2 - ) Bl
U, < exp(—2)+exp ( 2(B/a) Tt 1)2) < exp(—2)+exp ( R
Since ( D 6
n(n —
mn=o) 2 >3
a1 (1=
and o > 12 we have
36
U, < exp(—2) + exp (——) <1,
49
which was required. O

Therefore, Propositions 1.3.10-1.3.14 complete the proof of Proposition
1.3.8.

1.4 Proof of Theorem 1.1.5

We first prove that a +— ¢(a,3a) is increasing on [4,00). Let f(a) =
¢(a, 3a). Then the logarithmic derivative of f(a) can be expressed as follows:

f'(@)
fla)

=2fi(a) + 2f2(a) + f3(@) + 2fa(c)

where - -
fi(a) = ——cot — + 1,
«a «a

fa(a) = —log(dar — 1) + 1 ! + ¥ (2a) + log 2,

a—1
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2
fg(Oé):—ﬂ-—SCSC z+4—csc z—1810g7r+10g2—238
a a
and
1
fala) = loga——+logsm—+—2(30t——01log7r—1510g2+019
a

In order to prove that f/ > 0, we will show that f;, fo, f3 and f; > 0 for a > 4.
Since tant > t for all t € (0,7/4], we have fi(«) > 0. And by Lemma
1.2.1, we obtain

1
fa(a) > —log (2 — —) +log2 > 0.
200

In the case of f3 and fy, we put m/a =t. Then we obtain

T t\? t T
—)=(— 4——1]—1381 —log2 —2.38 0<t<—).
Js (t) (sint) ( 71') 0BT 08 (0<t= 4)

Since t/(sint) is increasing on (0, 7/4] and approaches to 1 as t — 0,
15
13 (%) > 7 — L8log + log 2 — 2.38 > 0.002

And we also have

t t?
fa (%) — _logt+logsint——+— cot t+0.9logm—1.510g240.19 (0 <t < %).
T T

If we write fy(m/t) = g(t), we obtain

9

0= (o= )+ T () =

cott — — —tcott—— o - —.
m \sint s

Since tcott < 1 and t/(sint) is increasing on (0, 7 /4], we have ¢’(¢) < 0. Thus
g(t) > g(m/4) > 0.02.

Therefore, f'(a)) > 0, which completes the first part of proof.

We next show that for each fixed @ > 4 the function 5 — ¢(a, () is
decreasing on (2«, 3a]. For each fixed a > 4, let

ho(z) = ¢(a, ) (20 <z < 3a).
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Then we have

!/
Zzgg = ka(2) + c(o)
where
ha(2) = —2— _log(z+a—1) + ¢z —0)
r+a—1
and a . w T .
c(a) = log (; sin a) + o cot o L.

By Lemma 1.2.1, we obtain
1 n 200 — 1 ) 1 200 — 1
o) - .
r+a—1 z4+a-—1 & r+a—1

Since t + log(1 — t) is decreasing on (0,1) and

ko(x) <

200 — 1 200 — 1 20 — 1
<

0< < <
4o — 1 r+a—1"7"3a—-1

Y

we have

1 2a-1 2 — 1
kolz) < + 2 +log(1— a )

3a—1 4o -1 4o — 1
1 1 8

< — 4+ =-+1 — —0.03.

< 11+2+og<15>< 0.03

Now, we put a = 7 /t, so that we obtain

int
c(a)-c(%)-log(%)%—tcott—l (O<t§%).

Since (sint)/t is decreasing on (0,7/4] and approaches the limit 1 as t — 0,
we have log((sint)/t) < 0. Thus

c(%) <tcott—1<0.

Therefore, h!, (x) < 0 and the second part of proof is completed.
Lastly, we can compute ¢(4.07,12.21) > 0.512, which completes the proof.
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Chapter 2

Poélya-Wiman properties of
differential operators

Let ¢(x) = Y a,2™ be a formal power series with real coefficients, and let
D denote differentiation. In this chapter, we will show that “for every real
polynomial f there is a positive integer mg such that ¢(D)™f has only real
zeros whenever m > myg” if and only if “ag = 0 or 2apas —a? < 07, and that if
¢ does not represent a Laguerre-Pélya function, then there is a Laguerre-Pélya
function f of genus 0 such that for every positive integer m, ¢(D)™ f represents
a real entire function having infinitely many nonreal zeros.

2.1 Poélya-Wiman property

A real entire function is an entire function which takes real values on the
real axis. If f is a real entire function, we denote the number of nonreal zeros
(counting multiplicities) of f by Zo(f). (If f is identically equal to 0, we set
Zo(f) = 0.) A real entire function f is said to be of genus 1* if it can be
expressed in the form

g2

flz) = e g(x),
where 7 > 0 and g is a real entire function of genus at most 1. If f is a real
entire function of genus 1* and Zo(f) = 0, then f is called a Laguerre-Pdlya
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function and we write f € LP. We denote by LP* the class of real entire
functions f of genus 1* such that Zo(f) < oo. It is well known that f € LP if
and only if there is a sequence (f,) of real polynomials such that Zo(f,) =0
for all n and f,, — f uniformly on compact sets in the complex plane. (See
Chapter 8 of [19] and [20, 23, 27].) From this and an elementary argument
based on Rolle’s theorem, it follows that the classes LP and LP* are closed
under differentiation, and that Zo(f) > Zo(f') for all f € LP*. The Pdlya-
Wiman theorem states that for every f € LP* there is a positive integer my
such that f(™ € LP for all m > my [6, 7, 14, 17, 26]. On the other hand, it
follows from recent results of W. Bergweiler, A. Eremenko and J. Langley that
if f is a real entire function, Zo(f) < oo and f ¢ LP*, then Zo(f™) — oo
as m — oo [1, 18].
Let ¢ be a formal power series given by

o(z) = Z apx”.
n=0

For convenience we express the n-th coefficient a, of ¢ as ¢(™(0)/n! even when
the radius of convergence is equal to 0. If f is an entire function and the series

i a, f(n)
n=0

converges uniformly on compact sets in the complex plane, so that it represents
an entire function, we write f € dom ¢(D) and denote the entire function by
¢(D)f. For m > 2 we denote by dom ¢(D)™ the class of entire functions f
such that f,¢(D)f,...,6(D)""'f € dom¢(D). It is obvious that if f is a
polynomial, then f € dom ¢(D)™ for all m. For more general restrictions on
the growth of ¢ and f under which f € dom ¢(D)™ for all m, see [3, 5].

The following version of the Pdlya-Wiman theorem for the operator ¢(D)
was established by T. Craven and G. Csordas.

Theorem 2.1.1 ([5, Theorem 2.4)). Suppose that ¢ is a formal power series
with real coefficients, ¢'(0) = 0 and ¢"(0)p(0) < 0. Then for every real poly-
nomial f there is a positive integer mo such that all the zeros of ¢(D)™f are
real and stmple whenever m > my.
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Remark. The assumption implies that ¢(0) # 0. On the other hand, if ¢(0) =
0 and f is a real polynomial, then it is trivial to see that Zo(o(D)™f) — 0 as
m — oo. (Recall that we have set Zo(f) = 0 if f is identically equal to 0.)

We also have the following version, which is a consequence of the results in
Section 3 of [5].

Theorem 2.1.2. Suppose that ¢ € LP (¢ represents a Laguerre-Pdélya func-
tion), f € LP*, and that f is of order less than 2. Then f € dom¢(D)™,
&(D)"f € LP* and Zo(d(D)™f) > Zc(dp(D)™ L f) for all m. Furthermore,
if ¢ is not of the form ¢(x) = ce’ with ¢ # 0, then Zc(d(D)™f) — 0 as

m — Q.

Remarks. (1) If ¢(z) = ce?”, then

B(D)f(r) = 3 D) = ef(x +)

for every entire function f. Hence Za(p(D)™f) = Zo(f) for all m whenever
¢,7 € R, ¢ # 0and f is a real entire function. We also remark that ¢(x) = ce?®
with ¢ # 0 if and only if ¢(0) # 0 and ¢ (0)$(0)"~! — ¢/(0)" = 0 for all n.

(2) From [5, Lemma 3.2], [15, Theorem 2.3] and the arguments given in [3],
it follows that the restriction “f is of order less than 2”7 can be weakened to
“¢ or f is of genus at most 17. See also [5, Theorem 3.3].

(3) In the case where ¢ is of genus 2, that is, ¢ is of the form ¢(z) =
e_WQw(x), where v > 0 and 1) € LP is of genus at most 1, we have the following
stronger result: If f is a real entire function of genus at most 1, and if the
imaginary parts of the zeros of f are uniformly bounded, then f € dom ¢(D)™
and Zc(o(D)"f) > Zo(p(D)™ 1 f) for all m, and Zo(p(D)™f) — 0 as m —
00, even when f has infinitely many nonreal zeros. See [3], [5, Lemma3.2], [9,
Theorems 9a, 13 and 14] and [15, Theorem 2.3].

In this chapter, we complement Theorem 2.1.1 and 2.1.2 above. Let ¢ be
a formal power series with real coefficients and f be a real entire function. If
f € dom¢(D)™ for all m and Za(d(D)™f) — 0 as m — oo, then we will say
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that ¢ (or the corresponding operator ¢(D)) has the Pdlya- Wiman property
with respect to f. For instance, if f is a real entire function and Z¢o(f) < oo,
then the operator D (= d/dx) has the Pélya-Wiman property with respect to
f if and only if f € LP™.

2.2 Poéblya-Wiman property with respect to real
polynomials

Theorem 2.1.1 gives a sufficient condition for ¢ to have the Pélya-Wiman
property with respect to arbitrary real polynomials. The following two theo-
rems imply that this is the case if and only if ¢(0) = 0 or ¢”(0)¢(0)—¢'(0)? < 0.

Theorem 2.2.1. Suppose that ¢ is a formal power series with real coefficients,
#(0) # 0 and ¢"(0)p(0) — ¢'(0)? < 0. Then for every real polynomial f there
is a positive integer mq such that all the zeros of (D)™ f are real and simple
whenever m > my.

Theorem 2.2.2. Suppose that ¢ is a formal power series with real coefficients,
#(0) # 0, ¢"(0)d(0) — ¢'(0)? > 0, ¢ is not of the form ¢(x) = ce’® with ¢ # 0,

f s a real polynomial, and that

deg f > min{n > 2: ¢ (0)$(0)" " — ¢/(0)" # 0}.
Then there is a positive integer mg such that Zc(p(D)™ f) > 0 for all m > my.

If @ € LP is not of the form ¢(z) = ce? with ¢ # 0, then it is easy to
see that ¢(0) = 0 or ¢"(0)p(0) — ¢'(0)* < 0 (for a proof, see [4, 13]); hence
Theorem 2.1.2 as well as Theorem 2.2.1 implies that ¢ has the Pélya-Wiman
property with respect to arbitrary real polynomials.

Theorems 2.2.1 and 2.2.2 are almost immediate consequences of Theorems
2.2.3 and 2.2.4 below, which are proved by refining the arguments of Craven
and Csordas given in Section 2 of [5].
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For notational clarity, we denote the monic monomial of degree d by M¢,
that is, M<4(x) = x%. With this notation, we have

L/p) d,ﬁk
(exp (BD7) M%) ( Z o 2 (BeC dp=1,2,...).

Theorem 2.2.3. Suppose that ¢ is a formal power series with complex coeffi-
cients, $(0) = 1, ¢ is not of the form ¢(z) = e7*,

p=min{n:n > 2 and 67)(0) £ F(0)"},
= ¢'(0) and p = (¢(p)(0) — ¢’(0)p) /p!. Suppose also that f is a monic
complex polynomial of degree d, and fi, fo,... are given by
(2.1) fnlz) = m= Y (6(D)™ f) (m"*x — may).
Then fn — exp (8DP) M uniformly on compact sets in the complex plane.

Theorem 2.2.4. Suppose that d and p are positive integers, p > 2, ¢ = |d/p]
andr =d— pq.

(1) If g=0 (d < p), then exp (—DP) M?% = M¢.
(2) If ¢ > 1, then exp (—DP) M? has exactly q distinct positive zeros; and if
we denote them by pi1, ..., pq, then

q

(exp (—D?) M?) (z) = xHH eHrifp ),

7=1k=0

Remark. The d-th Hermite polynomial Hy is given by
ld/2] _1)kd!

Z k' — 2k )d 2k'

Thus we have (exp (—D?) M?) () = Hy(x/2) for all d, and Theorem 2.2.4
implies the well known fact that all the zeros of the Hermite polynomials are
real and simple.
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Corollary 2.2.5. If 8 > 0, then all the zeros of exp (—3D?*) M? are real and
simple, and exp (8D?) M? has exactly 2|d/2] distinct purely imaginary zeros;
and if B # 0 and 3 < p < d, then exp (3DP) M? has nonreal zeros.

This corollary is an immediate consequence of Theorem 2.2.4 and the fol-
lowing relations which are trivially proved: If # > 0 and p? = —1, then

(exp (—5DP) Md) () = B4P (exp (—DP) Md) (%)

and

(exp (3D7) M) () = (p8/7)" (exp (— D7) M) (pé/p) |

Proof of Theorem 2.2.1. Let f be a (nonconstant) real polynomial. Since mul-
tiplication by a nonzero constant does not change the zeros of a polynomial,
we may assume that f is monic and ¢(0) = 1. Let d = deg f, a = ¢'(0),

B = (¢"(0) — ¢'(0)%) /2, and fi, fo,... be given by
(2:2) Fm(x) =m™2 (@(D)" f) (m'*x — ma).

Then 3 < 0, and Theorem 2.2.3 implies that f,, — exp (3D?) M? uniformly on
compact sets in the complex plane. We have deg f,, = d = deg(exp (8D?) M?)
for all m; and since S < 0, the corollary to Theorem 2.2.4 implies that all
the zeros of exp (8D?) M? are real and simple. Hence the intermediate value
theorem implies that there is a positive integer mg such that all the zeros of
fm are real and simple whenever m > my, and (2.2) shows that the same holds

for (D)™ f. [

Proof of Theorem 2.2.2. Again, we may assume that f is monic and ¢(0) = 1.
Let d = deg f, and let p, a, 5 and the polynomials fi, f5,... be as in Theorem
2.2.3. We have 8 # 0; and in the case where p = 2 we must have 5 > 0, because
we are assuming that ¢”(0) —¢/(0)? > 0. Hence the corollary to Theorem 2.2.4
implies that Z¢ (exp (BDP) Md) > 0. By Theorem 2.2.3, f,, — exp (3DP) M*
uniformly on compact sets in the complex plane. Hence Rouche’s theorem
implies that there is a positive integer mg such that Zo(f,,) > 0 whenever
m > my, and (2.1) shows that the same holds for ¢(D)™ f. O
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2.2.1 Proof of Theorem 2.2.3

In order to prove Theorem 2.2.3, we need some preliminaries. Let C|x]
denote the (complex) vector space of complex polynomials, let C[x]? denote the
(d+ 1)-dimensional subspace of C|x] whose members are complex polynomials
of degree < d, and let || ||~ denote the norm on C[z| defined by

[ £lloe = max{|f*(0)/K!| : 0 < k < deg f}.

Note that if (f,,) is a sequence of polynomials in C[x]?, then || f,|/ee — O if
and only if f,, — 0 uniformly on compact sets in the complex plane. When
¢ is a formal power series (with complex coefficients) and d is a nonnegative
integer, we denote the operator norm of ¢(D)|ce With respect to || [|o by
|(D)ll4, that is,

l6(D)lla = sup{[|(D)fll : f € Clz]” and [ fllo < 1}.

If we denote the d-th partial sum of ¢ by ¢|4, that is,

d_ Hk)
oluta) = 32 W

k
k=0

then the restriction of ¢(D) to C[x]? is completely determined by ¢|;. Hence
there are positive constants Ay and B, such that

Adl|¢(D)la < |¢lalloo < Ball6(D)lla

for all ¢.
For ¢ # 0 we define the dilation operator A. by

(Acf) (x) = f(ex).

It is then easy to see that

(2.3) Ac(¢(D)f) = d(cT'D)(Acf) (e #0),

whenever ¢ is a formal power series and f € dom ¢(D).
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Proof of Theorem 2.2.3. Let r = max{p,d}. If ¢ is a formal power series and
gi~>|r = ¢|,, then ¢ satisfies the identical assumptions in the theorem that are
satisfied by ¢, and we have QNS(D)mf = ¢(D)™f for all m. In other words,
the theorem is about the first r + 1 coefficients of ¢ only, and the coefficients
#™(0)/n!, n > r, are irrelevant to the theorem. For this reason, we may
assume that ¢ (0) = 0 for all n > 7. Then there is a neighborhood U of 0 in
the complex plane and there is an analytic function ¢ in U such that

log ¢(z) = ax + Ba? + 2P p(z) (€ U).
We substitute m~Pz for 2 and multiply both sides by m to obtain
mlog ¢ (m™Pz) = m'"raz + BaP 4+ m~VPar iy (m~rz) (z € mPU).
If we put
exp (—ml_%a:c) 1) (m’l/px)m —exp (Ba?) = Ry (),
then R,, is an entire function and we have
R, (x) = exp (Ba?) (exp (m P2ty (m~Pz)) — 1) (xz € m'PU).
It is then clear that

sup |Rn(x)| =0 (m’l/p) (m — o0)
lz|<R

for every R > 0, and this implies that

(2.4)

exp (—ml_%aD) ) (m_l/pD)m —exp (BDP)

=0 (m_l/p)
d
as m — oo. Since f is monic and of degree d, it follows that
(2.5) Hm_d/pAml/pf - MdHOO =0 (m_l/p) (m — 00).

It is easy to see that (2.1) is equivalent to
fro =~ exp (= aD) A (6(D)");
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and (2.3) implies that the right hand side is equal to
exp (—ml_%aD> o (m’l/pD)m (m’d/pAml/pf) .
Therefore we have
| fm — exp (BD?) MdHoo:O(m’l/p) (m — 00),

by (2.4), (2.5) and the triangle inequality. This proves the theorem. O

2.2.2 Proof of Theorem 2.2.4

As we shall see soon, Theorem 2.2.4 is a consequence of a known result
on Jensen polynomials and the fact that all the zeros of the classical Mittag-
Leffler functions E, 1, p = 1,2, ..., are negative and simple. The following is a
simplified version of [5, Proposition 4.1].

Proposition 2.2.6. Suppose that ¢ € LP, q is a positive integer and f is

given by
)= (7)o 00"

k=0
Suppose also that ¢(0) # 0 and ¢ is not of the form ¢(z) = p(x)e™*, where p
is a polynomial and o # 0. Then all the zeros of f are real and simple.

Remark. The polynomial f is called the ¢g-th Jensen polynomial associated
with ¢.

For positive integers p and g, let .Ji, 4 denote the g-th Jensen polynomial
associated with the classical Mittag-Lefler function E, ;:

q 4q !l‘k
J(p,q)@) = Z (Z) Ez(zk)(o)mk = Z m

k=0 k=0

Proposition 2.2.7. The zeros of Jy,q) are all negatwe and simple for p =
2,3,... and forq=1,2,....
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Proof. Suppose that p > 2 and ¢ > 1. Then E,; is of order < 1/2, hence it is
not of the form E,;(x) = p(x)e™® where p is a polynomial and « # 0; and we
have E,1(0) =1 # 0. Since E,; € LP, Proposition 2.2.6 implies that all the
zeros of J(, ) are real and simple. Finally, they are all negative, because the
coefficients of J, o) are all positive. O

Proof of Theorem 2.2.4. We have d =pq+1r, 0 <r <p—1 and
(exp (—DP) M) ( Z DY pan)
P K(d—ph)T

The right hand side is of the form x” f(aP), where f is a monic polynomial of
degree ¢ and f(0) = (—1)%d!/(¢!r!) # 0. From this, we see that (1) is trivial,
exp (—DP) M¢ has exactly r zeros at the origin, and that the second assertion
of (2) follows from the first one. If a # 0 is a zero of exp (—DP) M?, then so
are e2m/Pq k= 0,1,...,p — 1, and they are distinct. Since exp (—DP) M?
has exactly d = pq + r zeros in the whole plane and has exactly r zeros at
the origin, it follows that exp (—DP) M? has at most ¢ distinct positive zeros.
Hence it is enough to show that if ¢ > 1, then exp (—DP) M< has (at least) ¢
distinct positive zeros.

Suppose that ¢ > 1. We first consider the case where d is a multiple of p.
In this case, we have d = pg, r = 0 and

1)*(pq -
(exp (=D7) M) ( Zk'p k;)' e

Since p > 2, Proposition 2.2.7 implies that all the zeros of Ji;, 4 are negative
and simple. Hence exp (—DP) M has exactly ¢ (=deg J,,q) distinct positive
ZETOS.
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Finally, the result for the remaining case follows from an inductive ar-
gument based on Rolle’s theorem, because (exp (—DP)MPI)(0) = 0 for
1 S T S p— 17

1
exp (—DP) M? = ar1? (exp (—D7) M) |

and exp (—DP) MPa+Y) has exactly ¢ + 1 distinct positive zeros. ]

2.2.3 Laguerre-Pdlya class and Pdélya-Wiman property
with respect to real polynomials

In this section, we establish the following proposition.

Proposition 2.2.8. Let ¢ be a formal power series with real coefficients. Then
the following hold:

(1) If o € LP, then Zc(d(D)f) < Zo(f) for every f € R[zx].

(2) If ¢ ¢ LP, then for every positive integer m there is an f € R[x] such
that Zeo(p(D)™f) = 0 but Zo(p(D)™ f) > 0.

Let ¢ be a formal power series with real coefficients. For n = 1,2,... we
define the polynomial J4 ) by

Jom) () = i (Z) o™ (0)z*.

k=0

Thus Jig,) may be called the n-th Jensen polynomial associated with the
formal power series ¢. From

CCIGIEESS ““Zf . (<n Tk:)!xnk) -3 (Z) B0

k=0 k=0

we see that Zo(Jign)) = Zeo(o(D)M™) for all n.
The following characterization of the class LP was established by Pdlya
and Schur [27].

20



CHAPTER 2. POLYA-WIMAN PROPERTIES OF DIFFERENTIAL
OPERATORS

Theorem 2.2.9. We have ¢ € LP if and only if Zc(Jgny) =0 for all n.

Corollary 2.2.10. We have ¢ € LP if and only if Zc(p(D)M™) = 0 for all
n.

Remark. Since Zo(Df) < Zao(f) for every f € R[z], and since Dp(D)M™ =
nd(D)M™ 1, we see that if ¢ ¢ LP, then there is a positive integer ng such
that Zo(p(D)M™) > 0 for all n > ny.

The following two results are easily proved. (See, for instance, Problem 62
in Part V of [28] and Section 3 of [27], respectively.)

The Hermite-Poulain Theorem. If ¢ is a real polynomial whose zeros are
all real and f is a real polynomial, then Zco(p(D)f) < Za(f).

Proposition 2.2.11. For each fixed k we have
) ()
Tim (A1) ™ (0) = 6(0).
As a consequence, we have

lim [ Jig (0~ D)f = ¢(D)f|, =0

n—o0

for every polynomial f.

If p(x) = > oo, arz® and ag # 0, then the reciprocal ¢! of ¢ is given as
¢~ (z) = Yoo, Bra®, where the coefficients By, 81, B2, ... are defined succes-
sively by

Bo=ay' and Bn:—aalzakﬁn,k (n=1,2,...).
k=1
In this case, we have

apfp =1 and Zakﬁn_kzo (n=1,2,...);
k=0

hence ¢(D) (¢ (D) f) = ¢ (D) (¢(D)f) = f for every polynomial f.
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Proof of Proposition 2.2.8. To prove (1), suppose that ¢ € LP and f € R|x].
We may assume that ¢(D)f is not identically equal to 0. Then Proposition
2.2.11 implies that

Zo(¢(D) f) < liminf Zo(Jig,(n~' D) f).

n—oo

Since ¢ € LP, Theorem 2.2.9 implies that J,) € R[z]y for all n, hence we
have

Zo(Jm(n™'D)f) < Ze(f)  (n=1,2,...),

by the Hermite-Poulain theorem. This proves (1).

To prove (2), suppose that ¢ ¢ LP. Then there is a positive integer d such
that Zo(¢(D)M?) > 0, by the Corollary 2.2.10. In particular, ¢*)(0) # 0 for
some k, and hence there is a nonnegative integer r and there is a formal power
series ¢ such that ¢(z) = z"¢(x) and ¥(0) # 0.

Let m be a positive integer. If we put f = ¢~1(D)"M¥*™" then f is a
real polynomial of degree d + mr and we have

G(D)"f = D™ (D)™~ (D) M = TMd,
hence Za(¢p(D)™f) = 0, but
d !
s(oyet = L )y
has a nonreal zero. This proves (2). O

We have introduced the reciprocal of a formal power series above.

Proposition 2.2.12. Suppose that ¢ is a formal power series with real coeffi-
cients and ¢(0) # 0. Then each of the following implies the other two:

(1) ' has the Pélya-Wiman property with respect to arbitrary real polyno-
maals.

(2) $(0)¢"(0) — ¢'(0)2 > 0.

(3) Forevery f € R|x] the sequence (Zc(p(D)™ f)) converges to 2| (deg f)/2].
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Remark. Note that a real polynomial of degree d can have at most 2|d/2]
nonreal zeros and (since ¢(0) # 0) we have deg ¢(D)™ f = deg f for all m.

Proof. The equivalence (1)<(2) is a consequence of Theorem 2.1.2 and 2.2.1
and a simple calculation; and the implication (2)=-(3) follows from Theorem
2.2.3 and Corollary 2.2.5.

To prove (3)=-(2), suppose that (2) does not hold, that is, ¢(0)¢”(0) —
#'(0)* < 0. If ¢(0)¢"(0) — ¢'(0)? < 0, then Theorem 2.2.1 implies that the
sequence (Zc(p(D)™f)) converges to 0 for every f € R[z]; and if ¢(0)¢"(0) —
¢'(0)? = 0, then for every f € R[z] of degree < 2 we have

(D)™ f) () = 6(O)" f (x + H(0) 7'/ (O)m)  (m=1,2,...).
Hence it is clear that (3) does not hold. O
The following is the reciprocal version of Proposition 2.2.8.

Proposition 2.2.13. Suppose that ¢ is a formal power series with real coeffi-
cients and ¢(0) # 0. Then the following hold:

(1) If o' € LP, then Zo(f) < Zo(p(D)f) for all f € R|x].

(2) If = ¢ LP, then for every positive integer m there is an f € R[xz] such
that Zo(¢p(D)™f) > 0 but Zc(p(D)™ L f) = 0.

Proof. If =1 € LP and f € R[z], then (1) of Proposition 2.2.8 implies that

Zo(f) = Ze(67 (D)o(D)f) < Ze(6(D) f),

hence (1) is proved.

To prove (2), suppose that ¢=! ¢ LP. Then there is a positive integer d
such that Zo(¢~1(D)M?) > 0, by the Corollary 2.2.10. Let m be a positive
integer. If we put f = ¢~1(D)™**M? then f is a real polynomial of degree
4, Ze(6(D)"f) = Zo(¢~ (D)M?) > 0, but Zo(é(D)"™ f) = Ze(M?) = 0.
Hence the result follows.

]
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2.3 Poéblya-Wiman property with respect to La-
guerre -Pdlya functions of genus 0

There are plenty of formal power series ¢ with real coefficients which satisfy
#(0) = 0 or ¢"(0)p(0) — ¢'(0)*> < 0, but do not represent Laguerre-Pélya
functions. The following theorem, which is a strong version of the converse of
Theorem 2.1.2, implies that if ¢ is one of such formal power series, then ¢ does
not have the Pélya-Wiman property with respect to some (transcendental)
Laguerre-Pdlya function of genus 0, although it has the property with respect
to arbitrary real polynomials.

Theorem 2.3.1. Suppose that ¢ is a formal power series with real coefficients
and ¢ does not represent a Laguerre-Polya function. Then there is a Laguerre-
Pdélya function f of genus 0 such that f € dom¢(D)™ and Zc(p(D)"f) = o0
for all positive integers m.

Theorem 2.3.1 is a consequence of Pélya’s characterization of the class LP
given in [24, 27] and a diagonal argument.

Let ¢ be a formal power series. First of all, we need to find a sufficient
condition for an entire function f to be such that f € dom ¢(D)™ and ¢(D)™ f
is not identically equal to 0 for all positive integers m. Let (C,,) be a sequence
of positive numbers. If [¢™(0)] < C, for all n, we write ¢ < (C,). More
generally, if there are constants ¢ and d such that ¢ > 0, d > 0 and ¢ <
(c(1 +n)4C,), then we will write ¢ < (C,,).

Lemma 2.3.2. Suppose that (B,,) is an increasing sequence of positive num-
bers,

(2.6) B,.,B, < BoBin (m,n=0,1,2,...),

¢ and ¢ are formal power series, ¢, < (n!B,), f is an entire function, and
that f < ((n!B,)™'). Then ¢ < (n!B,), f € dom¢(D), ¢(D)f < {(n!B,)™ 1)
and Y(D)(¢(D)[f) = (¢¢)(D)f.
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Proof. Suppose that a,b are nonnegative constants, ¢ < ((1 + n)*n!B,) and
Y < {((1+n)n!B,). Then

oo <3 (7) leo) o o)

< By(1 +n)*™ B,  (n=0,1,2,...),

hence ¢p < (n!B,).
Now suppose that ¢ is a nonnegative constant, f < ((1 + n)°(n!B,)™!),
R >0, and |z| < R. Then

¢! (0)f "+ (0)a*

2 ' o Bo(1+n)*+*(1 + k)°R

and we have

3 By(1 +n)*(1 + k)°RF i 1—|—n ate i": (1+ k)°RF

Wl (kD28 T

n,k>0 n=0 n! k=0

Hence the double series
(n—i—k( ) k

o™
Z nlkl

n,k>0

converges absolutely and uniformly on compact sets in the complex plane. As

— ¢ (0)
Zo = (n)

converges uniformly on compact sets in the complex plane, that is, f €

a consequence, the series

dom ¢(D). Furthermore, the absolute convergence of the double series implies
that

00 %0 ) () F(nR) () 1k
o(D) () =3y SOOI ey,

n! k!

from which we obtain

O H™) (n+k)
@) =3 OO 000 ),
95

fx--! _CI:I_ ]-H -{j]- =
| |
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and the assumptions imply that

[e.9]

By(1 + k)° 1+na+c
T I

|(@(D)/)M(0)] < (k=012,...),

n=0

hence we have ¢(D)f < ((n!B,)™!).

Finally, an estimate which is similar to (2.7) shows that the triple series

(m+n+k) 0)2F
E:w "(0)f (0)

mlnlk!

m,n,k>0

converges absolutely for every z € C, hence the last assertion follows. O]

Corollary 2.3.3. Suppose that ¢,, f and (B,) are as in Lemma 2.3.2, p is
a nonnegative integer, ¢p(x)i(x) = z#, and that f is transcendental. Then f €
dom ¢(D)™ and ¢(D)™ f is not identically equal to O for all positive integers
m.

Proof. An inductive argument shows that f € dom ¢(D)™, (D)™ f € dom (D)™,
and that (D)™ (¢(D)™f) = ™ for all m. Since f is transcendental, f(™#)
is not identically equal to O for all m, hence the same is true for ¢(D)"f. O

Lemma 2.3.4. Suppose that (B,,) and ¢ are as in Lemma 2.3.2, f is an entire
function, {fy) is a sequence of entire functions, fxy < ((n!B,)™1) for all N,
and that fy — f as N — oo uniformly on compact sets in the complex plane.
Then fi, fo,..., [ € dom@(D) and ¢(D)fy — &(D)f as N — oo uniformly

on compact sets in the complex plane.

Proof. First of all, Lemma 2.3.2 implies that fy € dom ¢(D) for all N. Since
fn — f uniformly on compact sets in the complex plane, and since

VO] < iB)™ (N=1,2.5n=012..),
it follows that

F™0)] < (0B, (n=0,1,2,...),
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hence f € dom ¢(D), by Lemma 2.3.2.

To prove the uniform convergence on compact sets in the complex plane,
let R > 0 and € > 0 be arbitrary. Suppose that a is a nonnegative constant
and ¢ < ((1 +n)*n!B,). If we put

- —~ ByRF
= N3
pare (k)2 By,
then it is easy to see that
n b
V@< (al SR N=12.5n=012..),
n!B,
and that ;
O < == (B <Rin=012...).

Let v be a positive integer such that

Then there is a positive integer Ny such that

AN ()
> 2O (10 - fow)

because fy — f uniformly on compact sets in the complex plane.
Now, suppose that || < R and N > Ny. Then we have

<e  (j2] <R N >N,

6(D) ) — 6(D) (2] <
AN ()
I CUCEFT)

This completes the proof. O

= o™ ()| b
+2Z w —n!Bn<3€'

n=v+1

Corollary 2.3.5. Under the same assumptions as in Lemma 2.8.4, ¢(D)™ fn —
d(D)™f as N — oo uniformly on compact sets in the complex plane for every
positive integer m.
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Proof. Lemma 2.3.2 implies that ¢ < (n!B,) for all positive integers m. [

We denote the open disk with center at a and radius r by D(a;r), and its
closure by D(a;r). For a complex constant ¢ we define the translation operator
T¢by (T°f)(x) = f(x+c). It is clear that if f is a monic polynomial of degree
d, then ¢~ 9T¢f — 1 as |¢| — oo uniformly on compact sets in the complex
plane. This observation leads to the following:

Lemma 2.3.6. Suppose that ¢ is a formal power series, f and g are polyno-
mials, ai,...,an are zeros of ¢(D)f, b is a zero of ¢(D)g, and that neither
d(D)f nor ¢(D)g is identically equal to 0. Then for every ¢ € C the polyno-
mial ¢(D)(fTCg) is not identically equal to 0, and for every e > 0 there is an
R > 0 such that if |c| > R, then ¢(D)(fTg) has a zero in each of the disks
D(ay;e€),...,D(an;€) and D(b— c;e).

Proof. The assumptions imply that neither f nor g is identically equal to 0.
In particular, we have deg(f7°g) > deg f, hence the first assertion follows,
because ¢(D)f is not identically equal to zero.

Let € > 0. We first observe that if ¢ is a constant, then ¢(D)(f7T°g) has a
zero in D(b—c; e) if and only if ¢(D)(g7~°f) has a zero in D(b; €). Since neither
f nor g is identically equal to 0, we may assume that f and g are monic. Then
c™de9fTeqg — f and (—c)~ 98/ gT—¢f — g as |c| — oo uniformly on compact
sets in the complex plane. Hence there is an R > 0 such that if |¢| > R,
then ¢(D)(fT°g) has a zero in each of the disks D(ay;€),..., D(an;€) and
d(D)(gT~¢f) has a zero in D(b;e). O

The following characterization of the class LP given in [24, 27] will play a
crucial role in the proof of Theorem 2.3.1.

Theorem (Pdlya). Let ¢ be a formal power series with real coefficients. Then
¢ € LP if and only if Zc(¢p(D)M?) =0 for all positive integers d.

Corollary 2.3.7. Suppose that ¢ is a formal power series with real coefficients
and ¢ does not represent a Laguerre-Polya function. Then there is a positive
integer dy such that Zc(¢(D)M?) > 0 for all d > dy.
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Proof. By Pélya’s theorem, there is a positive integer dy such that Z¢(¢(D)M®) >

0, and Rolle’s theorem implies that if Zo(¢(D)M) = 0, then Zg(¢(D)M?) =
0. [l

Proof of Theorem 2.3.1. We will construct a sequence (d(k)) of positive inte-
gers and a sequence (7(k)) of positive numbers such that Y, | d(k)y(k) < oo
and the entire function f represented by

ﬁ (T+~(k (k)
k=1

has the desired property.

Since ¢ does not represent a Laguerre-Pélya function, it follows that nei-
ther does the formal power series ¢ for every positive integer m. Hence
the corollary to Pdlya’s theorem implies that there is an increasing sequence
(d(m)) of positive integers such that Zg(¢(D)™M¥ ™) > 0 for all positive
integers m. Since (d(m)) is increasing, we have Zg(¢(D)™M¥*)) > 0 when-
ever m < k. For each pair (m k) of positive integers with m < k choose
a nonreal zero of ¢(D)™M®*) in the upper half plane, denote it by a(m, k)
and set r(m,k) = la(m, k)/2 It is obvious that r(m,k) > 0, and that
D(a(m, k) — v;7(m,k)) "R =  for all ¥ € R. The assumption also im-
plies that ¢™(0) # 0 for some n, hence there is a nonnegative integer p and
there is a formal power series ¢ such that ¢(x)y(z) = z*. Choose an increas-
ing sequence (A,,) of positive numbers such that ¢, < (4,), and define (B,,)
by By = Ay, B1 = A; and

Byi1 =max [{An1} U{By ' BiBui1k : k=1,...,n}] (n=1,2,...).

It is clear that (B,,) is an increasing sequence of positive numbers, (B,,) satisfies
(2.6), and that ¢,1 < (n!B,).
For k =1,2,... and for v > 0 define g, by

g (x) = (14 72)™ ™

that is, g, = YTV MY*®) From the definition, it follows that gy - is a real
polynomial of degree d(k), gr~(0) =1, ¢(D)™ gy~ is not identically equal to 0
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for 1 <m <k,
(2.8) (A(D)"gkr) (a(m, k) =771) =0 (1 <m<k),

and that g, — 1 as v — 0 uniformly on compact sets in the complex plane.

Since ¢1,(0) = 1 < 2 and ¢, is a polynomial of degree d(1) for every
v > 0, and since g;, — 1 as v — 0 uniformly on compact sets in the complex
plane, there is a positive number (1) such that g1,y < (2By(n!B,)™?).
From the definition, the polynomial ¢(D)g; (1) is not identically equal to 0,
and from (3.3) we have (¢(D)g1,(1)) (a(1,1) —~(1)~') = 0. Now suppose that
v(1),...,7(N) are positive numbers,

N
(2.9) 11 9rv00 < 2Bo(n!B,)™),

k=1

and that for each m € {1,..., N} the closures of the disks

(2.10) D (a(m, k) — ~(k)~';r(m, k)) (m <k <N)

are mutually disjoint and the polynomial ¢(D)™ (Hfj:l gkﬁ(k)) has a zero in
each of these disks. Suppose also that the polynomials ¢(D)™ (H]kvz1 glm(k)>,

m =1,..., N are not identically equal to 0. Since ngl Jk~(k) 18 a polynomial,
gn+1 1s a polynomial of degree d(N +1) for every v > 0, and since gny1, — 1
as 7 — 0 uniformly on compact sets in the complex plane, (2.9) implies that
there is a 0 > 0 such that

(2.11) <H gwk)) gniin < 2Bo(nlB,)7Y)  (0<y <),

k=1

From Lemma 2.3.6, it follows that for each m € {1,..., N} there is an
Ry, > 0 such that if |¢| > R, then ¢(D)™ ((Hfle gk,y(k)) TCMd<N+1>) has
a zero in each of the disks given in (2.10) and also has a zero in the disk
D (a(m,N + 1) —¢;r(m, N 4+ 1)), because ¢(D)™ (Hff:l gkﬁ(k)> has a zero in
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each of the disks given in (2.10) and (¢(D)"MYN*V) (a(m,N +1)) = 0. By
taking R, sufficiently large, we may assume that

D (a(m,k) —~v(k) " r(m,k)) N D (a(m, N + 1) — ¢;r(m,N +1)) =0

for |c| > R, and for m < k < N. Since ¢(D)NF'MI N+ has a zero at
a(N+1,N+1)and r(N+1, N+1) > 0, Lemma 2.3.6 implies that there is an
Ry > 0 such that if |¢| > Ruy1, then ¢(D)N+1 ((Hfle g,m(k)> TCMd<N+1>)
has a zero in D (a(N +1, N+ 1) —¢;r(N +1,N +1)). Let v(N + 1) be such
that 0 < y(N +1) < min{d, R{"",..., Ry', Ry’ }- Then (2.11) implies that

N+1

I 9000 < 2Bo(n1B,) ™).
k=1

The construction shows that for each m € {1,..., N 4+ 1} the closures of the
disks
D (a(m, k) —~(k)"";r(m, k) (m<kE<N+1)

are mutually disjoint and the polynomial ¢(D)™ (Hg:ll gm(k)) has a zero

in each of these disks. Finally, the polynomials ¢(D)™ <HkN:11 gkﬁ(k)>, m =
1,..., N 41, are not identically equal to 0, by Lemma 2.3.6.

By induction, this process produces a sequence (y(k)) of positive numbers
which has the following properties:

(1) For each positive integer N we have

N
Hgk’n(k’) < <230(n!Bn)_1>-
k=1

(2) For each positive integer m the closed disks
(2.12) D (a(m, k) —y(k)~";r(m, k)) (k=m,m+1m+2,...)

are mutually disjoint.
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(3) For each positive integer m the polynomial ¢(D)™ (H,ivzl gm(k)> has a
zero in each of the disks given in (2.10), whenever N > m.
For N =1,2,... weset fy = Hgil Gk (k)» that is,

N

fr@) =TT +k)a)™.

k=1

From (1), it follows that
(2.13)  0< fI(0) <2By(n!B,)™"  (N=1,2,...: n=0,1,2,...).

In particular, we have

> d(k)y(k) = fy(0) <2By/Br (N=12,...),

N
k=1

hence the infinite product T[22, (1 4 ~(k)z)*™

of genus 0. Let f denote the entire function. It is then obvious that f is

represents an entire function

transcendental, f € LP, fy — [ uniformly on compact sets in the complex
plane, and that

0< f™(0) <2By(n!B,)™"  (n=0,1,2,...).

To complete the proof, let m be a positive integer. From the corollary to
Lemma 2.3.2, it follows that f € dom¢(D)™ and ¢(D)™f is not identically
equal to 0; and from (2.13) and the corollary to Lemma 2.3.4, we see that
(D)™ fn — ¢(D)™f as N — oo uniformly on compact sets in the complex
plane. Furthermore, ¢(D)™ fy has a zero in each of the disks given in (2.10)
whenever N > m. Hence ¢(D)™ f has a zero in each of the closed disks given in
(2.12) which are mutually disjoint and do not intersect the real axis. Therefore
Zc(¢(D)"f) = oo.

O
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2.4 Asymptotic behavior of distribution of ze-
ros of ¢(D)"f as m — oo

In this section, we conclude chpater 2 with some consequences of Theo-
rems 2.2.3 and 2.2.4 on the asymptotic behavior of the distribution of zeros
of ¢(D)™f as m — oo, in the case where the coefficients of ¢ are complex
numbers and f is a complex polynomial. When f is an entire function, we
denote its zero set by Z(f), that is, Z(f) = {# € C : f(z) = 0}, and for
a € Z(f) the multiplicity by m(a, f).

Let ¢, p, «, B, f, d and fi, fo,... be as in Theorem 2.2.3. Then g # 0 and
fm — exp(BDP)M? uniformly on compact sets in the complex plane. We also

have

(2.14) Z(¢(D)™f) = —ma +mPZ(f,)
and

(2.15) m(a, (D)™ f) = m(m™""(a + ma), fu)

for all a € Z(¢(D)™f)). Let € > 0 be so small that the disks D(b;e¢), b €
Z (exp(ﬁD«”)M d), are mutually disjoint. Then Rouche’s theorem implies that
there is a positive integer mq such that

(2.16) > m(e fn) = m (b exp(3D") M)

c€D(b;e)NZ(fm)
holds for all b € Z (exp(ﬁDp)M d) for all and m > my. As a consequence, we
have

(2.17) Z(fm) C D(0;€) + Z (exp(BD?)M?)

for all m > my. Let v be a complex number such that v = —3. Then v # 0
and we have

Z (exp(ﬁDp)Md) =2 (eXP(_Dp)Md) ,

because
(exp(BDP)M?) () = ~* (exp(—=D")M?) (/7).
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Now, (2.14) and (2.17) imply that
(2.18) Z(¢(D)™f) C —ma+m"? (D(0;€) +vZ (exp(—DP)M?))

holds for all m > my.

With the aid of Theorem 2.2.4, the above results give us some information
on the zeros of ¢(D)™f for large values of m. From Theorem 2.2.4, it follows
that

Z (exp(—=D")M?) C S,,

where
p—1

Sp = U {Term/p > 0} .
k=0
It also follows from Theorem 2.2.4 that if d = 0 or 1 mod p, then all the zeros
of exp(—DP)M? are simple. Hence (2.18) implies that for every ¢ > 0 there is
a positive integer mg such that

Z(p(D)™f) € —ma + N(0,m*Pe) +~8S,

for all m > my, and (2.14) through (2.16) imply that if d = 0 or 1 mod p,
then all the zeros of ¢(D)™ f are simple whenever m becomes sufficiently large.
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Asymptotic behavior of
distribution of the zeros of a
one-parameter family of
polynomials

Let ¢(2) = > pe,axz”/k! be a real power series with a9 = 1 and a; = 0.
In this chapter, when P is a polynomial of degree at least two, the asymptotic
behavior of distribution of the zeros of ¢(D)™ P(z) for m — oo is described,
where D denotes differentiation.

3.1 Asymptotic behavior of distribution of the
zeros of ¢(D)"f as m — oo

Let P be an arbitrary polynomial of degree d with leading coefficient a.

If 21,29,..., 24 are zeros of P then the arithmetic mean of zeros A, is given
by 522:1 2. We consider the polynomial £P(z +i Im A,) = S g2tk
ap = 1. By translation, it is clear that oy is real. If ay,...,a,—1 are all real

and o, is the first nonreal coefficient, then we define 14, = i, (2 < p < d).
If there is no such a u, we can apply Theorem 2.1.1 to P(z + i Im A,). Let
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Wy (P) = sup{|Im(A, — 2)| : P(z) = 0}. Then we obtain the following result.

Theorem 3.1.1. Let ¢(z) = Y oo, arz"/k! be a real power series with ag = 1,
a; =0, and ay < 0. Let P(z) = ZZ:O 2% be a polynomial of degree at least
two and T4, = p, (2 < p < d). Then, for positive integer m,

Lim m®Y2Wy(6(D)"P(2)) < oo,

m—r0o0

T moWy(6(D)"P(2)) = 00, V5 > “T_l |

m— 00

Let H,(z) be the nth Hermite polynomial defined by
H,(z) = (—1)"" D" .

It is known that H,(z) has only real and simple zeros. From this, the next
theorem gives more specific result on the distribution of zeros of ¢(D)™ P(z)
for sufficiently large m.

Theorem 3.1.2. Let ¢(z) = > oo, ax2”/k! be a real power series with ag = 1,
a; =0, and ay < 0. Let P(z) = ZZ:O apz?* be a polynomial of degree at least
two and 14, = p, (2 < p < d). Let p1,ps,...,pa be distinct zeros of Hy(z)
and r := min{@ 21 # j}. Then for every e > 0, there is a positive integer
mo such that each open square {z : |Im (z — A,)| < €,|Re z — v/—2aamp;| <
rv/—2asm} contains only one zero of ¢(D)"P(z) for all m > mgy and j =
1,2,....d.

3.2 Zeros of polynomials with complex coeffi-
cients

We begin with this section by introducing of Wall-Frank Theorem which
will be used in our proof of the Theorem 3.1.1. H. S. Wall proved theorem on
the zeros of polynomial with real coefficients [32] and then E. Frank extended
the result to polynomial with complex coefficients [10]. In original papers, the
theorem is related to necessary and sufficient condition that a polynomial shall
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have only zeros with negative real parts. But in this section, we reformulate
the necessary and sufficient condition that a polynomial shall have only zeros
with negative imaginary parts.

The Wall-Frank Theorem. Let P(z) = S0_ 24" with ag = 1. And let
d d
(31) Qo= (=i)f(Re ap)z"* and Q1 =Y (—i)F"(Im ay)z*"
k=0 k=1
Then all the zeros of P(z) have megative imaginary part if and only if the
quotient QQ1/Qo can be written in the continued fraction,

@ _ !
Qo 1
Mz -+ S+

(3.2)

T9Z + So +
1

T4z + Sa
with r; > 0 and s; is pure imaginary or zero for 1 < j <d.

The problem of determining r;, s; is equivalent to the problem of deriv-
ing polynomials (), of degree d — j which are connected with )y and @); by
recurrence relations

(3.3) { Qi1 =Qj1— (rjz+5;)Q;, (=1,....d)
Qi1 =0.

For convenience of notation, we denote the coefficient of z%7* of Q; by e, 4.

Then by (3.3), we obtain the following formulas :
Cit+1k = €j—1k — TjCik+1 = Sj€jk
(3.4) J+1 J,J/ J+1,j+1

Sj+1 = (€441 = Tj+1€j11,5+2)/€j+1,541

ejr =0 ithk<jork>d
Thus 74, ..., 74 are determined completely by Qo, @1, and (3.4). Since real and
pure imaginary coefficients appear alternatively in @)y and )1, we can check
easily that e;; is pure imaginary or zero (resp. real) if j + k is odd (resp.
even). Accordingly, s; is a pure imaginary or zero.
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3.3 Proofs of Theorem 3.1.1 and Theorem 3.1.2

In the proof of Theorem 3.1.1, we will use the following lemma.

Lemma 3.3.1 ([5, Lemma 2.1 and 2.2]). Let

o0

o(2) = %Zk (ap=1, ay =0)

k=0
be a real power series and let
m b
(3.5) pl2)" = 4t

T2
k=0

Then

and

| k
b1 = O(mE 1), by = 2R (ﬁ) mFro(m®)  (k=1,2,...

k! 2

(bk = bk(m), m = 1,2,3, .. )

;M — 00).

To prove the Theorem 3.1.1 we need some preparations. For simplicity of

expression, we put F;; for j > 0 as follows;

(3.6)
( M <a2)§<d>]/2k—|—2l—j if j, k are even
sy -5 7 a1 . o b V )
R/2I\"2) \k) yd—20+2

Ej. = ! (_@ st g\ VP ey o o are odd
(k—1D/2) \" 2 k d—20+1 -hrareedd
0 ifk<jork>d.

In (3.6), if j = 0 or 1, then empty product represents a unity. And let

(3.7) Rjy = Ejj/Ejiijh -
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Then we check at once that

{Ej+2,k =FEjr — RjEjem

(3.8)
Eig=FEq24.

Using (3.6) and (3.7), for positive integer m, we put f,,(j, k), gm(J, k), and
R..(j) as follows;
(3.9)
E,;r m? +o(m?) if k+j € 2Z

Jm(J k) = ’ —1 1 m — 00),
) Ajpm'T +o(m'T) ifk+j¢2Z ( )

C E;xms 5) ifk+j€2Z
gm(j,k;):{ e 2 Fo(m?) 1k (C>0; m— o0),

) if k4 j ¢ 27
where A, is an appropriate pure imaginary constant or may be zero, and
(3.10) Rn(j)=R;m™2 +o(m™2)  (m — o).

If B\, and R; in (3.9), (3.10) are replaced by F; ,+O(C~'),and R;+0(C™') (C —
00), then we write £ (4, k), g5,(j, k), and R}, (j) instead of f,,,(7, k), gm(4, k), and R,,(7).
And if O(C™1) is replaced by O(C~2) then we use double star **.

Proof of Theorem 3.1.1. There is no loss of generality in assuming oy = 1 and oy =
0. Then A, = 0 and Im o, # 0. Let ¢(2)™ be the form (3.5). And consider
the polynomial

(3.11) Pn(2) = 6(D)"P(2).

For positive numbers C' and ¢, we can write

d
(3.12) P(z 4+iCm™) = Z’ykzd_k
k=0
where 7o, ..., 74 are given by
k !
d—k+v d—7\, . _su_r
(313) Ve = ;Obuﬁk—u( v )7 ﬁl = TZ:()QT<Z—T>(Zcm ) :
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For polynomial (3.12), @y and @); are obtained in the manner indicated in
(3.1). Let egy, and e; ; be coefficients of 247% of Qo and @1, respectively. Then
by (3.4), we get the continued fraction (3.2). It suffices to show that there is a
Co > 0 such that all r; in (3.2) are positive for C' > C as m — oo. Throughout
the proof, we use the induction on j. From (3.1), (3.13) and Lemma 3.3.1, we
see that

(314) 60719 = fm((), k’), (6070 = 1, 6071 = 0)
Let p>2,0=(u—1)/2 and k < pp — 2. Then we have
(3.15) e =Cm O 2f(1,k)(e12=0), r =C'm* iR, (1), s =0.

In fact, Aoy and A;j of (3.9), which are related to (3.14) and (3.15) respec-
tively, are both independent of C. So, from now on, we assume that A; is
independent of C' for all j and k. (But we need not know its exact value.)
This condition is essential to the proof. To simplify notation, we put

Sm(j) =5, m~7 + o(m”7) (m — 00).

Here, S; is independent of C. Then by (3.4) and (3.8), if j < /2 and k+j < p,
we get
(3.16)

Fn(G, k) if j € 27 Cm™3R,(j) ifj€2Z
i = L T, = L
PUem i Gk it g2z, T O mER,() i) ¢ 2L
And for j < p/2,
(317) s, =Cm28,(j) (j €2Z), s;=C"tm’*3S,(5) (j ¢ 22).

Assume that  is even. If k >y — 1 then e, = m~2g,,(j, k). From this,
if j <p/2and j+ k> p then

C™ gulj k) i j €22,

3.18 €ir =
(318) " {m‘ggm(j,k) if j ¢ 2Z.
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If j = pu/2 then

m 2" Sy (5) if j € 27,
ptl

(3.19) 5j = { A
C2m=2 S,(j) ifj¢2Z.

Hence, for j > 1/2, e, is the form in (3.18) with g,,,(j, k) replaced by g5 (j, k).
And r;j is the form in (3.16) with R,,(j) replaced by R} (j), s; is same as (3.19).

If yuis odd, e;p, = C m~2f(1,k), for k > pu — 1. (Here, Ay in (3.9)
related to f7(1,k) depends on C. But it does not affect the result.) And for
Jj+k > p, e and r; are the same as the form (3.16) replaced by f; (4, k),
By, (7)-

If u = 2then ey, = m g, (s, k), r1 = C'mR,,(1), and s; = C2m2S,,(1).
Thus for j > 1, we can apply the above result to e;x, 7, and s;.

In any case, we can find Cy > 0 such that r; > 0 for all C' > Cj as
m — oo. Thus by Wall-Frank Theorem, all the zeros of P,,(z) are in the
{z;Im z < C m_%} as m — oo. And if we consider P,,(—z) then we can
obtain the same result with P,,(z) and the first part of proof is completed.

Next, suppose that 6 > (¢ —1)/2 in (3.12). Let p > 2 and § < pu/2. We
get (3.15) for k < p — 1. But, if g = 2, s; in (3.15) is removed. If u is even
then

—6+%)

ey = (=1)2 Im ayi +o(1), 141 = O(m , (m — 00),

if 14 is odd then
e1, = (—1)"7 Im a, + 0(1), €11 = O(1), 1,2 = O(m), (m — 00).

By (3.4) and induction on j, if j + k < p and j < p/2 then we obtain (3.16)
and (3.17). If j +k = p + 1, then there exists a nonzero constant 7}, such
that

(3.20)

T mP™72 + o(mt1738) if j € 2Z
ejk = (m — o0)

Tiem™= +o(m™'z) ifj¢2Z.
We first do the case of even p. If j +k =p+2 and j < pu/2 then

k
2

ein=0(m?) (j €2Z), ej=0m ") (j ¢2Z), (m— o).
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Let 7 = p/2. Then the leading term of s; is determined by the second term of
s; in (3.4), thereby leading term of e;1; ;41 is determined by
—seim1 = (€551
€5
From (3.20), e; ;41 is nonzero pure imaginary. Hence, for all C' > 0, we obtain
€j+1,j4+1 < 0 as m — oo.
In the case of odd p, if j + k= p+2 and j < p1/2 then

e = O(m*'78) (j €2Z), ej =O(m™'T) (j ¢ 22), (m — o0),
and if j+k=p+3 and j < pu/2 then
ejp = O(mP 372) (j €2Z), e =O0(m 7)) (j ¢22), (m— o).
Let j = “T“ Then the leading term of e; je;;1 ;41 is determined by
—rj-1(ejo1g41)”

Thus e je;t1,;41 < 0 for sufficiently large m.

In any case, for all C' > 0, there exists j such that r;;; < 0 as m — oo.
We can also apply the same argument to the case of § > 1/2 and obtain the
same result. Therefore, we complete the proof of Theorem 3.1.1.

m

Proof of Theorem 3.1.2. Let ¢(2)™ and P,,(z) be the forms of (3.5) and (3.11)
respectively. Let hy,,x = ¢(D)"2*. Then by Lemma 3.3.1,

- him(zy/m) as\ k/2 z
Jm S mo(y) Hlge;) k2D

Thus we can show that m~%2P,,(z/m) converges to

(3.21) o (_%)g Ha (\/—ZTag>

uniformly on compact sets in the complex plane as m — oo. For r > 0, we
denote the disc with center p;y/—2asm and radius rv/—2asm by D;. Then

each Dy, ..., D4 contains only one zero of P,,(z) for sufficiently large m. Thus
the proof is completed by Theorem 3.1.1. O]
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Remark. Let P(z) be a real polynomial. Then there is no such a p in Theorem
3.1.1. In the proof of Theorem 3.1.1, let C' and 6 be arbitrary positive numbers.
Then we can see that (3.14)-(3.17) hold for all j and k. Hence, there exists
my > 0 such that Vr; > 0 for all m > m;. Therefore, we can also obtain the
Theorem 2.1.1 of Craven and Csordas . In fact, we can know the simplicity of
zeros by the same method as in the proof of Theorem 3.1.2.

Analogously to I4,, we can define [ Aip. Let P be a polynomial of degree
d with leading coefficient o. Consider the polynomial ZP(z + Re A,) =
ZZ:O apz? %, ay = 1. Obviously, Re a; = 0. If there is a u such that, for
1 <k <p—1 Im (o) = 0 and Im (i*ey,) # 0, we set [} = p. Let
W,(P) = sup{|Re(A, — 2)| : P(z) = 0}. Then we state the analogue of
Theorem 3.1.1 when a; > 0 as a corollary.

Corollary 3.3.2. Let ¢(z) = > oo awz®/(2k)! be an even real power series
with ag = 1, ay > 0. Let P(z) = Zi:o apz?* be a polynomial of degree at
least two and ]Aip =u, (2<u<d). Then, for positive integer m,

lim m=D2W,([¢(D)]"P(z)) < oo,

m—00

m— 00

S -1
Tm m’W,([¢(D)]"P(2)) = 0o, V6> MT .
From (3.21), we can rephrase Theorem 3.1.2 as follows.

Corollary 3.3.3. Let ¢(z) = Y oo a2z /(2k)! be an even real power series
with ag =1, ag > 0. Let P(2) = ZZ:O apz%* be a polynomial of degree at least
two and IAip =pu, (2<pu<d). Let p1,pa,...,pq be distinct zeros of Hy(2) and
ro= min{@ 11 # j}. Then for every e > 0, there is a positive integer my
such that each open square {z : |Re (z—A,)| < €, |Im z—+/2aamp;| < rv/2aam}
contains only one zero of (D)™ P(2) for allm > mqy and j =1,2,...,d.

Remark. In Corollary 3.3.2 and 3.3.3, if there is no such a pu, there exists a
my > 0 such that, for all m > my, the zeros of the polynomial ¢(D)™ P(z) are
simple and all lie on the Re z = Re A,
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Example 3.3.4. Corollary 3.3.2 and above remark do not extend to arbitrary
real power series ¢(z). Let ¢(z2) = 1+ 22+ 2% and P(z) = 2°+1. Then A, = 0,
I =3. Let Py(z) = [¢(D)]"P(2). Consider (=1)*Pn(iz—3). By Wall-Frank
Theorem, we can see that P,,(z) has a zero in the Re z < —1/2 as m — 0.

If Q(z) = 2%+ 14, then A, = 0 and /HIAZ'Q. We can also obtain the same
result as P(z).
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Chapter 4

De Bruijn-Newman constant of
the polynomial (z +4)" + (z — )"

Let A\, be the largest zero of 2n-th Hermite polynomial. In this chapter, We
prove that the de Bruijn-Newman constant of the polynomial (z+4)"+ (z—i)"
is —(2X\,) 2.

4.1 Main Result

A function of growth (2,0) is a real entire function which is at most order
2 and type 0, that is,

f(z) = O(exp(e|z[*)) (|2 = o)

for every € > 0. If f is of growth (2,0) then it is known that f € dom e*”* and
P’ f is of growth (2,0) for every v € C [3]. When f is a real entire function
of growth (2,0), we define A(f) by

A(f) = sup{e € R : ¢*P” f has real zeros only}.

We extend the notion of the de Bruijn-Newman constant to arbitrary real entire
functions of growth (2,0) by calling —A(f) the de Bruijn-Newman constant of

f.

75
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POLYNOMIAL (Z + )Y + (Z — )N

For n =0,1,2,... let F}, be the real polynomial defined by
1
F.(2) = 5((2 +4)"+ (2 —1)") = (cos D M")(z),

where M™ is the monic monomial of degree n, that is, M"(z) = z". We will
establish the following:

Theorem 4.1.1. Let A\, be the largest zero of Has,(z) where Ha,(z) is the
on-th Hermite polynomial defined by Han(z) = € D2e~2". Then \(Fy,) =
)‘(F2n+1) = (2>‘n)72'

In fact, it is well known [31, (6.32.5)] that Ho,(z) has only real and simple
zeros, especially

A= VAn +1—6"3(4n +1)7Y5(iy +e),

where € — 0, as n — oo and i, = 3.372134408.. . ..
We obtain the following corollary.

Corollary 4.1.2. A(Fy,) ~ 1o as n — oo.

6n

If z € R, then F,,(z) = Re (z 4 ¢)™; hence we have

Fyn(z) = (=1)"(1 + 2*)" cos(2n tan™" z)
B 2 tan? (2k — )m
e )

and
Fonyi(z) = (=1)"V1 + 22(1 4+ 2%)"sin((2n + 1) tan™ ' )

This factorization formula exhibits the location of zeros of F,, explicitly. In
particular, all the zeros of F), are real and simple. However, it will not be used
in our proof of Theorem 4.1.1.
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4.2 Preliminaries
We denote the function z — 2" by M"™. A direct calculation shows that
(4.1) F, =cosD M".
If (o) = ()52, is a sequence of numbers and if f is a polynomial, we define
(a) f by . "
g =3 2Oy
k=0

In other words, if f(2) = ag + a1z + -+ + a,2", then
(o) f(2) = apap + arar1z + - - - + apa,2".

A real entire function ¢ is said to be a Laguerre-Pélya function if there
are real polynomials f1, f2,... such that f, — ¢ uniformly on compact sets in
the complex plane and that all the zeros of fi, fs,... are real; if all the zeros
of fi, fo,... are real and of the same sign, then ¢ is called a Laguerre-Pdlya
function of the first kind.

The Pélya-Schur Theorem. If ¢ is a Laguerre-Pdélya function of the first
kind, and f is a real polynomial with real zeros only, then (™) (0))f has real
zeros only.

Proof. See [27]. O

For a € R define sg a by

)0 (v =0),
. e { alfa (a0

Suppose (sg) = ()}, 1s a finite sequence such that s, € {—1,0, 1} for every k
and s, # 0. For example, if f is a real polynomial of degree n and a € R, then
(sg f®(a)) is such a sequence. For k = 0,1,...,n define s; and s as follows:
If s, # 0, s{ = s, = s;; otherwise, s = sg; and s, = (—1)'s;4;, where [ is
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the smallest positive integer such that s;; # 0. Thus s, s, # 0 for all k.

We denote the new sequences (s} and (s, ) by (sr)™ and (sx)~, respectively.

If s, # 0 for all k, we denote by W (s;) the number of sign-changes in (sy),
that is,

[e.9]

1— 54—
W (ss) = ZM

2
k=1

If f is a non-constant real polynomial and a € R, then

(sg [P (a)t = (sg f*(a+¢)) and (sg f*(a))” = (sg [P (a—¢))

for all sufficiently small € > 0. Thus we may state the Budan-Fourier-Hurwitz
theorem in the following form:

The Budan-Fourier-Hurwitz Theorem. If f is a non-constant real poly-
nomial and a < b, then

N (f(a,b)) = Wisg fP(a)* = Wi(sg f® ()" — 2K (f:(a.b)).

Here, N(f,I) denotes the number of zeros of f in the interval I, and K(f,I)
denotes the number of critical points of f in the interval I.

Proof. See [12]. O

4.3 Proof of the main result

If ¢ is analytic at 0, f is an entire function and the series

A1)
Z ¢ '(O)f(n)

n.

converges absolutely and uniformly on compact sets in the complex plane, then
we denote the resulting entire function by ¢(D)f and say that ¢(D)f is well
defined. If f is a polynomial, it is obvious that ¢(D)f is well defined and is a
polynomial.
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If ¢ is analytic at 0, then

N (O . — "R (0) 2
DM = = e =
2\ 1 12n - ﬁbl 0 2n)! 2n—21
B ~ ¢("R(0) (2%)*
= L T
e " 50(0) (204 1)
2 on+1 ¢ZO 2n +1)! 2n41-2
H(D*) M (z) = 2. Gn 1l i
—~ o"R(0) (%)
- (2”“)”,; (n—k)! 2k + 1)1
hence
(43) DM () = <(2k—k'>,> S(D)M"(22),
and
(4.4) <2nn—j_1)!¢(D2)M2n+l(z) =2 <(2kk—4l1)'> d(D)M™(2%).

For A € R let ¥, be the real entire function defined by
Wy (2) = e cos /2.
It is clear that W, is a Laguerre-Pélya function. Since
A5 =3 E) = e+
for every entire function f, we have
UA(D)f(2) = Vo f(z+ N),
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whenever Wy(D)f is well defined. In fact, it is known that Wo(D)f is well
defined for every entire function f. For a proof, see [3].
From (4.1), we have e*P” F,, = W, (D?)M"; hence (4.3) and (4.4) imply

n! AD2 k! ns. 2
(2n)!€ Fy(2) = <@> Uy (D)M™ (=)
and | "
(2n—_"_1)!6)‘D Foni1(2) =2 <m> U, (D)M™(2%).

For simplicity, put

(4.5) f=U\(D)M", g= <(2’2) >f and h = <<2kk—+')> f,

so that

AP By (z) = Tg(f) and My, pq(2) = — zh(2%)
Since
(46) F(2) = WA(D)M"(2) = Wo(D)M" (= + ))
and
Yk gk . nlo 1
(4.7)  To(D) =nl Z 2n — 2k i~ U @n)” Han (ﬁ)

where Ho,(2) is the 2n-th Hermite polynomial (cf.[31, (5.5.4)]), f has real zeros
only. Since the functions

k! 2 P sinh\/z
;Tk——cosh\/z and zl—>z 2k+ k: = Nz

are Laguerre-Pélya functions of the first kind, the Pélya-Schur theorem implies
that g and h also have real zeros only. Thus e*P*Fy, and e’’’ F,,,; have
exactly 2N (g; (—o0,0)) and 2N (h; (—00,0)) non-real zeros, respectively; and
all the non-real zeros are purely imaginary.
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It is obvious that f, g and h are polynomials of the same degree n, and
that

(sg f5(0)) = (sg "(0)) = (sg h*(0)).

Since f, g and h haver real zeros only, they have no critical points. Hence, by
the Budan-Fourier-Hurwitz theorem, they have the same number of negative
real zeros. In particular, the following are equivalent: (i) e*P”Fy, has non-real
zeros, (ii) e*P” Fy,41 has non-real zeros, and (iii) f has a negative (real) zero.
From (4.6), f has a negative zero if and only if A is greater than the smallest
zeros of (4.7). Thus if A, is the largest zero of 2n-th Hermite polynomial,

M) = MFoni) = 35
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