42 research outputs found

    Measurement of Ultrashort Optical Pulses

    Get PDF

    Atypical location of primary cardiac lymphoma in the left heart with atypical clinical presentation: A case report and literature review

    Get PDF
    BackgroundPrimary cardiac lymphoma (PCL) is a rare and aggressive cardiac tumor with very poor prognosis that occurs mostly in the right cardiac cavity. Early diagnosis and treatment may improve its prognosis. In the present report, we describe the diagnosis and treatment of a primary cardiac diffuse large B-cell lymphoma (PC-DLBCL) with atypical location and clinical presentation. Additionally, a literature review was conducted to summarize the current knowledge of the disease.Case PresentationA 71-year-old man visited his local hospital because of syncope, recurrent chest tightness, shortness of breath, palpitations, and profuse sweating for more than 20 days. Chest radiography revealed a mediastinal mass. Cardiac computed tomography (CT) showed multiple enlarged mediastinal lymph nodes. Transthoracic echocardiography (TTE) showed a cardiac mass in the posterior–inferior wall of the left atrium. He was then transferred to our hospital for positron emission tomography-CT (PET-CT) which showed active uptake of fluorodeoxyglucose both in the cardiac mass and in the multiple enlarged mediastinal lymph nodes. Biopsy of the enlarged mediastinal lymph nodes was carried out by using video-assisted thoracic surgery (VATS) technique, and pathological examination confirmed the subtype of PC-DLBCL, Stage IV, NCCN IPI 3. Therefore, the patient received a combination of chemotherapy and immunotherapy with R-CDOP (rituximab, cyclophosphamide, liposome doxorubicin, vincristine, and prednisone). After four courses of treatment in 4 months, the cardiac lymphoma and the enlarged mediastinal lymph nodes achieved complete remission with mild side effects of the chemotherapy.ConclusionEarly diagnosis and a precise choice of chemotherapy and immunotherapy based on cardiac imaging and pathological examination may improve the prognosis of PC-DLBCL in an atypical location

    Fault Detection and Diagnosis for Liquid Rocket Engines Based on Long Short-Term Memory and Generative Adversarial Networks

    No full text
    The development of health monitoring technology for liquid rocket engines (LREs) can effectively improve the safety and reliability of launch vehicles, which has important theoretical and engineering significance. Therefore, we propose a fault detection and diagnosis (FDD) method for a large LOX/kerosene rocket engine based on long short-term memory (LSTM) and generative adversarial networks (GANs). Specifically, we first modeled a large LOX/kerosene rocket engine using MATLAB/Simulink and simulated the engine’s normal and fault operation states involving various startup and steady-state stages utilizing fault injection. Second, we created an LSTM-GAN model trained with normal operating data using LSTM as the generator and a multilayer perceptron (MLP) as the discriminator. Third, the test data were input into the discriminator to obtain the discrimination results and realize fault detection. Finally, the test data were input into the generator to obtain the predicted samples and calculate the absolute error between the predicted and the real value of each parameter. Then the fault diagnosis index, standardized absolute error (SAE), was constructed. SAE was analyzed to realize fault diagnosis. The simulated results highlight that the proposed method effectively detects faults in the startup and steady-state processes, and diagnoses the faults in the steady-state process without missing an alarm or being affected by false alarms. Compared with the conventional redline cut-off system (RCS), adaptive threshold algorithm (ATA), and support vector machine (SVM), the fault detection process of LSTM-GAN is more concise and more timely

    Fault Detection and Diagnosis for Liquid Rocket Engines Based on Long Short-Term Memory and Generative Adversarial Networks

    No full text
    The development of health monitoring technology for liquid rocket engines (LREs) can effectively improve the safety and reliability of launch vehicles, which has important theoretical and engineering significance. Therefore, we propose a fault detection and diagnosis (FDD) method for a large LOX/kerosene rocket engine based on long short-term memory (LSTM) and generative adversarial networks (GANs). Specifically, we first modeled a large LOX/kerosene rocket engine using MATLAB/Simulink and simulated the engine’s normal and fault operation states involving various startup and steady-state stages utilizing fault injection. Second, we created an LSTM-GAN model trained with normal operating data using LSTM as the generator and a multilayer perceptron (MLP) as the discriminator. Third, the test data were input into the discriminator to obtain the discrimination results and realize fault detection. Finally, the test data were input into the generator to obtain the predicted samples and calculate the absolute error between the predicted and the real value of each parameter. Then the fault diagnosis index, standardized absolute error (SAE), was constructed. SAE was analyzed to realize fault diagnosis. The simulated results highlight that the proposed method effectively detects faults in the startup and steady-state processes, and diagnoses the faults in the steady-state process without missing an alarm or being affected by false alarms. Compared with the conventional redline cut-off system (RCS), adaptive threshold algorithm (ATA), and support vector machine (SVM), the fault detection process of LSTM-GAN is more concise and more timely

    Wavelet-transform analysis of spectral shearing interferometry for phase reconstruction of femtosecond optical pulses

    Get PDF
    We introduce a novel method for retrieving the phase from a spectral shearing interferogram, based on wavelet-transform technique. We demonstrate with both theoretical and experimental data that this technique provides an alternative and reliable technique for phase retrieval, particularly for highly structured pulse spectra

    Experimental Evaluation on the Catalytic Activity of a Novel CeZrK/rGO Nanocomposite for Soot Oxidation in Catalyzed Diesel Particulate Filter

    No full text
    A nanostructured solid solution catalyst CeZrK/rGO for soot oxidation in catalyzed diesel particulate filter was synthesized using the dipping method. The reduced graphene oxide (rGO) was used as the catalyst carrier, and CeO2, ZrO2, and K2O were mixed with the molar ratio of 5:1:1, 5:2:2 and 5:3:3, which were referred to as Ce5Zr1K1/rGO, Ce5Zr2K2/rGO, and Ce5Zr3K3/rGO, respectively. The structure, morphology and catalytic activity of the CeZrK/rGO nanocomposites were thoroughly investigated and the results show that the CeZrK/rGO nanocomposites have nanoscale pore structure (36.1–36.9 nm), high-dispersion quality, large specific surface area (117.2–152.4 m2/g), small crystallite size (6.7–8.3 nm), abundant oxygen vacancies and superior redox capacity. The 50% soot conversion temperatures of Ce5Zr1K1/rGO, Ce5Zr2K2/rGO, and Ce5Zr3K3/rGO under tight contact condition were decreased to 352 °C, 339 °C and 358 °C respectively. The high catalytic activity of CeZrK/rGO nanocomposites can be ascribed to the following factors: the doping of Zr and K ions causes the nanocrystalline phase formation in CeZrK solid solutions, reduces the crystallite size, generates abundant oxygen vacancies and improves redox capacity; the rGO as a carrier provides a large specific surface area, thereby improving the contact between soot and catalyst

    Statistical Study of Ionospheric Equivalent Slab Thickness at Guam Magnetic Equatorial Location

    No full text
    The ionospheric equivalent slab thickness (τ) is defined as the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), and it is a significant parameter representative of the ionosphere. In this paper, a comprehensive statistical analysis of the diurnal, seasonal, solar, and magnetic activity variations in the τ at Guam (144.86°E, 13.62°N, 5.54°N dip lat), which is located near the magnetic equator, is presented using the GPS-TEC and ionosonde NmF2 data during the years 2012–2017. It is found that, for geomagnetically quiet days, the τ reaches its maximum value in the noontime, and the peak value in winter and at the equinox are larger than that in summer. Moreover, there is a post-sunset peak observed in the winter and equinox, and the τ during the post-midnight period is smallest in equinox. The mainly diurnal and seasonal variation of τ can be explained within the framework of relative variation of TEC and NmF2 during different seasonal local time. The dependence of τ on the solar activity shows positive correlation during the daytime, and the opposite situation applies for the nighttime. Specifically, the disturbance index (DI), which can visually assess the relationship between instantaneous τ values and the median, is introduced in the paper to quantitatively describe the overall pattern of the geomagnetic storm effect on the τ variation. The results show that the geomagnetic storm seems to have positive effect on the τ during most of the storm-time period at Guam. An example, on the 1 June 2013, is also presented to analyze the physical mechanism. During the positive storms, the penetration electric field, along with storm time equator-ward neutral wind, tends to increase upward drift and uplift F region, causing the large increase in TEC, accompanied by a relatively small increase in NmF2. On the other hand, an enhanced equatorward wind tends to push more plasma, at low latitudes, into the topside ionosphere in the equatorial region, resulting in the TEC not undergoing severe depletion, as with NmF2, during the negative storms. The results would complement the analysis of τ behavior during quiet and disturbed conditions at equatorial latitudes in East Asia

    Statistical Study of Ionospheric Equivalent Slab Thickness at Guam Magnetic Equatorial Location

    No full text
    The ionospheric equivalent slab thickness (τ) is defined as the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), and it is a significant parameter representative of the ionosphere. In this paper, a comprehensive statistical analysis of the diurnal, seasonal, solar, and magnetic activity variations in the τ at Guam (144.86°E, 13.62°N, 5.54°N dip lat), which is located near the magnetic equator, is presented using the GPS-TEC and ionosonde NmF2 data during the years 2012–2017. It is found that, for geomagnetically quiet days, the τ reaches its maximum value in the noontime, and the peak value in winter and at the equinox are larger than that in summer. Moreover, there is a post-sunset peak observed in the winter and equinox, and the τ during the post-midnight period is smallest in equinox. The mainly diurnal and seasonal variation of τ can be explained within the framework of relative variation of TEC and NmF2 during different seasonal local time. The dependence of τ on the solar activity shows positive correlation during the daytime, and the opposite situation applies for the nighttime. Specifically, the disturbance index (DI), which can visually assess the relationship between instantaneous τ values and the median, is introduced in the paper to quantitatively describe the overall pattern of the geomagnetic storm effect on the τ variation. The results show that the geomagnetic storm seems to have positive effect on the τ during most of the storm-time period at Guam. An example, on the 1 June 2013, is also presented to analyze the physical mechanism. During the positive storms, the penetration electric field, along with storm time equator-ward neutral wind, tends to increase upward drift and uplift F region, causing the large increase in TEC, accompanied by a relatively small increase in NmF2. On the other hand, an enhanced equatorward wind tends to push more plasma, at low latitudes, into the topside ionosphere in the equatorial region, resulting in the TEC not undergoing severe depletion, as with NmF2, during the negative storms. The results would complement the analysis of τ behavior during quiet and disturbed conditions at equatorial latitudes in East Asia

    Triolein Embedded Cellulose Acetate Membrane as a Tool to Evaluate Sequestration of PAHs in Lake Sediment Core at Large Temporal Scale

    No full text
    Although numerous studies have addressed sequestration of hydrophobic organic compounds (HOCs) in laboratory, little attention has been paid to its evaluation method in field at large temporal scale. A biomimetic tool, triolein embedded cellulose acetate membrane (TECAM), was therefore tested to evaluate sequestration of six PAHs with various hydrophobicity in a well-dated sediment core sampled from Nanyi Lake, China. Properties of sediment organic matter (OM) varying with aging time dominated the sequestration of PAHs in the sediment core. TECAM-sediment accumulation factors (MSAFs) of the PAHs declined with aging time, and significantly correlated with the corresponding biota-sediment accumulation factors (BSAFs) for gastropod (<i>Bellamya aeruginosa</i>) simultaneously incubated in the same sediment slices. Sequestration rates of the PAHs in the sediment core evaluated by TECAM were much lower than those obtained from laboratory study. The relationship between relative availability for TECAM (MSAF<sub>t</sub>/MSAF<sub>0</sub>) and aging time followed the first order exponential decay model. MSAF<sub>t</sub>/MSAF<sub>0</sub> was well-related to the minor changes of the properties of OM varying with aging time. Compared with chemical extraction, sequestration reflected by TECAM was much closer to that by <i>B. aeruginosa</i>. In contrast to <i>B. aeruginosa</i>, TECAM could avoid metabolism and the influences from feeding and other behaviors of organisms, and it is much easier to deploy and ready in laboratory. Hence TECAM provides an effective and convenient way to study sequestration of PAHs and probably other HOCs in field at large temporal scale
    corecore