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Abstract:  We introduce a novel method for retrieving the phase from a 
spectral shearing interferogram, based on wavelet-transform technique. We 
demonstrate with both theoretical and experimental data that this technique 
provides an alternative and reliable technique for phase retrieval, 
particularly for highly structured pulse spectra. 
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1. Introduction 

Ultrashort laser pulses in visible and near infrared have broken through 3fs barrier with 
precise phase compensation [1]. In generation of such pulses, the precision measurement of 
the spectral phase is the key when using measured phase for feedback compensation. Based 
on Fourier-transform (FT) technique [2], spectral phase interferometry for direct electric-field 
reconstruction (SPIDER) has been shown to be a reliable technique for phase measurement of 
ultra-broadband femtosecond pulses [3-5]. In conventional SPIDER procedure, the frequency 
domain interferogram is Fourier-transformed to a time domain. This procedure yields a 
function of three peaks. The AC component peaked at τ+=t  is selected using a filter (e.g. 
Gaussian function) and then inversely Fourier-transformed to the frequency domain. A 
concatenation procedure is used to recover the phase [3]. The reliability of this procedure was 
examined by Anderson and Jensen et al. [4, 5]. They proved that SPIDER is robust against 
noise for a large range of filter windows. However, their analysis was performed for only very 
smooth and narrow spectra (10.3 THz bandwidth [4]), and relatively broad temporal pulses 
(50fs [5]) respectively, while the mono-cycle pulses could have a bandwidth of as broad as 
500 THz structured spectra. In few-cycle and mono-cycle regime, the pulse spectrum becomes 
extremely broad and complicated. This is because the conventional ultrashort pulse lasers are 
unable to produce enough bandwidth to support such pulses; the spectrum broadening is 
usually obtained by passing intense femtosecond pulses through gas filled hollow fibers [6], 
or through filamentary propagation [7]. Those processes are usually associated with 
complicated structures. Furthermore, when the phase compensation is made by a liquid crystal 
spatial light modulator (LC-SLM), the pulse spectrum could display very sharp modulations if 
the applied phase difference between the adjacent pixels is over the maximum phase a pixel 
can offer, for example, 2π [8]. To our experience, because the modulation period is 
somewhere similar to the fringe spacing, the transform of this modulation will be close to the 
AC signal, and a temporal filter cannot exactly exclude such noise. Therefore, the retrieved 
phase, and as a result the pulse profile, is more or less dependent on the width of the temporal 
filter. 

In this paper, we introduce a novel technique for extracting the phase from a SSI [3], based 
on wavelet-transform (WT) [9, 10], for the first time to the best of our knowledge. We show 
the calculation procedure of phase reconstruction through SSI signal by WT, with both 
theoretical and experimental SSI data from SPIDER measurements, and discuss some 
important features of WT graphics. We demonstrate that this technique provides an alternative 
and reliable technique for phase retrieval from SSI, particularly for highly structured pulse 
spectra. This technique should be useful in generation and characterization of ultrashort and 
monocycle pulses. 

2. Mathematics description of wavelet-transform 

Wavelet-transform, as a rising branch of mathematics, has become a powerful tool for signals 
analysis, especially for analysis of signal with complicated frequency components. In 
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principle, WT converts one-dimensional time signal into two-dimensional time-frequency 
topography, which displays the time and frequency information of the signal in an apparent 
time-frequency plane. When a complex wavelet is used as mother wavelet, WT of the signal is 
also complex; therefore, there come two topographies of WT: magnitude topography and 
phase topography. Magnitude topography reflects the frequency intensities at each time point; 
and phase topography reflects phase of frequencies at corresponding time point. All the time 
and frequency information of the signal shows readily apparent on the two topographies; 
therefore, one could directly read out the phase at the corresponding frequency in the phase 
topography. This phase retrieval technique has been verified in reference [11-13]. 

Here we describe the mathematics of complex WT and show how it is applied in phase 
retrieval from SSI. 

The basis functions of WT called daughter wavelets, which are generated by dilation and 
translation from a mother wavelet )(ωψ . In order to apply WT technique on the SSI analysis, 
the WT of the SSI function )'(ωf  can take the following form: 
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ω∆  is a dilation factor that represents a variable width of the daughter wavelet, for measuring 
the spacing of the interferogram, and ω  the translation factor that shifts the peak of the 
daughter wavelet along the interferogram. 

In SSI, the relationship between time and spacing of the interferogram can be expressed as: 
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Unlike FT, the basis of WT is not unique. In this research, we choose Gabor wavelet (also 
called Gaussian wavelet) as the mother wavelet. The reason is that Gabor wavelet has the least 
spread in both frequency and time domain; therefore it has the best time-frequency resolution 
[14]. The expression of the Gabor wavelet is: 

                                         4/12)'22/'( )/()'(
22

πσωψ πωσω ie +−=                                                     (4) 

where 2/1)2ln2( −=σ  is a constant. 

3. Phase extraction procedure and graphics of wavelet-transform 

To demonstrate the phase analysis procedure of SSI signal using WT, we constructed a SSI 
signal with an assumed femtosecond pulse at a central wavelength of 800nm and a bandwidth 
of 100nm, for a zero phase. The spectral shear and the time delay between two replicas for 
this SSI are of Ω =25×1012rad/s and τ =0.7ps respectively. Then we performed WT of such a 
SSI through Eq. (1). The time delay is discretized from 0.1ps to 1.3ps, at a step of 0.033ps, 
and ω  is discretized in the space of 0.1THz. 

As mentioned above, the complex WT of SSI produces simultaneously two graphs: the 
magnitude topography (also called WT trace) and the phase topography, which are shown in 
Fig. 1(a) and Fig. 1(b). In Fig. 1(a), the case of the SSI analysis with WT, the frequency 
means the frequency of the sum waves (not the fundamental wave) and the vertical axis is its 
relative delay (not the real time). In Fig. 1(b), the vertical axis is the wrapped phase. The two-
dimensional information is more easily and intuitively interpreted for the second-order 
dispersion and the higher-order dispersion of the spectral phase in time-frequency space.  
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To extract this phase, a program is applied to search for the maximum magnitude of the 
WT trace for each carrier frequency point, which results in a straight line (pink colored) in Fig. 
1(a). The phase along the line in Fig. 1(b) that is projected from Fig. 1(a) are the wrapped 
phase ( ) ( )ϕ ω ϕ ω ωτ− + Ω + . The rest procedure for extracting the spectral phase ( )ϕ ω  will be 
exactly the same as the standard SPIDER concatenation algorithm. As expected, this 
procedure results in a flat phase. This calculation procedure does not require a filter and the 
second transform. 

 
Fig. 1. WT graphics for zero phases: (a) magnitude topography. (b) phase topography. 

The same procedure can be applied to more complicated phase. Some typical WT traces 
with high order phases are shown in Fig. 2 (Phase topographies are not plotted here). The pink 
colored lines or curves superimposed in the figures indicate the maximum magnitude of the 
WT traces. 

 
 (a) WT traces for quadratic phase: left: -4×103fs2; right: +4×103fs2. 

 
 (b) WT traces for cubic phase: left: -6×103fs3; right: +6×103fs3. 

 
 (c) WT traces for quartic phase: left: -2×104fs4; right: +2×104fs4. 

Fig. 2. WT graphics for high order phases. 

Figure 2(a) is for the phase of negative and positive quadratic phase ∓ 4×103fs2. The pink 
colored line reveals that the negative and positive phases are shifted to higher or lower 
positions with respect to zero phase τ =0.7ps. In Fig. 2(b), the WT traces and the lines for 
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maximum magnitude are tilted showing the cubic phase (∓ 6×103fs3). Notice that they are 
tilted in opposite directions. Subsequently, the quadratic curves in Fig. 2(c) represent quartic 
phase (∓ 2×104fs4). Therefore, the phase of a femtosecond pulse can be identified from the 
position, slope, or curvature of WT traces. 

We operate the phase retrieval procedure described before. For all assumed phases, RMS 
error with the assumed phase is of <0.02rad, which is no more than the error with Fourier 
technique. 

4. Wavelet-transform reconstruction with practical SSI signal 

Having theoretically proved the validity of this technique, we attempted the reconstruction of 
the phase for a practical SSI. The laser amplifier and the measurement system are exactly the 
same as described in reference [8]. We first measured the phase of a femtosecond pulse 
through a hollow fiber filled with 3atm argon gas, using a standard SPIDER setup, in which 
the spectral shear and the delay of pulse replicas were Ω =24.5×1012rad and τ =1.006ps, 
respectively. The measured phase was then sent to the LC-SLM, as feedback, so that the 
phase is nearly flat. Figure 3 is a measured SSI of when feedback is applied. It can be seen 
that the SSI fringes are highly structured. 

 
Fig. 3. Measured spectral shearing interferogram. 

 

 
Fig. 4. Results of WT: (a) Magnitude topography. (b) Phase topography. (The pink 
colored curve represents the maximum value of the magnitude.) 

Figure 4(a) and Fig. 4(b) show the WT trace and phase topography obtained from the SSI 
in Fig. 3, respectively. The time delay selected as from 0.6ps to 1.5ps, at a step of 0.03ps. The 
pink colored curve in Fig. 4(a) is the maximum magnitude detected for each frequency point, 
and the one in Fig. 4(b) is the projection of that in Fig. 4(a). The wrapped phase was obtained 
from Fig. 4(b) at the corresponding points. The spectral phase was then retrieved following 
the standard concatenation algorithm. The same procedure was also applied using FT 
technique with different width of rectangular shaped filter. The results with both techniques 
are shown in Fig. 5. 

Figure 5(a) demonstrates that, with FT technique, the different filter width indeed led to 
differences in retrieved phase, which modifies the profile of the reconstructed pulse (Fig. 5(b)). 
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While the phase and pulse profile calculated with WT technique are unique, and they at least 
align with one of the results obtained with the standard FT procedure with a “suitable” filter 
width. 

 
Fig. 5. (a) Spectrum and reconstructed phase with WT and FT techniques. (b) 
Reconstructed pulse profiles in comparison with the transform-limited pulses.  

5. Discussions 

As shown above, one of the practical advantages of using WT technique is that it does not 
need to choose filter type or filter width for a particularly structured SSI, which may benefit 
the automatic feedback control. This is because substituting the procedure of filter, WT 
algorithm read the phase along the maximum value curve in magnitude topography, thus the 
phase noise introduced from filter window is avoided. 
      Another interesting feature of application of WT technique in phase extraction is that WT 
traces may analogy to FROG traces [15]. Indeed, WT traces look very much like FROG [15] 
or SHG FROG traces [16]. However, they have at least two differences: 

1) WT trace is basically the derivative of the FROG trace (the second order derivative of 
the phase). Therefore the position in the temporal axis defines the sign and value of the 
quadratic phase; while in FROG the temporal axis is relevant. 

2) In WT algorithm, the phase is extracted directly from the corresponding position in the 
associated phase topography; while FROG does not have such a phase trace; therefore it has 
to apply the iteration program. 

Compared with the FT algorithm, the phase extraction of WT is more straightforward. In 
FT technique, signal information need transform between two domains: spectral interferogram 
should be transformed into pseudo time domain to slice out the AC component; to recover the 
phase in frequency domain, a second Fourier-transform is needed. However, WT of spectral 
interferogram reflects information associated with time domain and frequency domain on an 
apparent plane, on which spectral phase at each time delay (or period) can be read directly. 
Therefore no second inverse transform is needed to transfer information between the two 
domains. 

In FT, different width of filter window may introduce different phase noise, which results 
in uncertainty of retrieved phase. One may propose that the modulation noise can be excluded 
by choosing larger delay τ . However, the practical limitation of large τ  is the resolution of 
the spectrometer, since larger τ  means less fringe spacing and less points for each fringe. 

It appears that the WT produces artifacts when applied near the edges of signals; however, 
it should have no much effect on the reconstructed pulse, because they usually happen at far 
edges of the spectrum. 

6. Conclusions 

We have described an application of wavelet-transform based phase extraction algorithm of 
ultrashort pulse characterization, using as an example SSI, and demonstrated its certain 
advantages of the proposed technique over the conventional Fourier transform based 
algorithm. The results proved this new technique viable in characterization of ultra-broadband 
pulses and pulses with highly structured spectrum. This technique should be best to use for 
highly structured pulse spectra. Further investigation is being conducted for further reduction 
of the phase noise for highly structured spectra of monocycle optical pulses. 
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