30 research outputs found

    Development of a Distributed Multi-MCU Based Flight Control System for Unmanned Aerial Vehicle

    Get PDF
    [[abstract]]This paper investigates the design and implementation of a distributed multi-microcontroller based control system development environment. A DSPIC microcontroller (MCU) based system architecture is established first. The system contains three major parts, namely, sensing and attitude determination section, control section, and ground section. The sensing and attitude determination section consists of four circuit boards (master control board, slave control board, sensor board, and power supply board) with identical size ( ). The sensor boards contains three axes inertial measurement unit (include gyro, accelerometer, and electronic compass) and a GPS receiver. The sensors and the DSPIC MCUs are connected over an I2C (inter-integrated circuit) data bus with the DSPIC on the master control board as the master MCU. Unscented Kalman filter based attitude estimation is incorporated in this embedded system. With incorporation of modular design, combination of the master control board and the slave control board will form the control section of the system. Communications between sections are achieved through UART interface. Because of modular design, the system can be easily expanded to integrate other avionics functions. A model-based state feedback flight control system with time delay is also presented to deal with the inevitable time delay problem of the network control system. The plant model is used to simulate the plant behavior during the periods when sensor data are not available. When the controller receives the sensor data that were transmitted by the sensor a period of time ago, a propagation unit is employed in the control system to propagate the sensor signals instantaneously to the present time. The estimate is then used to update the model that in turn will generate the control signal for the UAV. Computer simulation confirms the success of the model-based design for the distributed multi-chips flight control system.[[sponsorship]]中華民國航空太空學會; 成功大學[[conferencetype]]國內[[conferencedate]]20141115~20141115[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]台南市, 台

    [[alternative]]H-Infinity Low-Order Controller Design for Linear Discrete Systems

    Get PDF
    計畫編號:NSC90-2213-E032-007研究期間:200108~200207研究經費:307,000[[sponsorship]]行政院國家科學委員

    [[alternative]]State Space Modeling and Control of Centrally Supported Rectangular Flexible Plate

    Get PDF
    計畫編號:NSC89-2213-E032-024研究期間:199908~200007研究經費:449,000[[sponsorship]]行政院國家科學委員

    [[alternative]]Robust Low-Order Controller Design for Linear, Discrete Multi-Input-Multi-Output Systems

    Get PDF
    計畫編號:NSC89-2218-E032-017研究期間:200008~200107研究經費:312,000[[sponsorship]]行政院國家科學委員

    [[alternative]]Coprime Factors, Linear Matrix Inequalities and Robust Low-Order Controller Design

    Get PDF
    計畫編號:NSC88-2213-E032-027研究期間:199808~199907研究經費:265,000[[sponsorship]]行政院國家科學委員

    [[alternative]]Design and Validation of Solar Power Management System

    Get PDF
    計畫編號:NSC94-2212-E032-005研究期間:200508~200607研究經費:443,000[[abstract]]本研究之主要目的設計一個以太陽能為動力來源之無人飛行載具之電源管理系統及測試環境。電源管理系統之主要功能是提供機載電腦與推進系統之電力使用,並同時監控電力供應狀況。電源管理系統主要分為三級,第一級為太陽能最大功率追蹤,第二級為鋰電池充/放電管理,第三級則為電力轉換。實體系統設計完成後,將在實驗平台上驗證,並探討太陽能電池因飛機飛行姿態快速改變,受光角度快速變化時其電力之變化情形,同時將分析最大功率追蹤之追蹤速度與效率。[[sponsorship]]行政院國家科學委員

    [[alternative]]Control Loading Measurement and Analysis

    Get PDF
    計畫編號:NSC91-2623-7032-002研究期間:200201~200212研究經費:578,000[[sponsorship]]行政院國家科學委員

    無人飛行載具分布式多微控制器飛行控制系統之設計與分析

    No full text
    [[abstract]]本文探討無人飛行載具分布式多單晶片微控制器飛行控制系統之設計。飛控電腦與其他航電系統間透過I2C通訊介面建構成一個獨立的網路控制系統,並以飛控電腦為主控制器。時間延遲為網路控制系統的潛在問題,因此本文探討設計一個考慮時間延遲的分布式多微控制器之飛行控制系統。此控制系統是以動態模式為基礎的狀態迴授之網路控制系統,當控制系統沒有收到感測器之資訊時,則以系統動態模式來產生系統狀態資訊,並據以產生控制命令,另外當控制系統收到感測器之資訊時,此資訊到達控制時已延遲一段時間,此時我們透過設計一個資料傳遞單元來模擬時間延遲後的即時系統狀態,並用來更新動態模式之系統狀態,使控制系統不至於一直處於開迴路之控制狀態。設計結果在MATLAB環境上成功的完成驗證。[[sponsorship]]淡江大學[[conferencetype]]國內[[conferencetkucampus]]淡水校園[[conferencedate]]20131130~20131130[[booktype]]電子版[[iscallforpapers]]Y[[conferencelocation]]新北市淡水, 臺

    無人飛行載具分布式多微控器飛行控制系統發展環境設計

    No full text
    [[abstract]]本文探討分布式多微控制器系統之設計。首先建構一個以DSPIC微控制器為核心的系統架構,此架構由三個子系統組成,分別為感測及姿態角計算模組、控制模組、及地面控制站。感測器包含三軸陀螺儀、加速儀、及電子羅盤與一個GPS接收器。感測及姿態角計算模組由四張電路板組成,分別是電源控制板, 感測器板, 主控制板及次控制板。感測器與主控制板及主控制板與次控制板之間透過I2C通訊介面建構成一個獨立的網路控制系統,主控制板上的微控制器扮演MASTER 的角色,其餘為SLAVE。整個硬體設計採模組化之設計,因此組合主控制板及次控制板即可成為系統之控制模組使用。本設計之核心為具DSP運算功能的多顆微控制器,並在此系統上實現複雜的非線性卡曼濾波,執行姿態角計算。感測及姿態角計算模組與控制模組透過USART傳遞資料。因為本系統為模組化設計,我們可以很容易地擴充系統的航電需求。[[sponsorship]]淡江大學[[conferencetype]]兩岸[[conferencedate]]20141118~20141119[[booktype]]紙本[[iscallforpapers]]Y[[conferencelocation]]淡水, 台

    多輸入多輸出線性離散系統低階控制器設計:極點設置問題

    No full text
    [[abstract]]本研究發展一個可靠且系統化的多輸入多輸出線性離散系統之低階控制器且滿足極點設置需求的設計方法。我們利用互質因子、Outer函數的性質,及線性矩陣不等式之技術將低階控制器的設計轉化為Convex optimization的問題。本文所提供的設計法則不需重覆疊代求解,沒有收斂的問題。此設計法則可延伸到解決模式匹配及H/sub ∞/最佳化等之低階強健控制器的設計。[[sponsorship]]國防大學中正理工學院; 中華民國自動控制學會; 研華文教基金會[[conferencetype]]國內[[conferencedate]]20010324~20010324[[booktype]]紙本[[iscallforpapers]]Y[[conferencelocation]]桃園縣, 臺
    corecore