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Abstract- This report proposes a non-iterative
computational algorithm for the design of
discrete-time fixed order controller for an H,
optimization problem. Using the coprime factors and
pole placement constraints, the fix-order controller
design is reformulated as a convex optimization
problem. The solutions are obtained using linear
matrix inequality techniques. An aircraft model with
3-inputs and 3-outputsis used toillustrate the design
algorithm.
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1. Introduction

The H- design techniques are broadly used for robust
controller design. However, the order of the resulting
controllers are much higher then necessary. In practical
control designs, low-order controllers are usually desired
for system reliability and ease of implementation. The
design of fixed- order controller is still an open control
problem.

The difficulty is that the design of low-order
controller to optimize certain performance involves a
bi-affine matrix inequality(BMI), which is non- convex
and cannot be solved using the existing convex
programming software. Instead of solving directly the
BMI problem, severa researchers have shown that
low-order controllers can be obtained by solving
iteratively LMI subproblems, which are convex. These
approaches include aternating projection method [5]
rank condition minimization method [6] and successive
substitution method [4][10][11].

In [13], a low-order controller design method using
coprime factors, strictly positive real function (SPR) and
LMIs was developed for continuous -time single-input
single-output (SISO) systems. This method is expanded
to solve the model- matching problem for
continuous-time MIMO systems [14]. For discrete time
case, low-order robust controller design algorithms
using coprime factors, discrete outer functions and LMIs
were developed [9]. This report summarizes the results
of the development of the low-order controller design
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for an H. optimization problem. Using the coprime
factors and pole placement constraints, the fix-order
controller design is formulated as convex optimization
problem subject to several LMI constraints. An aircraft
model with 3-inputs and 3-outputs is used to illustrate
the design algorithm.

The paper is organized as follows. Section 2 discusses
the structure of the coprime factorization for the
low-order controller. In Section 3 we formulate the
low-order stabilizing controller design as an LMI
feasibility problem. A pole placement design concept is
discussed in section 4. The formulation and solution
algorithm for an H. optimization problem are presented
in Section 5. The application of the proposed design
algorithm for the control of the vertical plane dynamics
of an aircraft isincluded in Section 6.

2. Coprimefactorization

Consider alinear time-invariant system G(z) with the
state-space realization

x(k+1) = Ax(k) + Bu(k)

y(k) = Cx(k)

where xeR" is the state variable vector, ueR™ is the
controlled input variable, and yeR” is the measured
output variable. Assume that the system (1) is
stabilizable and detectable. In the packed matrix
notation, G(z) is represented by

A| B
oo 22]
Since the system (1) is stabilizable and detectable, we
perform aright coprime factorization of G(z) to obtain
G(2) =Gy (2)G, (2) 3

The state-space redization of Gp(z) and Gy(z) can be
represented as

D

6.() A-BF | B
{ b Z}a -F |1 4
GN(Z) C 0

where F is a stabilizing full-state feedback gain such that
al the eigenvalues of 4-BF are inside the unit circle of
the z-planr. In contrast to a full-order stabilizing
controller K(z) for G(z), whose coprime factorization
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can be readily defined in terms of A4,B,C, and a
stabilizing observer gain L, for a reduced-order
controller we first need to define its structure before
performing  coprime  factorization. Select the
reduced-order controller K(z) with p inputs and m
outputs to have the structure

ki (2) klp (2) |
4 4
K(z)=| : : ©)
k1 (2) ko (2)
& 4,0

where k[jfz) and d;(z) are polynomials defined as
ky(2)=b; 2" +by 02" by (6)

ij ,ni
) 1
di (Z) =z" +ai,m'—lzm +"'a1,0 (7

i=L-m ; j=1--,p (8)

a;,, and b;;; =1,...,ni are unknown coefficients to be
solved. We can perform a left coprime factorization of
K(z) as

K(2)=K, (2K, (2) (9)

The coprime factors Ky(z) and Kp(z) are stable transfer
function matrices with

kyy(2) b, (2) |
d,(2) d,(2)
K,(z)= : : (10)
kml (Z) kml’ (Z)
4,6 4,
AR
( ) dcl'(Z) .
K,(z)=| : : (11)
. 4,0
O (=) |

where d.;(z),j=1,..,m, ae predetermined stable
monic polynomials. The order of d.;(z) and d;(z) are
the same. The order of the controller K(z) is the sum of
the degree of d,(z),.., d,(z). For reduced-order
controller, the order of the controller is limited to be
smaller then n (the order of the plant (1)). If there are no
unstable hidden modesin K(z), then (9) is aleft coprime
factorization. We can use either observable or
controllable canonical-form to realize each transfer
function k;;(z)/ d..(z) in Ky(z) to obtain the
state-space redlization of Ky(z). That is, if observable
canonical-form isused, Ky (z) can be represented as

|:Akna Bkno :|

K,(z) & (12)

C D

where 4,,, and C,,, are constant matrices determined
from the pre-selected denominators d.;(z). The
unknown coefficients of the numerators k;(z) are
included in B;,, and D;,,. On the other hand, if
controllable canonical-form realization is selected, Ky(z)
can be represented as

kno kno

K ( )(_) Aknc Bknc 13
z
N D (13)
where 4;,. and B;,. are constant matrices determined
from the pre-selected denominators d.;(z). The
unknown coefficients of the numerators k;;(z) are
included in C;,. and D;,.. We note that in these
redlizations, we can make Ay, = Aine *y Dino =Dine.
But we will have no luck for B;,, and C;,, in general.
We further note that both realizations are required for
the design of an H. low-order controller in this paper.
We can define the state-space redlization for Kp(z) in
the similar way. Since K (z) is defined in diagonal form,
we will only need one realization in our design

agorithm
A B

KD (Z) PEN |: kd kd:|
de Dkd

where 4,, and B, are constant matrices, and D,, =I.
The unknown coefficients of the denominators d;(z) are
included in Cy,.

knc knc

(14)

3. Low-order stabilizing controller design

Consider the closed-loop regulation system in Figure
1

r

\

K@z P G(2)

Figurel: Closed-loop Regulation System

The closed-loop transfer function from the command
r to the output y, denoted as 7(z), is
T(z) =[1+G(2)K(2)] 'G(2)K(2) (15)
Using coprime factorization of G(z) and K(z), the
closed-loop transfer function 7(z) is

T(2) =G, (2)0(2) 'K, (2) (16)
where Q(z) is defined as

0(z) =K, (2)G,(2) + K, (2)G, (2) (17)
Using the state-space redlizations (4), (13) and (14), a
state-space realization of O(z) can be written as

Akd - Bde 0 Bkd
0 A- BF 0 B
0(z) &
0 BkncC Aknc O
¢, -F+D,C C,, 1
A | B
[a)2] s
Cq Dq

where 4, is stable. We note that the design parameters
appear linearly in C,. The following results are crucial
to the development of the design method proposed in
this paper.

Lemmal : If there exist a symmetric positive definite
matrix P, such that the following matrix inequality is



satisfied
A'P4,-P A/PB,-C!
B/PA,-C, —1

I-B]PB, 20 (20)

then all zeros of Q(z) are inside the unit circle of the
z-plane.

<0 (19)

Proof : Suppose the inequality (19) is satified, we

have
T
Aq PAq -P

(21)
+(ATPB, ~CI)(BI P4, -C,)<0

The inequality (21)can be written as
(4,-8,C,) P(4,-B,C,)-P
+ A4, PB,B,PA,+C, (I-B,PB,)C, <0

it /—B,PB, >0 then

(4,-BC) P4,-BC)-P<0 (22)

Inequality (22) impliesthat 4,-B,C, is stable that is,
0’'(z) isstable. Therefore, all zeros of Q(z) are

inside the unit circle of the z-plane.
]

Theorem 1 : If there exist matrices By,,., Dy, and By
having the controllable canonical realization structure
defined in (13) and (14), such that the LMIs (19) and (20)
are satisfied, then u=-K(z)y is a stahilizing controller.

Proof : The proof is established by observing that the
LMIs (19) and (20) guarantee the stability of the transfer
function O ’(z). Which implies that the closed-loop
transfer function 7(z) in (15) is stable.m

Theorem 1 gives a practica method for finding a
low-order stabilizing controller. The LMIs (19) and (20)
together with the pre-determined structure of By, Dy,
and B;, can be solved as a feasibility problem using a
convex programming toolbox such as [3]. In this paper,
we will concentrate on the design of low-order
controller for the H. optimization problems.

4. Pole Placement Design

With a low-order controller, we no longer have the
freedom to arbitrarily place all the closed-loop system
poles. The objective then is to find a low-order
controller such that the closed-loop system poles are
close to a set of pre-specified poles. From (16), we
observe that

T(2) =Gy (2)Ky(2) (23)

if Oz)=I is assumed. In this case, the poles of the
closed-loop system are exactly the union of the poles of
Gy(z) and the poles of Ky(z), which are predetermined
by the designer. Thus we propose the following
optimization problem to approach the pole placement
design

min|o(z) -1, (24)
subject to the constraint (19) and (20). We can regard
(24) as aregional pole-placement problem, in which the
pole-placement regions are determined by the poles of
Gy(z)Ky(z). We remark that Q(z)=I can be achieved
for afull order controller due to Bezout identity [13], in
which all the desired poles can be exactly placed.

L et the state-space model of Q(z)-1 be given by

Aq Bq
Q@) -1) o (25)
c,| 0
Using the Bounded-Real Lemma [1], the optimization
problem (24) can be expressed as
miny, (26)

K(s)

subject to the LMIs

A'XA,+X A4 XB, c,’
T T
B'x4, B'XB,-y,I 0 |<O
C, 0 -7,
(@7
X>0 (28)

and the LMIs (19) and (20). This problem is convex and
can be solved using an LMI agorithm in the unknowns

P;Xv Cknc' :Dkncv de and 7/;7 .

5. H_ Optimization Problem

Consider the robust optimization problem as shown in
Figure 2.
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Figure 2: H. optimization problem
From the system block diagram, we have
{(I} _ |:Pll(z) B, (Z)}[r} (29)
€ Py(z) Py(z) | u

where
9=[a, 49, %]T



Wi(2) W (2)G(2)
Pi(z)=| 0 | By(2)= W,(2)
0 W,(z)G(z)

Py(2)=1 , Py(2)=-G(2)
The H. optimization problem is to find a stabilizing
controller u=K(z)e such that the closed- loop system is
stable and the H. norm of the closed-loop system from

input » to the performance (controlled) output ¢, denoted
asT,,(z) satisfies
I,.2)], <7 (30)
where y >0 is a pre-specified constant. The transfer
function 7,,(z) is
T, (2) = Py(2) + B, (2)[1 + K (2)G(2)] 'K (2)
(31)
Using coprime factorization of G(z) and K(z), the
closed-loop transfer function 7,,(z) is
T,.(2) = By(2) + By(2)G, (2)0(2) 'K (2)
(32)
Obvioudly, finding a controller to satisfy (30) is a
nonconvex problem and is difficult to solve. However, if

QO(z)=I is achieved, then the transfer function 7,,(z)
becomes

T, (2) = Py(2) + F(2) G, (2) K (2) (33)
The state-space redlization of 7, (z) can be written as
A, | B,
A4, 0 0
4, = 0 Aplng B pl2gd Ckno
0 0 A4,

B pl1
B, = BplngDkno

B

kno

Czr = lell Cplng Dplng Ckh(?J
Dzr = lD]Jll + DplngD
where

A B
Pi) |
Cpll Dpll
B

A
P (Z) G (Z) < pl2gd pl2gd
12 D Cplzgd D

kno

pl2gd

Note that we use observable canonical-form realization
for Ky(z) here. Now, the design para ters appear
linearly in B., and D.,.. Thus, we formulate the H-
optimization problem as

min(y +y,)

K(s)
subject to the LMIs

A RAT -R  A_RC! B,
C.RAI  C_RCI -y D! |<0 (35

B}, D, -1
R>0 (36)

and the LMIs (19), (20), (27), and (28). The LMI
variables are y,, 7, the controller parameters k;;(z),

and d;(z), and the positive definite matrices P, X, R.

6. Design Example

In this section, we will apply the proposed design
algorithm to design a fixed order controller for the
aircraft model AIRC [7]. The model represents a
linearized model of the vertical-plane dynamics of an
aircraft, and has three inputs, three outputs, and five
states. The inputs are spoiler angle (u;, mea-sured in
tenths of a degree), forward acceleration (u», in m/sec?),
and elevator (u;, in degrees). The states are atitude
relative to some datum (x;, in m), forward speed (x,, in
m/sec), pitch angle (x;, in degrees), pitch rate (x;, in
deg/sec), and vertical speed (x5, in m/sec). The three
outputs are just the three states, which are to be
controlled.

The design requirements are to achieve a closed-loop
bandwidth of about 10 rad/sec, with reasonably damped
responses and minimize sensitivity at zero frequency. In
order to do this, we select the following weighting
functions in the design.

r 2
_(5+60° 0 0
20Q(s +0.6)
2 37
T I G- S (37)
20Q(s +0.6)
0 0 (s+60)
| 20Q(s +0.6)* |
s 0O o
s
38
Wi(s)=| 0 ) 0 (38)
s
0 O 2

The functions W, (s) and W;(s) penaize the sensitivity
and complementary sensitivity function respectively. No
constraint on the control isimposed in the design.

The full order H- controller has an order of eleven.
We aim at designing a third order controller directly
while maintaining the closed-loop stability and
performance requirements. To illustrate the design
algorithm proposed in the paper, we first discretize the
system model with a sampling rate of 100 Hz. Following
the design procedure discussed in the previous sections.
The controller is obtained as

4, | B,
K(z) &
Ce | Dy
05791 -0.0003 0.0039
4, =-0.0003 05949 -0.0037
0.0039 -0.0037 0.6439



[-1.6773 0.0039 -0.6078

B, =|-2.0106 -0.0071 -0.1193
| 15206 0.0316  0.3013
[—0.4368 -66.426 —4.975
C,=| 0.7859 -0.7007 9.2872
| -18361 0.0437 15.537

—-3654 -0.7014 -18.900

D, =|-45305 15.358 -6.8739

-962.12 0.8189 —338.73

The open loop system poles, the selected desired
poles and the closed-loop system poles are listed in
Table 1. The desired poles are selected from the
dominant poles of the closed-loop system with full order
controller. The results show that the closed-loop system
(with the obtained third order controller) poles are very
close to the selected desired poles. The H.-norm bound
y of (30) is0.97 in this design.

Open-loop poles desired poles | Closed-loop poles
1.0 0.7594 0.6584
-0.9922+0.0102i 0.7603 0.7116
-0.9922-0.0102i 0.7605 0.7199
-0.9998+0.0002i 0.7605 0.8309
-0.9922-0.0002i | 0.9144+0.0703i 0.926+0.0672i
0.9144-0.0703i 0.926-0.0672i
0.9145+0.0704i | 0.9218+0.0692i
0.9145-0.0704i 0.9218-0.0692i

Table 1: Pole locations of open loop system, desired
poles, and closed-loop system poles.

The singular value plots of the sensitivity function
and complementary sensitivity function are shown in
Figure 3 and Figure 4 respectively. The results show that
the design specifications are satisfied with the third
order controller.

Time simulation of the closed-loop system are
performed for a unit step change in each of the reference
inputs. The system responses are shown in Figure 5. The
results show that the controller provide good transient
and steady-state performance.

7. Conclusions

This research develops a reliable and systematic
low-order controller design method for an H -
optimization problem. Using the coprime factors and
pole placement constraints, the fix-order controller
design is formulated as convex optimization problem
subject to several LMI constraints. The solutions are
obtained using LMI techniques. The design algorithm is
successfully applied to the control of the vertical plane
dynamics of an aircraft.
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Figure3: Singular value plot of the sensitivity function
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Figured: Singular value plot of the complementary
sensitivity function

18]
(11:1
aaf/
azl

o[-~ L T S S — i

B T T T T T R R T S I T T
Tired (o8]

Figure5: Closed-loop step response to step demand
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