
行政院國家科學委員會專題研究計畫成果報告 
線性離散系統H∞低階控制器設計研究 

H∞ LOW-ORDER CONTROL DESIGN FOR LINEAR DISCRETE-TIME SYSTEMS 
 

計畫編號：NSC 90-2213-E-032-007 
執行期限：90年8月1日至91年7月31日 

計畫主持人：蕭照焜 淡江大學航空太空工程學系 

計畫參與人員：曾慶恩、周紀弘 淡江大學航空太空工程學系 

 
 
Abstract- This report proposes a non-iterative 
computational algorithm for the design of 
discrete-time fixed order controller for an H∞ 
optimization problem. Using the coprime factors and 
pole placement constraints, the fix-order controller 
design is reformulated as a convex optimization 
problem. The solutions are obtained using linear 
matrix inequality techniques. An aircraft model with 
3-inputs and 3-outputs is used to illustrate the design 
algorithm. 
 
Keywords- coprime factorization, robust control, 
pole placement, linear matrix inequalities, low-order 
controller design,  
 
 
1. Introduction 
 

The H∞ design techniques are broadly used for robust 
controller design. However, the order of the resulting 
controllers are much higher then necessary. In practical 
control designs, low-order controllers are usually desired 
for system reliability and ease of implementation. The 
design of fixed- order controller is still an open control 
problem.    

The difficulty is that the design of low-order 
controller to optimize certain performance involves a 
bi-affine matrix inequality(BMI), which is non- convex 
and cannot be solved using the existing convex 
programming software. Instead of solving directly the 
BMI problem, several researchers have shown that 
low-order controllers can be obtained by solving 
iteratively LMI subproblems, which are convex. These 
approaches include alternating projection method [5] 
rank condition minimization method [6] and successive 
substitution method [4][10][11]. 

In [13], a low-order controller design method using 
coprime factors, strictly positive real function (SPR) and 
LMIs was developed for continuous -time single-input 
single-output (SISO) systems. This method is expanded 
to solve the model- matching problem for 
continuous-time MIMO systems [14]. For discrete time 
case, low-order robust controller design algorithms 
using coprime factors, discrete outer functions and LMIs 
were developed [9]. This report summarizes the results 
of the development of the low-order controller design 

for an H∞ optimization problem. Using the coprime 
factors and pole placement constraints, the fix-order 
controller design is formulated as convex optimization 
problem subject to several LMI constraints. An aircraft 
model with 3-inputs and 3-outputs is used to illustrate 
the design algorithm. 

The paper is organized as follows. Section 2 discusses 
the structure of the coprime factorization for the 
low-order controller. In Section 3 we formulate the 
low-order stabilizing controller design as an LMI 
feasibility problem. A pole placement design concept is 
discussed in section 4. The formulation and solution 
algorithm for an H∞ optimization problem are presented 
in Section 5. The application of the proposed design 
algorithm for the control of the vertical plane dynamics 
of an aircraft is included in Section 6. 

 
2. Coprime factorization 
 

Consider a linear time-invariant system G(z) with the 
state-space realization 
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where x∈Rn  is the state variable vector, u∈Rm is the 
controlled input variable, and y∈Rp  is the measured 
output variable. Assume that the system (1) is 
stabilizable and detectable. In the packed matrix 
notation, G(z) is represented by 
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Since the system (1) is stabilizable and detectable, we 
perform a right coprime factorization of G(z) to obtain 
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The state-space realization of GD(z)  and GN(z)  can be 
represented as 
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where F is a stabilizing full-state feedback gain such that 
all the eigenvalues of A-BF are inside the unit circle of 
the z-planr. In contrast to a full-order stabilizing 
controller K(z) for G(z), whose coprime factorization 
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can be readily defined in terms of A,B,C, and a 
stabilizing observer gain L, for a reduced-order 
controller we first need to define its structure before 
performing coprime factorization. Select the 
reduced-order controller K(z) with p inputs and m 
outputs to have the structure 
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where Ak n c  and Bk n c  are constant matrices determined 
from the pre-selected denominators dc i (z) . The 
unknown coefficients of the numerators ki j (z)  are 
included in Ck n c  and Dk n c . We note that in these 
realizations, we can make Ak n o  = Ak n c  T , Dk n o  =Dk n c . 
But we will have no luck for Bk n o  and Ck n o  in general. 
We further note that both realizations are required for 
the design of an H∞ low-order controller in this paper. 





















=

)(
)(

)(
)(

)(
)(

)(
)(

)(
1

1

1

1

11

zd
zk

zd
zk

zd
zk

zd
zk

zK

m

mp

m

m

p

L

MOM

L

       (5) 

  We can define the state-space realization for KD(z)  in 
the similar way. Since KD(z)  is defined in diagonal form, 
we will only need one realization in our design 
algorithm 

where ki j (z)  and di (z)  are polynomials defined as 

0,
1

1,,)( ij
ni

niij
ni

niijij bzbzbzk L++= −
−      (6) 









↔

kdkd

kdkd
D DC

BA
zK )(           (14)  0,

1
1,)( i

ni
nii

ni
i azazzd L++= −

−          (7) 

mi ,,1 L=  ;     (8) pj ,,1 L=
where Ak d  and Bk d  are constant matrices, and Dk d =I. 
The unknown coefficients of the denominators di (z)  are 
included in Ck d . 

ai j , l  and bi j , l  =1,…,ni are unknown coefficients to be 
solved. We can perform a left coprime factorization of 
K(z) as 
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−=                 (9) 3. Low-order stabilizing controller design 
The coprime factors KN(z)  and KD(z)  are stable transfer 
function matrices with 

 
  Consider the closed-loop regulation system in Figure 
1 
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Figure1: Closed-loop Regulation System 
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The closed-loop transfer function from the command 

r to the output y, denoted as T(z), is 
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Using coprime factorization of G(z) and K(z), the 
closed-loop transfer function T(z) is 

where dc i (z) , j=1,…,m , are predetermined stable 
monic polynomials. The order of dc j (z)  and dj (z)  are 
the same. The order of the controller K(z) is the sum of 
the degree of d1(z) ,…,  dp(z) . For reduced-order 
controller, the order of the controller is limited to be 
smaller then n (the order of the plant (1)). If there are no 
unstable hidden modes in K(z), then (9) is a left coprime 
factorization. We can use either observable or 
controllable canonical-form to realize each transfer 
function ki j (z )/  dc i (z)  in KN(z)  to obtain the 
state-space realization of KN(z) . That is, if observable 
canonical-form is used, KN(z)  can be represented as 
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where Q(z) is defined as 
)()()()()( zGzKzGzKzQ NNDD +=      (17) 

Using the state-space realizations (4), (13) and (14), a 
state-space realization of Q(z) can be written as 
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where Ak n o  and Ck n o  are constant matrices determined 
from the pre-selected denominators dc i (z) . The 
unknown coefficients of the numerators ki j (z)  are 
included in Bk n o  and Dk n o . On the other hand, if 
controllable canonical-form realization is selected, KN(z)  
can be represented as 

where Aq  is stable. We note that the design parameters 
appear linearly in Cq . The following results are crucial 
to the development of the design method proposed in 
this paper. 
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Lemma1 : If there exist a symmetric positive definite 
matrix P, such that the following matrix inequality is 
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closed-loop system are exactly the union of the poles of 
GN(z)  and the poles of KN(z) , which are predetermined 
by the designer. Thus we propose the following 
optimization problem to approach the pole placement 
design 
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then all zeros of Q(z) are inside the unit circle of the 
z-plane. 
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Proof : Suppose the inequality (19) is satified, we 

have 
subject to the constraint (19) and (20). We can regard 
(24) as a regional pole-placement problem, in which the 
pole-placement regions are determined by the poles of 
GN(z)KN(z) . We remark that Q(z)=I can be achieved 
for a full order controller due to Bezout identity [13], in 
which all the desired poles can be exactly placed. 0))(( <−−+
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  Let the state-space model of Q(z)-I be given by The inequality (21)can be written as 
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Using the Bounded-Real Lemma [1], the optimization 
problem (24) can be expressed as 
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Inequality (22) implies that Aq-BqCq is stable，that is, 

Q-1(z) is stable. Therefore, all zeros of Q(z) are 

inside the unit circle of the z-plane. 
0>X                                   (28) 

and the LMIs (19) and (20). This problem is convex and 
can be solved using an LMI algorithm in the unknowns 
P,X , Ck n c  , Dk n c , Ck d  and pγ . 

■ 
 
Theorem 1 : If there exist matrices Bk n c , Dk n c , and Bk d  
having the controllable canonical realization structure 
defined in (13) and (14), such that the LMIs (19) and (20) 
are satisfied, then u=-K(z)y is a stabilizing controller. 

 
5. Optimization Problem ∞H
 
  Consider the robust optimization problem as shown in 
Figure 2. 

 
Proof : The proof is established by observing that the 
LMIs (19) and (20) guarantee the stability of the transfer 
function Q- 1(z). Which implies that the closed-loop 
transfer function T(z) in (15) is stable.■ 
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 Figure 2: H∞ optimization problem 

 
  Theorem 1 gives a practical method for finding a 
low-order stabilizing controller. The LMIs (19) and (20) 
together with the pre-determined structure of Bk n c , Dk n c , 
and Bk d  can be solved as a feasibility problem using a 
convex programming toolbox such as [3]. In this paper, 
we will concentrate on the design of low-order 
controller for the H∞ optimization problems. 
  
4. Pole Placement Design From the system block diagram, we have 
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freedom to arbitrarily place all the closed-loop system 
poles. The objective then is to find a low-order 
controller such that the closed-loop system poles are 
close to a set of pre-specified poles. From (16), we 
observe that 

where 
Tqqqq ][ 321=  

 3


















=

0
0

)(
)(

1

11

zW
zP ,  















−
=

)()(
)(

)()(
)(

3

2

1

12

zGzW
zW

zGzW
zP 0<

















−
−

−

IDB
DIRCCRAC
BRCARRAA

zr
T
zr

T
zr

T
zrzr

T
zrzr

zr
T
zrzr

T
zrzr

γ
γ    (35) 

     ,  IzP =)(21 )()(22 zGzP −=  0>R                                   (36) 
and the LMIs (19), (20), (27), and (28). The LMI 
variables are pγ , γ , the controller parameters ki j ( z ) , 
and di (z) , and the positive definite matrices P, X, R. 

  The H∞ optimization problem is to find a stabilizing 
controller u=K(z)e such that the closed- loop system is 
stable and the H∞ norm of the closed-loop system from 
input r to the performance (controlled) output q, denoted 
as Tq r(z)  satisfies 

 
6. Design Example 
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  In this section, we will apply the proposed design 
algorithm to design a fixed order controller for the 
aircraft model AIRC [7]. The model represents a 
linearized model of the vertical-plane dynamics of an 
aircraft, and has three inputs, three outputs, and five 
states. The inputs are spoiler angle (u1 , mea-sured in 
tenths of a degree), forward acceleration (u2 , in m/sec2 ), 
and elevator (u3 , in degrees). The states are altitude 
relative to some datum (x1 , in m), forward speed (x2 , in 
m/sec), pitch angle (x3 , in degrees), pitch rate (x4 , in 
deg/sec), and vertical speed (x5 , in m/sec). The three 
outputs are just the three states, which are to be 
controlled.  

where γ >0 is a pre-specified constant. The transfer 
function Tq r(z)  is 
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Using coprime factorization of G(z) and K(z), the 
closed-loop transfer function Tq r(z)  is 
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Obviously, finding a controller to satisfy (30) is a 
nonconvex problem and is difficult to solve. However, if 
Q(z)=I is achieved, then the transfer function Tq r(z)  
becomes   The design requirements are to achieve a closed-loop 

bandwidth of about 10 rad/sec, with reasonably damped 
responses and minimize sensitivity at zero frequency. In 
order to do this, we select the following weighting 
functions in the design. 
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The state-space realization of Tq r(z)  can be written as 
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[ ] The functions W1(s)  and W3(s)  penalize the sensitivity 
and complementary sensitivity function respectively. No 
constraint on the control is imposed in the design. 

knogdppzr DDDD 1211 +=  
where 









↔

1111

1111
11 )(

pp

pp

DC
BA

zP  
The full order H∞ controller has an order of eleven. 

We aim at designing a third order controller directly 
while maintaining the closed-loop stability and 
performance requirements. To illustrate the design 
algorithm proposed in the paper, we first discretize the 
system model with a sampling rate of 100 Hz. Following 
the design procedure discussed in the previous sections. 
The controller is obtained as 
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Note that we use observable canonical-form realization 
for KN(z)  here. Now, the design para- ters appear 
linearly in Bz r  and Dz r . Thus, we formulate the H∞ 
optimization problem as 
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  The open loop system poles, the selected desired 
poles and the closed-loop system poles are listed in 
Table 1. The desired poles are selected from the 
dominant poles of the closed-loop system with full order 
controller. The results show that the closed-loop system 
(with the obtained third order controller) poles are very 
close to the selected desired poles. The H∞-norm bound 
γ of (30) is 0.97 in this design. 

Figure3: Singular value plot of the sensitivity function 

 

 
Open-loop poles desired poles Closed-loop poles

1.0 
-0.9922+0.0102i 
-0.9922-0.0102i 
-0.9998+0.0002i 
-0.9922-0.0002i 

0.7594 
    0.7603 

0.7605 
0.7605 

0.9144+0.0703i 
0.9144-0.0703i 
0.9145+0.0704i 
0.9145-0.0704i 

0.6584 
    0.7116 

0.7199 
0.8309 

0.926+0.0672i 
0.926-0.0672i 

0.9218+0.0692i
0.9218-0.0692i Figure4: Singular value plot of the complementary 

sensitivity function Table 1: Pole locations of open loop system, desired 
poles, and closed-loop system poles. 

 

 
  The singular value plots of the sensitivity function 
and complementary sensitivity function are shown in 
Figure 3 and Figure 4 respectively. The results show that 
the design specifications are satisfied with the third 
order controller. 
  Time simulation of the closed-loop system are 
performed for a unit step change in each of the reference 
inputs. The system responses are shown in Figure 5. The 
results show that the controller provide good transient 
and steady-state performance. 
 
7. Conclusions 
 

Figure5: Closed-loop step response to step demand   This research develops a reliable and systematic 
low-order controller design method for an H ∞ 
optimization problem. Using the coprime factors and 
pole placement constraints, the fix-order controller 
design is formulated as convex optimization problem 
subject to several LMI constraints. The solutions are 
obtained using LMI techniques. The design algorithm is 
successfully applied to the control of the vertical plane 
dynamics of an aircraft. 
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