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Coprime Factors, Linear Matrix Inequalities, and Low-Order
Controller Design
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Abstract

This paper develops a low-order controller
design method for linear discrete time-mvariant
single-input, single-output systems. Using the
coprime factors and the properties of discrete
outer fimctions, the low-order controller design
becomes a zero-placement problem which is
convex. The solutions are obtamed using the
lnear matrix inequality techniques. The
proposed design method is uwsed to solve for
several optimal control problems, such as
pole-placement design, model-matching design,
and H,, optimization problems.

Keywords - coprime factorization, discrete outer
fimctions, lnear matrix inequalities, low-order
controller design, robust control design

1. Introduction

One of the most Important design issues
for many practic al control problems is the design
of low-order stabilizing controller. The design of
low-order controllers to optimize certain H,, H.,
and pole-placement mvolves a biaffine matrix
mequality (BMI) which is a non-convex
programming problem and camnot be solved
polynomial time. As a result, several rese archers
[11,[4],[51,131,[6] have showmn that low-order
controllers can be obtained by solving iteratively

lnear matrix mmequality LMI) subproblems,

which are convex and can readily be solved
wsing existing convex optimization software
such as [2]. These approach mclude the
altemating projection method [4], the rank
condition minimization method [5], and the
successive substitution method i [3],[6].

In [7], noniterative schemes for designing
low-order controllers, for continuous
single-input  single-output (SISO) systems, to
optimize certain performance indices were
developed. The key step of the method proposed
in [7] is the use of coprime factors such that
based on the strictly posiive real fimctions,
feedback  stabilization using  low-order
controllers becomes a zero-placement problem
which is convex. The design does not mvolve
any iterations so that no convergence
consideration is needed.

In this paper, we will focus on the
development of noniterative schemes for
designing low-order controllers for discrete-time
systems. We will only address the discrete linear
time-mvariant SISO systems in this paper. We
establish a sufficient condition which guarantees
a discrete transfer fimction being outer. That is,
the zeros are all inside the wmit circle of the
Z -plane. Using the coprime factors and the
properties of discrete outer functions, we
formulate the low-order controller design
problem as a zero-placement problem which is
convex. The solutions are obtamned using the
LMI techniques. The proposed design method is
used to solve for several optimal control
problems such as pole-placement design, model
matching design, and H,, optimization problems.

The paper is organized as follows. In
Section 2 we formulate the design of low-order
stabilizing controller as an LMI feasibility
problem using the coprime factors and the
properties of discrete outer fimction. Section 3
addresses the formulation of pole-placement
design. Section 4 discusses the design of
model'matching problems. The design of H,
suboptimal control problems is presented i
Section 5.
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2. Design of Low Order
Controllers
Consider a discrete linear time-mvariant
SISO system G(5) with the mininwm state-space
realization
x(k + 1) = Ax(k) + Bu(k) (1a)
y(k) = Cx(k) (1b)

where x is the n-dimensional state variable
vector, 2 is the control mput variable, and y is
the measured output variable. We formulate a
low-order controller design problem as one of
finding an 7, -dimensional controller

n = -K(5)y @
with 7, < »-1,to place the n + n, poles of the
closed-loop system inside the umit circle of the
Z -plane, such that the closed-loop system i
stable. We perfoom a coprime factorization of
G(5) to obtain

Stabilizing

G(5)=——=
(€] D(‘)

where

4,5 N _ n,(3)
D,(=)= d,(z) (=) d, (=)
are stable, that is, the roots of d,(';) 0 are
within the unit c::rcle of the Z -plane. The
coefficient of " I d() is set to 1 In
particular, the roots of d(z)=0 are selected to be
the desired closed-loop poles of the system as of
all the states are available for feedback control.
Similarly, we perform a coprime factorization of
the controller X(5)to obtain

@

N (=
K(,)_DE:)) ®
where
d, (=)
Ngzu, D (s)= =] ©)
TS )

are stable, that is the roots of d.(5)=0 are within
the umit circle of the Z-plane. We will also set
the coefficient of 2™ i d(s) to be 1. In
paticular, the roots of d.(5)=0 are selected to
be the desired poles of the closed-loop system
due to the controller. Note that the controller
model (2) will not be known a-priori. However,
we can still specify d.(z) based on control
bandwidth specifications.

Let the numerators of the controller coprime
factors (6) have the polynomial form

n,()=a,s" +a, 5" "' +. . +a,

dcn (5) :bnr".nt + bnr—]: e LI +b0 (8)

T v w K(z)
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Figure 1. Closed-loop regulation system

We define the vectors a and b to contaim the
polynomial coefficients

az[an(, )an(,_l)"')ao]) bz[bn )b,,L,_l 7"')bo]
€))
where b, =1.

Consider the closed-loop regulation

system in Figure 1. The closed-loop transfer
finction T'(z) from the command 7 to the
output )y is

N, (N, () 10y

T = D+ N NG

We denote the denominator of 7(Z) as
9(=)=D (5)D,(5) + N (DN, (5) an
_4,(9d, @ +n,En, (5
d, (9d.(=)

The following result shows the dependence of a
state-space realization of O(5) on the coefficients
aand b.
Lanma 1. The fimction QE) (1) has a
state-space redlisation

x,(k+D)=4Ax (k+D)+ B u (k) (12a)

v, () =C (ab)x, +u, (12b)

where x, is an (W +n.) dimensional state
vector, u, andy, are input and output veriables,
respectively, and A, is Hirwits. Furthermore, the
state matrices have the following properties :

(1) the pair (4,.B) is controllable cnd is
independent of a anol b.

@i1) C,(ab)=aS+bR is a linear function of d
and 5 where

[C A" (¢ 4" ]
q q qn-q
qu 4771 -1 C AIHL -1
R = : e S =
qd A7 anq
qu B qn _
The following result is aucial to the
development of our design method.

Lenma 2. [ there exists a symmetric positive
definite matrix P such that the fdlowing matrix
inequidlites are satisfied
A"PA-P A'PB-C7(ab) 0
q q q q q <

13
B"PA- C(a.b) -1 *



1-3'PB >0 (19
then dll zeros Q(z) (11) are inside the wmit circle

Theoxan 1. [ thae exist coefficients a and b
and a symmetric positive definite matrix P such
that the LMIs (13) and (14) arve sdisfied then
the controller (2) is a low-order stabilising
controller for system. (I).

Theorem 1 gives a practical method for
finding a low-order stabilizihg controller. The
LMIs (13) and (14) together with a set of linear
constraints on C,(gb) can be solved as a
feasibility problem using a convex programming
toolbox such as [2]. For each desired order of the
controller, the feasibility problem can be solved
to see whether such a low-order control exists.
Thus this algorithm for computing the
coefficients a and b to make Q=) outer fimction
is convex, versus a non-convex problem without
using coprime factors.

Theorem 1 can be used as a building block
for solving more complex design problems. We
will develop the sohtions to a few of these
problems in the following sections.

3. Pole-Placement Design

With a low-order controller, we no longer
have the freedom to arbitrarily place all the
closed-loop system poles. The objective then is
to find a low-order controller such that the
closed-loop system poles. The objective then is
to find a low-order controller such that the
closed-loop system poles are close to a set of
pre-specified poles. Thus the first step is to set
the poles of Q) (that is, the roots of
d(=)d.€)=0) at the desired locations. Then wre
propose an optimization problem

Jgg(.ig\lW(:)(l o) B as)

subject to O(5) being outer fimction, where W(z)
is a stable weighting fimction, allowing the
emphasis of the placement of the dominant
closed-loop poles. We can regard (15) as a
regional pole-placement problem, in which the
pole-placement regions are determined by the
poles of O(5). We remark that if we set n.=n-1,
then (15) becomes the reduced-order observer
design m which all the desired poles can be
exactly placed.

Let the minimal realization of the state-space
model of W()(1-Q(5)) be given by

.Aw Bw
Y1—0(= ! ! 16
WXL Q(»)e[—'—wa,b) 0] 6

where C,,(ab) is a linear fimction of a and b.
Using the Bounded- Real Lemma [5], the
optimization problem (16) can be expressed as

miny an

K@)

subject to the LMIs

AvTV‘q‘XAwq - X AI;qXBwq C‘Z:q (a')b)

B X4, B XB. -y O |[<0

wq' wq

C,,(a,b) 0 ~7

as)

X>0 (€Y)]
and the LMIs (13) and (14). This problem is
convex and can be solved using an LMI
algorithm in the wmknovns B X a b and .

4. Modd-Matching Design

In addition to pole-placement design, we
can use the low-order controller design idea
Theorem 1 as a building block to obtain
sub-optimal designs of many optimal control
problems. One of the optimal control problems
of interest is the model-matching problem, that
is, the design of u=-KX(=)y for system (1) so that
the closed-loop transfer fumction I'(z) (10)
matches as closely possible, in the frequency
domain, to a desired stable transfer fimction
T,=), which is usually a low-order transfer
function incorporating the desire features of the
control specifications. Using the coprime factor
for the plant G(z) and the controller K(z), We can
define this problem as

%}'W'(:)(Td(:)—l’(s)]w

ol NENG)
_%lm‘)(T ) D oD ()N (=)

where W(z) is a stable weighting fimction.

The optimization problem (20) cannot be
directly set up as a convex optimization problem,
because the controller coefficients a and b are
contained i the denominator O(). One way to
circumvent this difficulty is to formulate a
suboptimal control problem by removing the
denominator Q) and using it for a pole
placement design. One such possibility is to pose
the suboptimal control problem of

, WEXT,(2) - N, (2N, ()
FO|LWEXL=(D(5)D () + N, ()N ||
e2y)
If the design (21) yields D, (5) and N(5) such that
@(E)=1, then the controller also satisfies (20).
Besides (21), there are many other altematives to

@




develop a suboptimal control problem. We will
only deal with (21) in this paper.

In the model-matching design problem, the
poles of T,() are the desired dominant poles of
the closed-loop system. Thus in performing the
coprime factorization of the plant G(=), d, (=)
should contain these desired poles. Constiuct the
minimum state-space realization

M=XT,(5)- N (5N (=)
W(zX1-(D,(5)D.(5)+ N, (5)N.(5)) Q2)

4, | B,
< [c_,,,(a,b_I_) 0 ]

where C,,(a b) is a linear fimction of a and b.
The suboptimal control problem (21) can be
readily solved as an LMI problem of

min y @3)

K (z)
subject to the LMIs

AX4 -X AXB  Cl(a,b)

@4

B'X4, B'XB, -y 0 <0
C.(a,b) 0 -7
X>0 (05))

and the LMIs (13) and (14) for 9(5). The LMI
variables for this problem are vy, a b, and the
positive matrices X and P

5. H_ Suboptimal Design

Consider the two-mput, two-output linear
time-mvariant system G(=) with the state-space
realization

x(k + 1) = Ax(k) + Bwk) + Buk) (262)
n(k) = C,x(k) + Dy,1(k) (26b)
(k) = C,x(k) + D, w(k) @60)

where x is the n-dimensional state variable
vector, w is the distiwbance input variable, 2 is
the control mput variable, 1 is the controlled
output variable, and p is the measured output
variable. Here the triple (4 B, C,) is stabilizable
and detectable. For system (26), we propose to
develop a design algorithm to obtan a
suboptimal low-order controller u=-K(E) to
minimize the Hnomm of the closed-loop
transfer fimction from w to n.

To use the result of Theorem 1, we first
develop the appropriate coprime factors. We
write (26) in transfer fimction form

nl_{ 2. D) |o Q7N
y N, N, |u
D() D,

where
N (@ =-"L—, 1,j=1,2 @28)
/ df(:.')

and
D,(z)= Zu® 29)
i df(i")

are stable transfer fimctions with

dy,(5)=det(zFA4). In this notation, the closed-loop
transfer fimction of (26) from w to 1, denoted as
T, () ysing the controller coprime factors (5) is

N (D @ +NED ()  3p)

Tho®) = D ()D,() + N,,N.(2)
where
w5y NUGENL () -NL(N,(5) n,(2)
Ne= D (=) d(2)
B1)

with #,(5) being a polynomial.

For the same reason as the model-matching
problem, we cannot directly minimize || an” .
because with the controller parameters in

D, (=)D (5)*+N;,(z)N/=), the resulting problem
would be non-convex. Thus we formulate a
suboptimal A, control problem of

. [ W(EXN, () D(5) + N(5)D.(5)) ]
KW EX1 = (D, (5)D.(2) + Npy(DN.GEM |
(€2))
where W(E) & a stable weighting fumction.
Construct the minimum state-space realization
[ WX, (2D, (2) +N(5)D. (=) ]
WEA-D, (@D (2) + N (ON.(D) | (33)

|: A .Bh]
>
Ci(a,b) | 0

where C),(a b) is a linear fimction of a and b.
The suboptimal H_, optimization problem
(32) can be readily solved as an LMI problem of

min 7 34

K (z)
subject to the LMIs
4X4,-X A4XB, C/(ab)

B/X4, B XB,-y 0 |<0
C, (ab) 0 -7

(€X))



X-0 (36) Low-Order Controller Design For SISO
ad the LMs (13) md (4) for Systems”, Proceedings of the 37" IEEE

D,(E)D)+N,EN). The LMI variables for g°”fe:”;‘12nc;” Decision. & Conird,
this problem are vy, a b, and the positive e, >
matrices X and P.

6. Condusion

In this paper we have presented a new
low-order controller design method for discrete
single-input single-output systems. This method
requires only the solution of a convex
optimization problem. We established a
sufficient condition which guarantees a transfer
finction being outer. Using the coprime factors
and the properties of discrete outer fimctions , we
show that the design of low-order controller can
be formulated as a zero-plac ement problem. And,
the solution can be obtaned wusing LMI
algorithms .
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