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Abstract

This research develops a reliable and systematic
low-order controller design method for solving
discrete

model-matching problem of linear

time-invariant multi-input multi-output  system.
Using the coprime factors and properties of discrete
outer function, the low-order controller design is
reformulated as a convex optimization problem. The
solutions are obtained using linear matrix inequality
techniques. An LV100 turbine engine is used to
illustrate the model-matching design algorithm.
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1 Introduction

0 7 31

The design of a robust low-order controller to
achieve a desired closed-loop transfer function is
popular for practica control applications. The
is attractive

because classical design specifications can be readily

model-matching design approach

translated into a desired closed-loop transfer function.
The model-matching design problem is usualy
formulated as an optimization problem with certain
H, or H. congtraints. The design of low-order
controller to optimize certain H,or H- performance
involves a bi-affine matrix inequality(BMI), which is
non-convex and cannot be solved using the existing
convex programming software. Instead of solving
directly the BMI problem, severa researchers have
shown that low-order controllers can be obtained by
solving iteratively LMI subproblems, which are
convex. These approaches include alternating
projection method[4] rank condition minimization
method[5] and successive substitution method [3,7,8].
However, global convergence has not been
established for any of these iterative methods.

In [9], a low-order controller design method using
coprime factors, strictly positive rea function (SPR)
and LMIs was developed for continuous-time
single-input single-output (SISO) systems. This
method is expanded to solve the model-matching
problem for continuous-time MIMO systems [10].



For discrete time case, low-order robust
controller design algorithms using coprime
factors discrete outer functions and LMIs
were developed. The results are presented
in [6]. This report summarizes the results
of the development of the Ilow-order
controller design for the model-matching
problems for discrete MIMO systems. An
LV100 engine model-matching design is
used to demonstrate the proposed design

algorithm.
2 Coprime factorization

Consider a discrete linear time-invariant
system G(2) with the state-space realization
X(k+1) = AXK) + BUK) (1a)
k) = CX(K) (1b)
where xI ", ul R", yIl R’. Assume that the
system (1) is stabilizable and detectable In
G(2 is

the packed matrix notation,

represented by

G(2) « g%‘ BH (2)
éC | Og

Since the system (1) is stabilizable and

detectable, we perform a left coprime

factorization of G(2) to obtain

G(9=G, (9G,(2 (3)
The state-space realization of Gp(2) and
Gn(2) is

éA- L - L B
G G2« E%W)H (4)

where L is a stabilizing observer gain such
that all the eigenvalues of A-LC are in the
unit circle. In contrast to a full-order
stabilizing controller K(z) for G(2), whose
coprime factorization can be

defined

readily
in terms of A, B, C, and a

stabilizing full-state feedback gain F, for
a reduced-order controller we first need to

define its structure before performing
coprime factorization. Select the
reduced-order controller K(2 with p
inputs and m outputs to have the structure
ékn(z) klp(z) l}'
£ d.(2) d,(2
K(=¢ I O I g (5
&km(2) Ko (2) G
€ a
e dl(z) dp(z) CI
We can perform a right coprime
factorization of K(2) as
K(2) = Ky(9K5 (2 (6)

The coprime factors Ky(z) and Kp(z) are
stable transfer function matrices with

¢k, | k,(9U

8d.(2) d, (2 .
K (=6 I O ¥ i (7)

ku(2) | Kkw(20

§94(2) d,(2) g

6d,(2) D

~ L 0 7

£d.(2) 3 )
Ko@=g 1 O b g

& (2 g

¢ ” " 4,y

where dg(2) j=1, ,p are predetermined
The order of

d:(2) and d;j(2) are the same. The order of

stable monic polynomials.

the controller K(z) is the sum of the degree
of  di(2)...dx(2). For
controller,

reduced-order
the order of the controller is
limited to be smaller then n (the order of
the plant (1)). The state-space realization of
observer

Kn(z) can be represented in

canonical form

A | B¢
Ku(2) « ﬁ’—“ﬁ (9)
éCkn Dknu



where Ay, and Cy, are constant matrices
from the

de(2). The
coefficients of the numerators kj(2) are

determined pre-selected

denominators unknown

included in By, and Dy, Similarly, the
state-space realization of Kp(z) is
expressed as
éAkd Bkdl:l
Kp(2) « e—’f' (10)
€Cra Dde

where A, and C,, are constant matrices and
Dy = [I. The unknown coefficients of the
denominators d;(2) are included in By,.

3 Low-order stabilizing controller
design

Consider the closed-loop regulation
system in Figure 1

+
F o— K@) - G(2) -y

Figure 1 : closed-loop regulation system

The closed-loop transfer function from the
command r to the output y, denoted as 7(2),
is
T(9=(I+3AIK(J) ' AIK(I
=1- (1 +G(9K()™

Using coprime factorization of G(2) and

(11)

(12)

K(2), the closed-loop transfer function T(2)

is

T(Z)=/- KD(Z)Q(Z)-lGD(Z) (13)
where Q(2) is defined as

A =Gp(9K,(9 + Gy (9K (29 (14)

Using the state-space realizations (4), (9)
and (10), a state-space realization of Q(2)
can be written as

6A- LC - LG, BG,|- L+BD0
e u
A« e 0 Ao 0 B u (15)
? O O Am Bkn lil
e u
eC G O] 1, g
D §arl e (16)
&Cyq I'a

where A, is stable. We note that the design
The
crucial to the

parameters appear linearly in B,

following results are
development of the design method proposed

in this report.

Lemma 1 : /f there exist a symmetric
positive definite matrix P, such that the
following matrix inequalities are satisfied

¢ APA- P AFPC]- B

€ T T
&CPA - B - a

<0 (17)

I-C,PC;30 (18)

then all zeros of Q(2) are inside the unit
circle of the z-plane

Theorem 1 If there exist matrices By, Dgn,
and Ky, having the observer canonical
realization structure defined in (9) and (10),
such that the LMls (17) and (18) are
satisfied, then u=-K(z)y is a stabilizing
controller.

Theorem 1 gives a practical method for
finding a low-order stabilizing controller.
The LMIs (17) and (18) together with the
pre-determined structure of By, Dk, and

Kws can be solved as a feasibility problem



using a convex programming toolbox such
as [2]. Theorem 1 can be used as a building
block for more complex design problems. In
concentrate on the

this paper, we will

design of low-order controller for the

model-matching optimization problems.
4 Model Matching Optimization Problem

The model-matching optimization problem, as
shown in Figure 2, discussed in this section is to
find alow-order controller K(z) for system (1) so
that the closed-loop transfer function 7(z) (11)
matches as closely as possible, in the frequency
domain, to a desired stable transfer function
TAz), which is usually a low-order transfer
function incorporating the features of the control
specifications.

Td(Z) + Z
> <>> We)
K@) - 62)

y

Figure2 : Model-Matching Formulation

Using the coprime factors of the plant G(z) and
the controller K(2), this problem can be defined as

minw(3(7,(2 - 7(2), 1)

where W2 is a dable weighting function
characterizing the emphasized frequency domain
requirement. The closed-loop transfer function T(2)

can be written as

T(9 = (1 + G(9K(2) ' G(DK(2)
=(Kp(A(Go(K (D + Gy (DK, (2) G, (D)

Go (2)Gy (DK (DK, (2)

= G, (AGy (YK (A(QA2) *Gy(9) (22

Therefore,
expressed as

M- GIGAKAQAD) G, 23

the optimization problem can be

Obviousdly, (23) cannot be directly set up as a convex
optimization problem. To circumvent this difficulty,
we consider the idea case in which 7(2) perfectly
matches the desired transfer function 7(z), that is

T(9 =G (2G,(IKW(IAD)"G() (24

Assume that the plant G(z) is stable , that is, G, (9

is stable. From (24)
To(AQD = Gy (DK, (2 (25)

where 7, (z2) = G, (2)T,(2)G ;' (z) - Thuswe can

reformulate the optimization problem (23) as a
suboptimal problem of

W(z)?dz)@(z)- GN<z)KN3‘ (26)

min
k(2)

Construct the state-space realization of (26)
as

N T

iW(z)g%(z)cxz)- GN(z)KN%‘

| B
¢ ée?me—%Q @0
'm mU

We note that in (27), the design parameters By, Dyn
and By, only appear in matrix B, The matrices A,
Cnand D, in (27) are known.

From bounded real lemma [5], the inequality



HW(z)géfd(z)o(z)- GN(z)KN3‘ <g (28

¥
is satisfied for a prespecified constant g> 0 if there
exist constant matrices B,, satisfing the following

LMIs

€A, XA, - X AXC,  B,U
& C.XA, C,XC.-g D,3<0 (29
& B, D, - 94

X>0 (30)

Therefore we can formulate the low-order
model-matching control problem as

min
K(2) g

(31)

subject to the LMIs (17), (18), (29) and (30). The
problem is convex and the solution can be obtained
using semidefinite programming software such that
MATLAB LMI toolbox [2]. The design variables are
By, Din, Bra(Which appear linearly in B;and B,) P, X
and g We further note that the solution space of the
optimization problem (26) is not the same as the
optimization (21). This may result in suboptimal
design.

0
If the plant G(z) is unstable, T4(2 is dso

unstable so that the problem cannot be used as an
optimization objective. However, we will use a left
coprime factorization of %d (z) toobtain

U U U
Ta(2=Tan() () Tan(d (31)
The state-space realization of ;J-dD(Z)

0
and Tan(2) is

é%:m@ %1/\/@3« gﬁfh—qftj:ﬁdh - Lan Bodﬁ 32)

where A, Bian, Cian, aNd Dy, are state matrices of

o

%d (z) and L., is a stabilizing observer gain,
that is all eigenvalues of Aun-LignCian @re inside the
unit circle of the zplane. Substituting (28) into (25),
we have

Ta(IQ = Two(IG, (K. (D (33)

Therefore, this problem can be defined as
mivtaftaa- %D(z)(@@KN(mi (349
The state-space realization of (34) is

{m(z)g%(z)o(z)- “Tda(szN(z)KN(a)%T
« gﬂ’ﬁg (35)
écmu 0 u

5 GE LV100 engine control

The firt example we used to illustrate the
proposed model-matching design algorithm is the GE
LV 100 turbine engine model [11]. This engine differs
from standard turbine engines in that a recuperator is
inserted into the airstream in order to preheat the air
entering the combustor, resulting in a higher
efficiency. The main control objective is to design a
controller to regulate the shaft speed N, and a
temperature T related to the engine interna
temperature, via modulation of the fuel flow W and
the variable area turbine nozzle VATN. The
linearized GE LV 100 engine model at one operating
point is of 6th order and has two inputs, the fuel flow
(W) and the variable nozzle (VATN), and two
outputs , the shaft speed (Np) and temperature (7y)
related to the engine internal temperature. The design
objectives are to regulate the two outputs and to
achieve

input-output  decoupling. The desired

closed-loop transfer function T4s) is specified to be
é 9 u
€ a
TS = éS2 +4.25+9 - i
é 0 ——
é & +7s+25()

(67)



We aim at designing a fourth order controller for
the system. To illustrate the model-matching design,
we firgt discretize the engine model and the desired
transfer function 7s) with a sampling rate of 100 Hz
(W2) = I is assumed in the design). Following the
design procedure proposed in the previous section, a
fourth order controller is obtained at g=0.3636 as

éku(2) ky(2u

_8di(2 d, (2
k(2= gkn(z) kzz(z)g (39)

gd.(2) d,(2H

k(2 =0.629(z- 0.998)(z- 0.709)

k(2 =1.12(Z - 1.967z+0.959)
k,,(2) = 40.753(z- 1.015)(z- 0.999)
k,,(2) =-40.77(Z - 1.959z- 0.96)
d,(2) =(z- 1)(z- 0.961)

d,(2) = (z- 1)(z- 0.92)

In order to achieve zero steady-state error, we set a
root of d(z), j=1,2 a 1. The step responses of the
resulting closed-oop system are shown in figures 3
and 4.
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Figure 3 Step responses from W;
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Figure 4 Step responses from VATN

6 Conclusions

This research develops a reliable and systematic
low-order controller design method for linear discrete
time-invariant multi-input multi-output  system.
Using the coprime factors and properties of discrete
outer function, the low-order controller design for

model-matching optimization problem is formulated



as convex optimization problem subject to severa
LMI constraints. The solutions are obtained using
LMI techniques. The design algorithm is successfully
applied to an LV 100 turbine engine design.
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