5 research outputs found

    厦漳泉大都市区建设及对策研究

    Get PDF
    本文在研究大都市区形态的基础上,分析了核心城市的城市化及厦漳泉大都市区发展现状,提出了培育厦漳泉大都市区的战略构想,通过提升核心城市城市化质量,打造两岸交流合作前沿平台,构筑城市联盟推进同城化,提升综合承载和辐射带动能力等,壮大大都市区的经济规模和竞争力

    Mobile robot being applicable to large span transmission line routing inspection

    No full text
    本发明涉及移动机器人机构,具体地说是一种适用于大档距输电线路巡检的移动机器人,包括前、后上臂,前、后下臂和电器箱体,其中前、后下臂的一端分别安装在电器箱体上,另一端分别与前、后上臂的一端通过前、后转动机构转动连接,前、后上臂的另一端设有在输电线上行走的行走机构及夹紧输电线的夹紧机构;前、后转动机构结构相同,包括转动副及弹簧,移动机器人两个上臂的一端通过转动副分别与移动机器人两个下臂的另一端转动连接,在移动机器人的上臂与下臂之间设有使上臂转动复位的弹簧。本发明具有爬坡角度大,防脱线、安全保护性好,越障时间短且越障过程简单,具有故障释放功能,应用范围较广等优点

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore