10 research outputs found

    [[alternative]]Synthesis and characterization of Co/Fe dinitrosyl complexes with carbonyl N-Heterocyclic Carbenes(NHCs) and P2S2 ligand coordination environment

    No full text
    碩士[[abstract]]雙亞硝基鐵化合物 (DNICs) 在生物體之主要功能為傳遞與儲存一氧化氮,本論文乃透過置換中心金屬合成類似雙亞硝基鐵化合物的雙亞硝基鈷化合物,並以含氮異環碳烯 N-Heterocyclic Carbenes(NHCs) 為配位基合成一系列亞硝基鈷化合物,使用 [Fe(TPP)Cl] 做為一氧化氮 (NO) 捕捉劑對此測試了解釋放 NO之能力,並透過紅外線光譜儀及 X-ray 單晶繞射儀鑑定亞硝基鈷化合物結構。 化合物 [(NO)Fe(N2S2)Fe(NO)2]+ 化合物 (N2S2=N,N’-bis(2-mercapt-oethyl)-1,4-diazacycloheptane) 在2014被發表,可當作還原質子 (H+) 產生氫氣 (H2) 的電催化劑,本篇論文以 meso-1,3Bis[(mercaptoethyl)phenylphosphino] propane (H2meppp) 做為配位基,目標是能合成出類似結構,且比較P與N做配位時,特性與穩定度的不同以求改良並藉由紅外線光譜探討其配位方式。[[abstract]]The primary functions of Dinitrosyl iron complexes (DNICs) in vivo are transportation and storage of Nitric oxide (NO). In here, we report a series of synthetic analogs of DNICs by using cobalt as metal center and N-Heterocyclic Carbenes (NHCs) as ligands. We measure the NO releasing ability of nitrosyl cobalt complexes by using [Fe(TPP)Cl] as NO trapping agent . Thesenitrosyl cobalt complexes were characterized by Fourier transform infrared spectroscopy (FTIR), UV-vis spectroscopy, Nuclear magnetic resonance (NMR) and Single crystal X-ray Diffraction. The cationic [(NO)Fe(N2S2)Fe(NO)2]+ complexes have been published in 2014 (N2S2 = N,N’-bis(2-mercaptoethyl)-1,4-diazacycloheptane). The cationic dinucleardinitrosyl iron complex was found to be electro catalyst for H+ reduction,in term of H2 production. We report a series of synthetic analogs of [(NO)Fe(N2S2)Fe(NO)2]+/-by using(CO)2Fe(NO)2,(CO)3Co(NO) and meso-1,3Bis[(mercaptoethyl)phenylphosphino] propane (H2meppp) as ligands, andcompare the differences of stability and properties between the P and N atom of the ligand. The coordination and the possible structures are also discussed and characterized by its Fourier transform infrared (FTIR) spectra.[[tableofcontents]]摘要 Abstract 謝誌 第一章緒論.........................................................................................1 1.1 前言..................................................................................................1 1.2一氧化氮的分子特性.......................................................................2 1.3 一氧化氮在生物體內的性質..........................................................3 1.4一氧化氮在生物體內儲存與傳遞...................................................5 1.5雙亞硝基鐵化合物(DNICs) ...........................................................6 1.6氮雜環碳烯(N-Heterocyclic Carbenes,NHCs).........................10 1.7含磷硫配位基.................................................................................12 1.8鈷在生體中的應用.........................................................................13 1.9 研究目標........................................................................................14 第二章結果與討論............................................................................16 2.1鈷化合物(NHC-Me)(CO)2Co(NO) (1)、(NHC-Me)2(CO)Co(NO)(2)與(NHC-Me)2Co(NO)2 (3) 的合成與紅外線光譜分析..............16 2.2鈷化合物(NHC-Me)(CO)2Co(NO) (1) 、(NHC-Me)2(CO)Co(NO) (2) 與 [(NHC-Me)2Co(NO)2][BF4] (3) 的X-ray X光單晶繞射分析...........................................................................................................21 2.3鈷化合物(NHC-Me)(SPh)Co(NO)2 (4) 與 (NHC-Me)(SEt)Co(NO)2 (5) 的合成與紅外線光譜分析..................25 2.4不同配位基之鈷化合物的紅外線光譜、結構的探討.................31 2.5不同配位基之鈷化合物循環伏安法的探討.................................36 2.6亞硝基鈷化合物與[Fe(TPP)Cl]的反應探討...............................40 2.7雙磷雙硫配位基的鐵/鈷金屬化合物的合成與紅外線光譜分析42 第三章結論........................................................................................49 第四章實驗部分................................................................................51 參考文獻............................................................................................63 附錄....................................................................................................66 2.2鈷化合物(NHC-Me)(CO)2Co(NO) (1) 、(NHC-Me)2(CO)Co(NO) (2) 與 [(NHC-Me)2Co(NO)2][BF4] (3) 的X-ray X光單晶繞射分析...........................................................................................................21 2.3鈷化合物(NHC-Me)(SPh)Co(NO)2 (4) 與 (NHC-Me)(SEt)Co(NO)2 (5) 的合成與紅外線光譜分析..................25 2.4不同配位基之鈷化合物的紅外線光譜、結構的探討.................31 2.5不同配位基之鈷化合物循環伏安法的探討.................................36 2.6亞硝基鈷化合物與[Fe(TPP)Cl]的反應探討...............................40 2.7雙磷雙硫配位基的鐵/鈷金屬化合物的合成與紅外線光譜分析42 第三章結論........................................................................................49 第四章實驗部分................................................................................51 參考文獻............................................................................................63 附錄....................................................................................................66 圖目錄 圖1-1 一氧化氮分子軌域圖……………………………………………2 圖1-2 Enemark-Feltham的計算法………………………………………4 圖1-3 半胱氨酸與穀胱甘肽之結構…………………………………6 圖1-4 生理條件下 DNICs 儲存、運輸及傳遞NO 的可能路徑,RS為cysteine或glutathione (GSH)……………………………………….7 圖1-5 生物體中大腸桿菌細胞中的ferredoxin [2Fe2S] cluster 的降解與修復……………………………………………………………………8圖1-6 在仿生研究中三個RRE與DNIC不同轉換的途徑…………..9 圖1-7 含氮異環碳烯(NHCs) 與金屬的反應………………………..10 圖1-8 Ofele合成鉻金屬錯化合物……………………………………..10 圖1-9 (a)鎳鐵氫化酶(b) Tomoaki Tanase以 H2meppp 與過渡金屬合成之結構..................................................................................................13 圖1-10 維生素B12的結構……………………………………………..14 圖2-1 起始物與化合物1在室溫下四氫呋喃的紅外線光譜疊圖…...19 圖2-2 化合物1與化合物2在室溫下四氫呋喃的紅外線光譜疊圖…20 圖2-3 化合物1之晶體結構…………………………………………...22 圖2-4 化合物2之晶體結構…………………………………………...22 圖2-5 化合物3之晶體結構及鍵長[Å]與鍵角[°].............................24 圖2-6 化合物3、化合物4與化合物5在室溫下二氯甲烷的紅外線光譜疊圖…………………………………………………………………..26 圖2-7 (IMes)(HSO4)Co(NO)2 之晶體結構及鍵長[Å]與鍵角[°]........30 圖2-8 (IMes)(SPh)Co(NO)2 之晶體結構及鍵長[Å]與鍵角[°]……...31 圖2-9 化合物b與化合物2在室溫二氯甲烷溶液中的循環伏安圖…37 圖2-10 化合物c與化合物 3在室溫二氯甲烷溶液中的循環伏安圖39 圖2-11 化合物2與[Fe(TPP)Cl]在0℃下的紅外線光譜圖 (CH2Cl2)...40 圖2-12 化合物3與[Fe(TPP)Cl]在0℃下的紅外線光譜圖 (CH2Cl2)..41 圖2-13 起始物Fe(CO)2 (NO)、化合物7在室溫下在THF中的紅外線光譜疊圖………………………………………………………………..43 圖2-14 推測化合物7可能之結構…………………………………….44 圖2-15 起始物 Co(CO)3(NO)、化合物8在室溫下在THF中的紅外線光譜疊圖………………………………………………………………..45 圖2-16 推測化合物8可能之結構…………………………………….45 圖2-17 化合物7、化合物9在室溫下在THF中的紅外線光譜疊圖....46 圖2-18 推測化合物9可能之結構…………………………………….47 圖2-19 化合物8、化合物10在室溫下在THF中的紅外線光譜疊圖..48 圖2-20 推測化合物10可能之結構…………………………………...48 圖2-5 化合物3之晶體結構及鍵長[Å]與鍵角[°].............................24 圖2-6 化合物3、化合物4與化合物5在室溫下二氯甲烷的紅外線光譜疊圖…………………………………………………………………..26 圖2-7 (IMes)(HSO4)Co(NO)2 之晶體結構及鍵長[Å]與鍵角[°]........30 圖2-8 (IMes)(SPh)Co(NO)2 之晶體結構及鍵長[Å]與鍵角[°]……...31 圖2-9 化合物b與化合物2在室溫二氯甲烷溶液中的循環伏安圖…37 圖2-10 化合物c與化合物 3在室溫二氯甲烷溶液中的循環伏安圖39 圖2-11 化合物2與[Fe(TPP)Cl]在0℃下的紅外線光譜圖 (CH2Cl2)...40 圖2-12 化合物3與[Fe(TPP)Cl]在0℃下的紅外線光譜圖 (CH2Cl2)..41 圖2-13 起始物Fe(CO)2 (NO)、化合物7在室溫下在THF中的紅外線光譜疊圖………………………………………………………………..43 圖2-14 推測化合物7可能之結構…………………………………….44 圖2-15 起始物 Co(CO)3(NO)、化合物8在室溫下在THF中的紅外線光譜疊圖………………………………………………………………..45 圖2-16 推測化合物8可能之結構…………………………………….45 圖2-17 化合物7、化合物9在室溫下在THF中的紅外線光譜疊圖....46 圖2-18 推測化合物9可能之結構…………………………………….47 圖2-19 化合物8、化合物10在室溫下在THF中的紅外線光譜疊圖..48 圖2-20 推測化合物10可能之結構…………………………………...48 附錄 圖S1化合物1溶於THF的紅外線光譜圖…………………………….66 圖S2化合物2溶於THF的紅外線光譜圖……………………………66 圖S3化合物3溶於CH2Cl2的紅外線光譜圖…………………………67 圖S4化合物4溶於CH2Cl2的紅外線光譜圖…………………………67 圖S5化合物5溶於CH2Cl2的紅外線光譜圖…………………………68 圖S6化合物6溶於CH2Cl2的紅外線光譜圖…………………………68 圖S7化合物7溶於THF的紅外線光譜圖…………………………….69 圖S8化合物8溶於THF的紅外線光譜圖…………………………….69 圖S9化合物9溶於THF的紅外線光譜圖…………………………….70 圖S10化合物10溶於Toluene的紅外線光譜圖………………………70 圖S11(H2meppp)溶於CDCl3的31P NMR光譜…………………….…71 圖S12化合物3溶於CH2Cl2的紫外/可見光光譜圖…………………72 圖S13化合物6溶於CH2Cl2的紫外/可見光光譜圖…………………72 Table S1 Crystal data and structure refinement for 2………………..73 Table S2 Bond lengths [Å] and angles [°] for 2……………………..75 Table S3 Crystal data and structure refinement for 3………………..76 Table S4 Bond lengths [Å] and angles [°] for 3……………………..77 Table S5 Crystal data and structure refinement for 6………………..78 Table S6 Bond lengths [Å] and angles [°] for 6……………………..79 Table S7 Crystal data and structure refinement for (IMes)(HSO4)Co(NO)2…………………………...……………………..82 Table S8 Bond lengths [Å] and angles [°] for (IMes)(HSO4)Co(NO)2 …….………………………..…………………………...………………84[[note]]學號: 604160381, 學年度: 10

    藏北高原高寒草甸地上生物量与气候因子的关系

    No full text
    采用收获法测量了藏北不同海拔高度(4300~4700m)2010年(6~8月)嵩草草甸群落地上总生物量,通过相关分析和多重回归分析法探讨了地上生物量与土壤温度、土壤含水量、空气温度、相对湿度、饱和水汽压亏缺以及比湿的关系。结果表明:总体而言,随着海拔高度的升高地上生物量逐渐增加,地上生物量与相对湿度、比湿以及土壤含水量分别呈极显著的正相关关系,与饱和水汽压亏缺呈极显著的负相关关系,而与土壤温度、空气温度呈不显著的负相关关系;相对湿度和饱和水汽压亏缺共同解释了地上生物量94%的变异,其中相对湿度的贡献较大。相对湿度是决定高寒嵩草草甸沿海拔分布的主导因子

    胰腺神经内分泌肿瘤CT征象与SSTR2、VEGFR2及MGMT表达的关系

    Get PDF
    目的探讨胰腺神经内分泌肿瘤(pNENs)的CT征象与生长抑素2型受体(SSTR2)、血管内皮生长因子2型受体(VEGFR2)及O6-甲基鸟嘌呤-DNA甲基转移酶(O6-methylguanine-DNA-methyltransferse,MGMT)表达的关系。方法收集2010年1月至2020年11月本机构经术后病理证实为pNENs 86例,所有患者术前均行增强CT检查,术后行SSTR2、VEGFR2、MGMT免疫组化检查。回顾性分析pNENs的CT特征与SSTR2、VEGFR2及MGMT表达情况的相关性,采用独立样本t检验或非参数检验及ROC曲线进行分析。结果SSTR2(+)组及SSTR2(-)组在性别、边界的差异有统计学意义(P<0.05),VEGFR2(+)组及VEGFR2(-)组在性别、最大径线≥20 cm、边界、强化率(动脉期、静脉期)及CT值比率(静脉期)的差异有统计学意义(P<0.05),MGMT(+)组及MGMT(-)组在最大径线≥20 cm、最大径、边界、强化率(动脉期)及CT值比率(平扫、动脉期、静脉期)的差异有统计学意义(P<0.05)。CT征象评估SSTR2、VEGFR2及MGMT阳性表达的AUC分别为0.847、0.761和0.749,灵敏度分别为87.18%,76.67%和90.48%,特异度分别为87.50%,73.91%和57.14%。结论CT征象联合临床特征可以反映pNENs中SSTR2、VEGFR2及MGMT的表达

    Prediction of Energy Resolution in the JUNO Experiment

    Get PDF
    International audienceThis paper presents the energy resolution study in the JUNO experiment, incorporating the latest knowledge acquired during the detector construction phase. The determination of neutrino mass ordering in JUNO requires an exceptional energy resolution better than 3% at 1 MeV. To achieve this ambitious goal, significant efforts have been undertaken in the design and production of the key components of the JUNO detector. Various factors affecting the detection of inverse beta decay signals have an impact on the energy resolution, extending beyond the statistical fluctuations of the detected number of photons, such as the properties of liquid scintillator, performance of photomultiplier tubes, and the energy reconstruction algorithm. To account for these effects, a full JUNO simulation and reconstruction approach is employed. This enables the modeling of all relevant effects and the evaluation of associated inputs to accurately estimate the energy resolution. The study reveals an energy resolution of 2.95% at 1 MeV. Furthermore, the study assesses the contribution of major effects to the overall energy resolution budget. This analysis serves as a reference for interpreting future measurements of energy resolution during JUNO data taking. Moreover, it provides a guideline in comprehending the energy resolution characteristics of liquid scintillator-based detectors

    Measurement of integrated luminosity of data collected at 3.773 GeV by BESIII from 2021 to 2024*

    No full text

    Amplitude analysis of the decays D0π+ππ+πD^0\rightarrow\pi^+\pi^-\pi^+\pi^- and D0π+ππ0π0D^0\rightarrow\pi^+\pi^-\pi^0\pi0

    No full text

    Determination of the number of ψ(3686) events taken at BESIII

    No full text
    The number of ψ(3686) events collected by the BESIII detector during the 2021 run period is determined to be (2259.3±11.1)×106 by counting inclusive ψ(3686) hadronic events. The uncertainty is systematic and the statistical uncertainty is negligible. Meanwhile, the numbers of ψ(3686) events collected during the 2009 and 2012 run periods are updated to be (107.7±0.6)×106 and (345.4±2.6)×106, respectively. Both numbers are consistent with the previous measurements within one standard deviation. The total number of ψ(3686) events in the three data samples is (2712.4±14.3)×10^

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text
    corecore