7 research outputs found

    Study on production of liquid hydrocarbon fuels from sorbitol and mannitol

    Get PDF
    在温和条件下研究了氢碘酸还原生物质基多元醇制备液体燃料的过程,使用气相色谱质谱仪(GC-MS)和红外光谱仪(FT-IR)分析了产物组成。结果表明,山梨醇和甘露醇为原料制备的液体产物中主要成分是C_(12)H_(16)、C_(12)H_(18)、C_(12)H_(20)、C_(12)H_(22)和C_(18)H_(26)等烃类物质。通过与碱的醇溶液反应将副产物碘代烷转化为烃,经旋转蒸发和减压蒸馏获得纯净的高碳烃产品。山梨醇、甘露醇以及二者混合物制备出的高碳烃的产率分别是81.1%、73.2%和77.3%。本研究获得的高碳烃产品是一种有前景的液体燃料,其含水量为0.1%,密度为0.83~0.84 g·mL~(-1),含氧量为2.0%~2.2%,热值均高于42 MJ·kg~(-1)。This paper describes the process of sorbitol and mannitol conversion to liquid heavier hydrocarbons via reduction with hydroiodic acid under mild reaction conditions. The compositions of the obtained products were analyzed using gas chromatography mass spectrometer( GC-MS) and Fourier transform infrared spectrometer( FT-IR). It is found that the products obtained from C6 polyols were mainly C_(12)H_(16),C_(12)H_(18),C_(12)H_(20),C_(12)H_(22) and C_(18)H_(26). The yields of heavier hydrocarbons from sorbitol,mannitol,and the mixture of sorbitol and mannitol were 81. 1%,73. 2%,and 77. 3%,respectively.To obtain pure hydrocarbon fuels,the obtained crude oil was treated with potassium hydroxide in an alcohol solution followed by rotary evaporation and vacuum distillation. The final liquid hydrocarbons obtained have a water content of 0. 1%,densities of 0. 83 ~ 0. 84 g·mL~(-1),oxygen content of 2. 0% ~2. 2%,and heating values > 42 MJ·kg~(-1) at room temperature,which is potentially a good transportation fuel for diesel replacement.国家自然科学基金项目(21276214

    赣西北麦斜岩体黑云母花岗闪长岩的年代学、地球化学特征及其地质意义

    No full text
    华南广泛分布了巨量从前寒武纪到晚中生代不同时期的花岗岩,形成了世界罕见的花岗岩省(孙涛,2006)。其中晚中生代花岗岩分布最为广泛(占华南花岗岩出露面积66.6%),研究程度也最为深入,而在广度上和强度上仅次于晚中生代花岗岩的早古生代花岗岩(占华南花岗岩出露面积13%)研究则相对比较薄弱,这在一定程度上制约了我们正确认识华南整个地质历史时期的构造-岩浆演化

    微型气液固三相等温微分浆态床反应器的优化

    No full text
    针对气液固三相浆态床催化反应中,传递、反应、催化剂的原位表征均比较复杂的问题,为了有利于气、固相均匀分散于液相和反应温度在反应器中实现等温,通过对气液固三相反应工艺特性和反应器性能要求的分析,对微型气液固三相浆态床反应器进行了优化。根据微型浆态床对气液固三相反应分析的要求,采用图像法研究了分布器为G1、G2、G3,砂板直径为2、2.5、3cm反应器中的流体力学性能特征,考察了气体流速、温度、反应器直径及气体分布器对气含率、气泡尺寸、气泡上升速率以及气泡分布的影响,并进行流体动力学模拟计算,确定了微型浆态床反应器的直径为2cm,气体分布器为G3砂板的反应器结构,该反应器可以应用于反应过程中间态及液体产物生成过程的测试

    JUNO Sensitivity on Proton Decay pνˉK+p\to \bar\nu K^+ Searches

    Get PDF
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this paper, the potential on searching for proton decay in pνˉK+p\to \bar\nu K^+ mode with JUNO is investigated.The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits to suppress the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+p\to \bar\nu K^+ is 36.9% with a background level of 0.2 events after 10 years of data taking. The estimated sensitivity based on 200 kton-years exposure is 9.6×10339.6 \times 10^{33} years, competitive with the current best limits on the proton lifetime in this channel

    JUNO sensitivity on proton decay pνK+p → νK^{+} searches

    No full text

    JUNO sensitivity on proton decay p → ν K + searches*

    No full text
    The Jiangmen Underground Neutrino Observatory (JUNO) is a large liquid scintillator detector designed to explore many topics in fundamental physics. In this study, the potential of searching for proton decay in the pνˉK+ p\to \bar{\nu} K^+ mode with JUNO is investigated. The kaon and its decay particles feature a clear three-fold coincidence signature that results in a high efficiency for identification. Moreover, the excellent energy resolution of JUNO permits suppression of the sizable background caused by other delayed signals. Based on these advantages, the detection efficiency for the proton decay via pνˉK+ p\to \bar{\nu} K^+ is 36.9% ± 4.9% with a background level of 0.2±0.05(syst)±0.2\pm 0.05({\rm syst})\pm 0.2(stat) 0.2({\rm stat}) events after 10 years of data collection. The estimated sensitivity based on 200 kton-years of exposure is 9.6×1033 9.6 \times 10^{33} years, which is competitive with the current best limits on the proton lifetime in this channel and complements the use of different detection technologies
    corecore