92 research outputs found

    Recent Development on the Preparation of Monodisperse Nanoparticles

    Get PDF
    [中文文摘]单分散纳米微粒既可以在严格控制的条件下直接制备 ,也可以通过对多分散纳米微粒体系进行分级分离获得。本文在总结近年来国内外单分散纳米微粒的研究工作的基础上 ,介绍了直接制备和分级分离这两种获得单分散纳米微粒的方法。[英文文摘]Monodisperse nanoparticles can be obtained either by precisely controlled preparation,or through fractionating and separating of polydisperse nanoparticles.This paper provides information on monodisperse nanoparticles preparation by reviewing recent research works.福建省科技重点项目 ( 2 0 0 0 Ⅰ 0 15 );福建省青年科技人才创新项目 ( 2 0 0 1J0 5 6 )

    Layer-by-layer self-assembly preparation and performance of GO-ceramics composite nanofiltration membrane

    Get PDF
    氧化石墨烯(GO)的片层边缘含有COOH等含氧官能团,因而带负电荷,可以在带正电荷多孔基体上通过层层自组装实现快速沉积。以由3-氨丙基三乙氧基硅; 烷(APTES)修饰的多孔氧化铝管式陶瓷膜为基膜,令GO和聚乙烯亚胺(PEI)以溶液形态在其表面交替沉积实现自组装,继以环氧氯丙烷(ECH)交联; 之,制备新型氧化石墨烯-陶瓷复合纳滤膜。最佳制备工艺是,PEI浓度5 g·L~(-1)、pH=9,NaCl浓度0.3; mol·L~(-1),GO浓度0.6 mg·ml~(-1)、pH=4.5,层数2层,ECH用量6.25 ml·L~(-1),50℃条件下处理70; min。层数为1~4层的自组装膜在0.6 MPa操作压力下对2; g·L~(-1)的MgCl_2的截留率分别为90.16%、93.71%、97.54%、92.93%,其中1层自组装膜的渗透通量为21.92; L·m~(-2)·h~(-1)。氧化石墨烯-陶瓷复合纳滤膜对4种无机盐的截留率大小为MgCl_2>MgSO_4>NaCl>Na_2SO_4,符合; 典型正电荷纳滤膜的特征。Graphene oxide (GO) can be quickly deposited on a positively charged; porous matrix via a layer-by-layer self-assembly strategy because GO; nanosheets contain rich negatively charged, oxygen-containing function; groups, such as COOH. In this paper, the GO-ceramics composite; nanofiltration membrane was prepared via layer-by-layer deposition of GO; solution and eolyethyleneimine (PEI) solution alternately, and then; cross-linked by epoxy chloropropane (ECH) on; 3-aminopropyltriethoxysilane-modified porous Al_2O_3 supports. The; optimum preparation conditions were: PEI 5g·L~(-1), pH=9; NaCl 0.3; mol·L~(-1); GO 0.6 mg·L~(-1), pH=4.5; ECH 6.25 ml·L~(-1) and heat; treatment 50℃/70 min. Under the conditions of 0.6 MPa, when the; self-assembly layer number increased from 1 to 4, the rejection to 2; g·L~(-1) MgCl_2 were 90.16%, 93.71%, 97.54%, and 92.93% respectively,and; the flux of self-assembled monolayer membrane was 21.92 L·m~(-2)·h~(-1).; The rejection orders of inorganic salts of GO-ceramics composite; nanofiltration membrane were as follows: MgCl_2>MgSO_4>NaCl>Na_2SO_4,; therefore they showed the typical positively charged nanofiltration; membrane characteristics

    明胶膜醇/水分离特性

    Get PDF
    明胶(Gelatin)曾用于与其它高聚物共混制备分离膜材料,但迄今未见单独成膜用于膜分离的报道.本文首次报道高纯牛骨胶经Cr_2(SO_4)_3交联后制膜的方法,并成功地用于醇/水渗透蒸发分离.采用渗透蒸发分离醇/水混合物,既节能又简便

    几种膜结合水的差示扫描量热研究

    Get PDF
    对芳香聚酰胺、聚砜酰胺、聚苯并咪唑酮、聚砜和醋酸纤维等五种膜材料进行差热扫描量热研究,发现膜在室温下结合水和脱除水是一平衡,升温后水游离出来,回到室温时又结合上去,若在高温时移至液氮中骤冷,膜表面结合部分多分子水,此时膜和水的热性能和结合单分子水为主的膜明显不同

    Water-alcohol separation by pervaporation through zeolite-modified poly(amidesulfonamide)

    Get PDF
    Pervaporation membranes were fabricated by blending different amount of zeolite NaA or NaX with three types of poly(amidesulfonamide) (PASA). The zeolite-filled membranes were characterized by IR spectroscopy; SEM, sorption measurements, and wide-angle X-ray diffraction. By adding the proper amount of NaA into the polymer casting solutions, the resultant zeolite-filled membranes exhibited improvement in both selectivity and permeability in the separation of 10% aqueous solutions of ethanol and propan-1-ol, as compared with the zeolite free membrane. (C) 2001 John Wiley & Sons, Inc

    Membrane software and its applications

    Get PDF
    本文简述了膜软件的概念及其内涵 ,介绍膜应用软件开发过程中应注意的问题和几例膜软件的应用研究概况。The conception and meaning of membrane software(process)were reviewed.The problems for membrane software and several examlpes were discussed

    氧化石墨烯/碱式硫酸铝掺杂聚醚砜/聚酰胺复合纳滤膜的制备及其性能

    Get PDF
    先由氧化石墨烯(GO)、硫酸铝和尿素通过水热法制得氧化石墨烯/碱式硫酸铝(GO-BAS)复合物,继与哌嗪(PIP)溶液共混作为水相;均苯三甲酰氯(TMC)溶于正己烷作为有机相;采用界面聚合法使两相单体在聚醚砜(PES)基膜表面形成聚酰胺(PA)功能层,制得氧化石墨烯/碱式硫酸铝复合物掺杂的聚醚砜/聚酰胺(PES-PA-GO-BAS)复合纳滤平板膜,并在较低的工作压力(0.3 MPa)下对其进行性能研究。其对无机盐溶液的截留率依次为:Na——2SO4(91.08%)>MgSO4(83.42%)>MgCl——2(68.97%)>NaCl(17.62%);纯水通量可达24.19 L·m-2·h-1,较之聚酰胺纳滤膜提高了近60%,且具备良好的稳定性和耐碱性

    可反洗平板膜生物反应器处理园区生活污水研究

    Get PDF
    就可反洗平板浸没式膜生物反应器和传统平板浸没式膜生物反应器处理园区生活污水的效果进行比较研究,发现在水力停留时间同为9.6h的条件下,两者几无区别,COD和NH3-N的去除率同样分别为90%和95%,浊度均降至0.7NTU以下,也均无SS检出,出水水质都达到国家生活杂用水水质标准(GB/T18920-2002);但前者因膜具可反洗性,可以延缓膜污染,延长系统稳定运行周期,减少化学清洗频率,既降低运行成本,延长膜使用寿命,又减少化学清洗剂对环境的污染

    Synthesis of Ruthena-polycyclic Complexes by Ruthenium-Vinylcarbene Complex

    Get PDF
    研究了配位不饱和的钌杂S-顺丁二烯化合物[ru(CHC(PPH3)CH(2-Py))Cl2PPH3]bf4(1)与水、甲醇、苯胺和2-巯基吡啶等亲核试剂的[4+1]关环反应,合成了一系列有趣的钌杂多环化合物[ru(CHC(PPH3)CHr(2-Py))Cl(PPH3)2]bf4[r=OH(2),OME(3),和nHPH(4)]与[ru(CHC(PPH3)CH(S(2-Py))(2-Py))PPH3(S(2-Py)]bf4(5).此外,将配位不饱和的钌配合物1与三苯基膦配体反应,制备了类似于氮杂金属萘的配位饱和化合物[ru(CHC(PPH3)CH(2-Py))Cl2(PPH3)2]bf4(6).6与Hbf4反应可生成金属杂环结构类似的分子内含三氯桥的双钌核配合物[{ru(CHC(PPH3)CH(2-Py))PPH3}2(μ-Cl)3](bf4)3(7).以上产物均通过核磁(nMr)与元素分析进行了表征,并解析了部分产物的X射线单晶结构.Treatment of ruthenium-vinylcarbene complex [Ru(CHC(PPh3)CH(2-Py))Cl2 PPh3 ]BF4(1) and PPh3 with nucleophilic reagents H2 O,CH3 OH,NH2 Ph,or 2-mercaptopyridine led to the ruthena-polycyclic complexes [Ru(CHC(PPh3)CHR(2-Py))Cl(PPh3)2 ]BF4 [R = OH(2),R = OCH3(3),R = NHPh(4)] or [Ru(CHC(PPh3)CH(S(2-Py))(2-Py))PPh3(S(2-Py)]BF4(5).They are stable under air at solid state.CH3 OH in the reaction is not only the reagent but also the solvent and the reaction must be heated at 60 ℃ for 6 h.All the other reactions were carried out at room temperature in CH2Cl2.The crystals of 4 and 5 were grown from CH2 Cl2 and CHCl3 solutions layered with diethyl ether,respectively.The structures 4 and 5 were determined by X-ray crystallography.The crystal size of 4 is a=1.29145(3) nm,b=1.37687(5) nm,c= 1.86914(4) nm,α=92.114(2)°,β=106.271(2)°,γ=96.333(3)° and the size of 5 is a=1.15333(18) nm,b=1.20072(19) nm,c=1.9081(3) nm,α=88.466(3)°,β=87.918(3)°,γ=79.521(3)°.In addition,refluxing 1 with PPh3 in CHCl3 for 6 h to produce red solid [Ru(CHC(PPh3)CH(2-Py))Cl2(PPh3)2 ]BF4(6).The reaction of complex 6 with HBF4 at room temperature for 3 h afforded the(μ-Cl)3-bridged bisruthenium-vinylcarbene complex [{Ru(CHC(PPh3)CH(2-Py))PPh3 }2(μ-Cl)3 ](BF4)3(7) in 87% yield.The crystal of 6 was grown from CH3 COCH3 solution layered with diethyl ether,and the crystal of 7 was grown from CHCl3 solution layered with diethyl ether.The structures of 6 and 7 were also determined by X-ray crystallography.The crystal size of 6 and 7 are a=1.13777(3) nm,b=1.56466(7) nm,c=1.79541(7) nm,α=75.822(3)°,β=79.502(2)°,γ= 79.259(3)°,a=1.68830(3) nm,b=2.33421(4) nm,c=2.48603(4) nm,α=90°,β=96.5530(10)°,γ=90°,respectively.The CCDC number for 3,5,6,and 7 are 945539(3),945538(5),945541(6),and 945542(7).All these complexes were fully characterized by elemental analysis and NMR spectroscopy.国家重点基础研究发展计划(No.2012CB821600); 国家自然科学基金(Nos.20925208;21174115;21272193); 长江学者和创新团队发展计划资助~

    粗细粉混用法制备堇青石膜支撑体

    Get PDF
    将粒径分别为1.5和25μm的堇青石粉体按一定比例球磨混匀,添加适当的粘结剂和造孔剂,经捏合、陈腐、挤出成型及烘坯处理后,程序升温至一定温度烧结2h制备膜支撑体。结果表明,细粉含量20%(质量分数)、1400℃烧结所得的支撑体综合性能较好:纯水通量为10.3m3/(m2·h);爆破压力为2.21MPa。其浸渍于5%(质量分数)NaOH中、置于100℃烘箱36h后,爆破压力仍为1.85MPa,表明其还具有良好的耐碱性能,适合碱性条件下的工业应用
    corecore