

DOI: 10.11949/j.issn.0438-1157.20161673

氧化石墨烯-陶瓷复合纳滤膜的层层自组装制备及其性能

高克¹,许中煌¹,洪昱斌³,丁马太¹,何旭敏²,蓝伟光^{1,3} (¹厦门大学材料学院,福建 厦门 361005;²厦门大学化学化工学院,福建 厦门 361005; ³三达膜科技(厦门)有限公司,福建 厦门 361022)

摘要:氧化石墨烯(GO)的片层边缘含有—COOH等含氧官能团,因而带负电荷,可以在带正电荷多孔基体上通 过层层自组装实现快速沉积。以由 3-氨丙基三乙氧基硅烷(APTES)修饰的多孔氧化铝管式陶瓷膜为基膜,令 GO 和聚乙烯亚胺(PEI)以溶液形态在其表面交替沉积实现自组装,继以环氧氯丙烷(ECH)交联之,制备新型 氧化石墨烯-陶瓷复合纳滤膜。最佳制备工艺是,PEI浓度5g・L⁻¹、pH=9,NaCl浓度0.3 mol・L⁻¹,GO浓度 0.6 mg・ml⁻¹、pH=4.5,层数2层,ECH用量6.25 ml・L⁻¹,50℃条件下处理70 min。层数为1~4 层的自组装膜 在 0.6 MPa操作压力下对2g・L⁻¹的 MgCl₂的截留率分别为90.16%、93.71%、97.54%、92.93%,其中1层自组装 膜的渗透通量为21.92L・m⁻²・h⁻¹。氧化石墨烯-陶瓷复合纳滤膜对4种无机盐的截留率大小为 MgCl₂>MgSO4> NaCl>Na₂SO₄,符合典型正电荷纳滤膜的特征。

关键词:氧化石墨烯;层层自组装;纳滤;荷正电;膜;过滤 中图分类号:TQ 028.8 **文献标志码**:A

文章编号: 0438—1157 (2017) 05—2177—09

Layer-by-layer self-assembly preparation and performance of GO-ceramics composite nanofiltration membrane

GAO Ke¹, XU Zhonghuang¹, HONG Yubin³, DING Matai¹, HE Xumin², LAN Weiguang^{1,3}

(¹College of Materials, Xiamen University, Xiamen 361005, Fujian, China; ²College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China; ³Suntar Membrane Technology (Xiamen) Co., Ltd., Xiamen 361022, Fujian, China)

Abstract: Graphene oxide (GO) can be quickly deposited on a positively charged porous matrix *via* a layer-by-layer self-assembly strategy because GO nanosheets contain rich negatively charged, oxygen-containing function groups, such as —COOH. In this paper, the GO-ceramics composite nanofiltration membrane was prepared *via* layer-by-layer deposition of GO solution and eolyethyleneimine (PEI) solution alternately, and then cross-linked by epoxy chloropropane (ECH) on 3-aminopropyltriethoxysilane-modified porous Al₂O₃ supports. The optimum preparation conditions were: PEI 5g • L⁻¹, pH=9; NaCl 0.3 mol • L⁻¹; GO 0.6 mg • L⁻¹, pH=4.5; ECH 6.25 ml •L⁻¹ and heat treatment 50°C/70 min. Under the conditions of 0.6 MPa, when the self-assembly layer number increased from 1 to 4, the rejection to 2 g • L⁻¹ MgCl₂ were 90.16%, 93.71%, 97.54%, and 92.93% respectively, and the flux of self-assembled monolayer membrane was 21.92 L • m⁻² • h⁻¹. The rejection orders of inorganic salts of GO-ceramics composite nanofiltration membrane were as follows: MgCl₂>MgSO₄>NaCl> Na₂SO₄, therefore they showed the typical positively charged nanofiltration membrane characteristics.

Key words: graphene oxide; layer-by-layer self-assembly; nanofiltration; positively charged; membrane; filtration

Received date: 2016-11-28.

Corresponding author: HE Xumin, hejin@xmu.edu.cn; LAN Weiguang, lanwg@sinomem.com

²⁰¹⁶⁻¹¹⁻²⁸ 收到初稿, 2017-01-16 收到修改稿。

联系人:何旭敏,蓝伟光。第一作者:高克(1989—),男,硕士研究生。

引言

纳滤(nanofiltration, NF)是介于反渗透(reverse osmosis, RO)和超滤(ultrafiltration, UF)之间的 膜分离技术。纳滤膜具纳米级孔径,截留分子量在 200~1000之间,能在较低操作压力下对二价、多 价离子以及小分子有机物进行有效截留,在环境水 处理、水脱盐、制药和生物技术、食品工业等领域 有巨大应用前景^[1-2]。在多孔的基膜上通过浸涂 (dip-coating)^[3]、表面聚合(interfacial polymerization)^[4]、层层自组装(layer-by-layer self-assembly)^[5]等沉积致密的膜层是制备纳滤膜的 常用方法^[6]。层层自组装以静电作用^[7]、氢键^[8]、配 位键^[9]、共价键^[10]、电荷转移^[11]等为驱动力促进聚 阴阳离子电解质对自行组装,操作简便、可调节自 组装层数来调整膜的结构和性能,已经得到越来越 多的应用^[12-17]。

氧化石墨烯(GO)片层所含的—COOH等含氧 官能团^[18],可在水溶液中发生电离而带负电荷,因 而 GO 可以与带正电的聚阳离子电解质通过静电作 用实现层层自组装,从而用以制备如纳滤^[19-23]、渗 透汽化膜^[24]、气体隔离膜^[25-28]和其他类型的膜 层^[29-30]。

本文以 0.1 µm 的多孔管式陶瓷膜为基膜, 经 3-氨丙基三乙氧基硅烷(APTES)预处理后,分别 灌入 GO 溶液和聚乙烯亚胺(PEI)溶液,自组装成 膜后用环氧氯丙烷(ECH)交联加固。首先探索复 合纳滤膜的最佳制备工艺,优化制备效率,然后研 究层数对自组装复合膜分离浓度为2g·L⁻¹的无机 盐(MgCl₂、MgSO4、NaCl、Na₂SO4)的截留率和 滤液通量的影响,并对 GO 膜层的过滤机理进行阐 述。GO 与陶瓷膜相结合鲜有报道,本文克服陶瓷 膜不易改性的特点,并用 ECH 加固提高膜层稳定 性,制备新型荷正电纳滤膜方法,与其他制备4~5 层自组装膜的方法^[31-32]相比,经过优化后的制备方 法操作对设备要求低、操作简便、制备时间短,提 高了复合膜的制备效率,拓展了利用氧化石墨烯和 陶瓷膜结合制备纳滤膜的思路。

1 实验材料和方法

1.1 材料

鳞片石墨 (graphite, 50 μm),购于青岛天盛达 石墨有限公司;高锰酸钾、浓硫酸、浓磷酸、 H₂O₂(30%),环氧氯丙烷 (ECH)、氢氧化钠、氯化 钠、无水硫酸钠、硫酸镁,分析纯,购于西陇化工 股份有限公司;聚乙烯亚胺(PEI 50% 水溶液), 3-氨丙基三乙氧基硅烷(APTES),阿拉丁试剂;无 水乙醇,分析纯,购于汕头市达濠精细化学品有限 公司;氯化镁,分析纯,购于天津市恒兴化学试剂 制造有限公司;0.1 µm 和 0.05 µm 的管式陶瓷膜, 三达膜科技(厦门)有限公司提供。

1.2 分析测试仪器

热场发射扫描电子显微镜[SEM(SU-70),日本 株式会社日立高新技术那珂事业所];X射线衍射分 析仪(AXS,德国布鲁克公司);透射电镜(TEM, JEM-2100,日本东京JEOL);原子力显微镜(AFM, Multimode8, VeecoInstruments Inc.);DDS-307A型 电导率仪(上海仪电科学仪器股份有限公司); KQ-500B型超声波清洗器(昆山市超声仪器有限公 司);台式高速离心机(TG16-WS,上海卢湘仪离 心机仪器有限公司);电热恒温鼓风干燥箱(上海精 宏实验设备有限公司);洗涤除杂装置和膜评价装置 [三达膜科技(厦门)有限公司];自组装涂膜装置, 自制。

1.3 复合纳滤膜制备

1.3.1 管式陶瓷膜预处理 0.1 µm 内壁为 Al₂O₃的 管式陶瓷膜, 裁剪成 22 cm 长, 气枪吹去膜表面黏 附颗粒, 在超声波发生器中处理 1 h 后, 气枪吹干, 在 110℃下烘干 1.5 h。然后于 8 g•L⁻¹的 APTES 溶液中 (V_{ZM} : V_{*} =95:5)室温下浸泡 2 h, 再用去 离子水冲洗后, 放入 110℃烘箱中干燥 2 h^[33]。

1.3.2 氧化石墨烯-陶瓷复合膜的层层自组装制备 GO 由改进的 Hummers 法^[18]制备,将6g鳞片石墨粉加 入到已提前干燥的 2000 ml 烧杯中,开启磁力转子, 缓慢加入 720 ml 的浓硫酸和 80 ml 的浓磷酸,缓慢 搅拌加入 36 g 高锰酸钾,将烧杯小心移至 50℃的 油浴中,搅拌 12 h,移至室温冷却后的反应液缓慢 浇在 800 ml (含 8 ml, 30% H₂O₂)稀双氧水的冰块 上,再往容器中加入同样配比的稀双氧水溶液,不 断搅拌,直至溶液变成亮黄色。亮黄色溶液用 0.05 µm 的管式陶瓷膜进行错流过滤,洗涤除杂,当滤 液 pH 为 6~7 时,移出溶液,超声 1 h 后,用 4000 转离心机离心 15 min,所得上层离心液即为 GO 溶 液。取 5 ml 离心液在 60℃条件干燥过夜,测量固 含量。

复合膜的层层自组装制备:(1)将 0.6 mg •ml⁻¹ GO 溶液灌入陶瓷管中;(2)15 min 后将溶液倒出, 用去离子水冲洗 2 min, 气枪吹干陶瓷管内壁;(3)将

Fig.1 Schematic illustration of film coating process

含有 NaCl 的 PEI 溶液灌入陶瓷管中;(4)15 min 后将溶液倒出,用去离子水冲洗 2 min,气枪吹干 陶瓷管内壁;(5)完成步骤(1)~(4)后称为一 层自组装膜层;(6)重复步骤(1)~(4)制备实 验条件需要的指定的层数,流程如图1所示。

将达到预定膜层的陶瓷管浸入含有 ECH 的乙 醇溶液中,50℃浸渍一段时间后用乙醇多次洗涤; 室温晾干后,裁剪成长度 20.5 cm,封端制成组件, 有效长度 14.5 cm,有效面积 0.0191 m²。

1.4 纳滤膜性能表征

纳滤膜通量和截留率采用三达膜科技(厦门) 有限公司提供的膜评价装置测试,截留率测试液为 2g•L⁻¹的 MgCl₂、MgSO₄、NaCl、Na₂SO₄溶液, 渗透通量测试液为上述浓度的盐溶液。操作压力 0.6 MPa,室温测试,在测试期间,回流液和渗透液均 循环流至同一容器,以维持料液浓度的稳定,如图 2 所示。

$$J = \frac{V}{ST} \tag{1}$$

式中,*V*为渗透液体积,L;*S*为膜的有效面积, m²;*T*为测量时间,h。

按式(2)计算截留率R(%)

$$R = \left(1 - \frac{C_2}{C_1}\right) \times 100\% \tag{2}$$

式中, C1、C2分别为进料液和出料液的电导率。

2 实验结果与讨论

2.1 自组装制备工艺对复合膜性能的影响

2.1.1 PEI 溶液的浓度的影响 PEI 的 pH=9、NaCl 含量 0.5 mol • L⁻¹, GO 浓度 0.6 mg • ml⁻¹、 pH=4, ECH 用量 10 ml • L⁻¹, 交联 0.5 h 等条件固定不变, 自组装膜层为 10 层,考察 PEI 溶液的浓度对复合纳 滤膜的截留率和渗透通量的影响,如图 3 所示。

图 3 PEI 溶液的浓度对复合膜的截留率和渗透通量的影响 Fig.3 Effect of PEI concentration on performance of composite NF membrane

由图 3 可知,当 PEI 浓度小于 5 g•L⁻¹时,截 留率基本保持不变,均大于 80%;而浓度进一步增 大时截留率缓慢下降。当 PEI 浓度小于 5g•L⁻¹时, 滤液通量随浓度增加缓慢增加; 而浓 PEI 度进一步 增大时滤液通量缓慢下降。纳滤膜的脱盐分离机制 主要靠孔径筛分作用和对电荷的排斥作用。PEI 溶 液浓度对其分子链形态能够产生较大的影响: 当浓 度较低时, PEI 分子链上所带的电正离子相互排斥, 分子链比较舒展,表现出较为稳定的截留率;随着 浓度增加,分子链靠得越来越近,分子链的舒展状 态受到影响,分子链逐渐蜷曲团聚,致渗透通量增 加。随着 PEI 的浓度逐渐增加,复合膜表面整体表 现为荷电量增加,但 PEI 分子链的卷曲团聚作用使 得对膜孔的封孔作用减弱, 膜孔的筛分作用减弱, 表现为截留率下降,且此时膜层逐渐变厚,阻碍作 用增强,造成渗透通量下降。兼顾截留率和渗透通 量,PEI 溶液浓度为5g·L⁻¹时较合适。

2.1.2 PEI 溶液中 NaCl 含量的影响 PEI 浓度 5 g•L⁻¹、pH=9, GO 浓度 0.6 mg•ml⁻¹、pH=4, ECH 用量 10 ml•L⁻¹, 50℃交联 0.5 h 等条件固定不变, 自 组装膜层为 10 层,考察 PEI 溶液中 NaCl 含量对复 合纳滤膜的截留率和渗透通量的影响,如图 4 所示。

从图 4 可知, NaCl 含量为 0.1 mol • L⁻¹ 时, 截 留率较低;随着 NaCl 含量增加截留率迅速增加, 然后趋于稳定;渗透通量随 NaCl 含量增加则迅速 减少,随后趋于缓慢减少。NaCl的存在会影响到 PEI 分子链的电离程度和分子链的形态,从而影响 在自组装过程中 PEI 膜层的厚度。当 NaCl 浓度较 低时, PEI 分子链电离作用明显, 在离子排斥力作 用下分子链呈现舒展状态,自组装的 PEI 膜层较薄, 分子链排列不够紧密,封孔作用不够,致截留率较 低,渗透通量较大;随着 NaCl 浓度增加,溶液中 离子效应增强, PEI 分子链的排斥作用减弱, 分子 链发生卷曲, PEI 膜层增厚且分子链排列更为紧密, 封孔作用增强,截留率较为稳定,渗透通量稳定后 略有下降。兼顾截留率和渗透通量 NaCl 的浓度可 选择为 0.2 mol • L⁻¹ 或 0.3 mol • L⁻¹,本实验选取的 是 0.3 mol • L⁻¹。

2.1.3 GO 溶液 pH 的影响 PEI 浓度 5 g • L⁻¹、 pH = 9, NaCl 浓度 0.3 mol • L⁻¹, GO 浓度 0.6 mg • ml⁻¹, ECH 的用量 10 ml • L⁻¹, 50℃交联 0.5 h 等条件固定不变,自组装膜层为 10 层, GO 溶液的 pH 对复合纳滤膜的截留率和渗透通量的影响,如图 5 所示。

从图 5 可知,随着 GO 溶液 pH 的增加,截留 率先增加后减小,渗透通量先减小后增加。GO 溶 液的 pH 对 GO 片层边缘羧酸根的电离程度有直接 影响,进而影响到 GO 片层的分散状态。当 pH<4.5 时 GO 片层边缘的羧酸根电离程度较低,GO 片层 之间的相互排斥作用较小,GO 更容易团聚在一起, 在自组装过程中 GO 片层不能规则地沿垂直于膜表 面方向进行片层铺叠,不规则铺叠容易形成除 GO 片层通道之外的其他通道,致复合膜截留率较低和

渗透通量较大; pH=4.5 时, GO 片层边缘羧酸根电 离程度较高, GO 片层的负电荷增加, 相互排斥作 用增强, 片层状态更分散, 利于自组装过程中在垂 直于膜表面方向的规则铺叠; 当 pH>4.5 时 GO 片 层带有更多电荷, 不需要更多的 GO 片层便能满足 自组装过程的电荷补偿, 导致 GO 膜层变薄, 不能 很好地覆盖膜表面的孔, 复合膜的截留率降低和渗 透通量变大。兼顾截留率和渗透通量, GO 溶液 pH 为 4.5 较合适。

2.1.4 ECH 用量的影响 PEI 浓度 5 g・L⁻¹、 pH=9, NaCl 浓度 0.3 moL・L⁻¹, GO 浓度 0.6 mg・ml⁻¹、pH=4.5, 自组装层数为2层, 50℃交联 0.5 h 等条件固定不变,ECH 用量对复合纳滤膜的截 留率和渗透通量的影响,如图6所示。

由图 6 可知,对于两层的自组装膜来说,随着 ECH 用量增加,截留率呈先增加后减小的趋势,渗 透通量则呈现先降低后稳定的趋势。ECH 用于交联

Fig.6 Effect of ECH concentration on performance of composite NF membrane

PEI。当 ECH 用量小于 6.25 ml·L⁻¹时,用量不足, PEI 的交联程度不够;随着 ECH 的量的增加,PEI 的交联程度增加,膜层变得致密,对 Mg²⁺的筛分作 用增加,截留率上升,渗透通量下降;当 ECH 用 量大于 6.25 ml·L⁻¹时,用量过剩,PEI 膜层变得 更致密,渗透通量基本不变,但 PEI 分子链上的用 于对 Mg²⁺起排斥作用的氨基变得不足,因而截留率 下降。兼顾截留率和渗透通量,ECH 用量为 6.25 ml·L⁻¹比较合适。

2.1.5 ECH 交联时间的影响 PEI 浓度 5 g • L⁻¹、 pH = 9, NaCl 浓度 0.3 mol • L⁻¹, GO 浓度 0.6 mg • ml⁻¹、pH = 4.5, 自组装层数为 2 层, ECH 用 量 6.25 ml • L⁻¹,处理温度为 50℃等条件固定不变, ECH 交联时间对复合纳滤膜的截留率和渗透通量 的影响,如图 7 所示。

由图 7 可知, ECH 交联时间小于 70 min 时, 随着交联时间的增加,复合膜的截留率增加,渗透 通量降低;当交联时间大于 70 min 时,复合膜的截 留率和渗透通量基本保持不变。这是因为 ECH 在 交联时间小于 70 min 时, ECH 与 PEI 反应还不完 全,延长交联时间膜层变得更为致密,膜的截留率 增加,通量降低; 70 min 以后 ECH 与 PEI 反应完 全,随处理时间的延长,复合膜的截留率和通量基 本保持不变。

综上所述,确定较佳的制备工艺为: PEI 浓度 5 g • L⁻¹、pH=9, NaCl 浓度 0.3 mol • L⁻¹, GO 浓 度 0.6 mg • ml⁻¹、pH=4.5,自组装层为 2 层,ECH 用量 6.25 ml • L⁻¹,50℃条件下处理 70 min。依据 这个制备工艺,通过改变自组装膜的层数,研究对 无机盐的截留率和渗透通量的影响。

2.2 复合纳滤膜的层数对分离性能研究

制备条件: PEI 浓度 5 g • L⁻¹、pH=9, NaCl 浓度 0.3 mol •L⁻¹, GO 浓度 0.6 mg •ml⁻¹、pH=4.5, 层数为 1~4 层, ECH 用量 6.25 ml • L⁻¹, 50℃条件 下处理 70 min。

2.2.1 层数对复合膜渗透通量和截留率的影响 在 室温、操作压力为 0.6 MPa 条件下,考察不同复合 纳滤膜的层数对质量浓度 2g•L⁻¹的 MgCl₂的渗透 通量和截留率的影响,如图 8 所示。

图 8 层数对复合纳滤膜的渗透通量和截留率影响 Fig.8 Effect of layer number on performance of composite NF membrane

从图 8 可知, 1~3 层随层数增加对 2 g•L⁻¹ MgCl₂的截留率随之增加,4层反而截留率下降。1~ 4层复合膜截留率分别为90.16%、93.71%、97.54%、 92.93%。这可能与自组装膜制备时最后一步用 ECH 交联膜层有关。在最佳方案中用于加固膜层的 ECH 用量一定,但此用量对1层、2层自组装膜是过量的, 足以使 PEI 在 GO 膜层间形成致密的立体交联网, 但对 Mg²⁺的筛分作用和排斥作用并没有达到最强; 对 3 层的自组装膜层来说,此时 ECH 的量稍微过 量或恰好合适,使膜层最为致密,对 Mg²⁺的筛分作 用和排斥作用最强,截留率最高;对4层自组装膜 层来说,此时 ECH 的量不足,自组装膜不够致密, 对 Mg²⁺的筛分作用和排斥作用减弱,截留率下降。 渗透通量随着自组装膜层的增加而降低,分别为 21.92、6.68、5.78、4.71 L • m⁻² • h⁻¹。说明随着自组 装层数的增加,自组装膜层变厚且致密,水分子传 递阻力增大,传递通道增长,致渗透通量下降。 2.2.2 层数对不同类型无机盐截留率的影响 在室 温、操作压力为 0.6 MPa 的条件下,考察 1~4 层自 组装膜对4种类型不同、浓度同为2g•L⁻¹的无机盐 截留率的影响,如图9所示。

从图 9 可知, 1~4 层自组装膜对 MgCl₂ 的截留 率均为最高, 然后依次为 MgSO₄、NaCl、Na₂SO₄, 符合典型荷正电纳滤膜的特征。这种性质与致密的 PEI 空间网络结构和 GO 膜层结构有关。PEI 膜层存 在带正电荷的氨基, 对 Mg²⁺排斥作用较强、对 Na⁺ 排斥作用较弱, 对 SO₄⁻⁻吸引能力较强、对 Cl⁻⁻吸引 力较弱。从表 1 可知 $d_{Mg^{2+}} = 0.86 \text{ nm} > d_{Na^+} = 0.72$ nm、 $d_{SO_4^-} = 0.60 \text{ nm} < d_{Cl^-} = 0.68 \text{ nm}$, 致密的 PEI 空间网络结构和 GO 膜层结构形成孔径筛分效应对 Mg²⁺较强、对 Na⁺较弱,对 Cl⁻较强、对 SO₄²⁻较弱, 因而截留率大小排序为 MgCl₂>MgSO₄>NaCl> Na₂SO₄, Mg²⁺>Na⁺, Cl⁻>SO₄²⁻。

表1 主要离子的水合离子直径^[34]

Table 1 Hydrated diameter of main ions in feed ¹³	^{4]} /nm
--	-------------------

Mg^{2+}	Na ⁺	SO_4^{2-}	Cl-	$\mathrm{H_3O^+}$
0.86	0.72	0.6	0.68	0.56

Fig.11 SEM, TEM and AFM surface image of GO

2.3 氧化石墨烯及复合纳滤膜的表征

2.3.1 氧化石墨烯表征 图 10 是 GO 和石墨的 XRD 谱图, 在图中制备 GO 的石墨 (2θ=26.58°, d= 0.335 nm) 符合典型的石墨 XRD 峰, GO 的 XRD 峰 (2*θ*=8.76°, *d*=1.008 nm)显示 GO 的层间距比石 墨的层间距大,说明石墨经过处理之后被剥离成氧 化石墨。图 11(a)是 GO 的 SEM 电镜图片, 可明显看 到薄如蝉翼的薄片形貌;图 11(b)是 GO 的 TEM 电镜 图片,可看到卷曲似丝绸的 GO 形貌;图 11(c)是 GO 的 AFM 电镜照片, 通过高度差判断 GO 的厚度约为 1.2 nm,与GO的XRD图像计算的层间距保持一致, 说明制备出氧化石墨烯样品。

2.3.2 复合纳滤膜表征 图 12 是多孔氧化铝基膜 的形貌,其颗粒以鹅卵石的形状杂乱交错地堆积在 一起。图 13(a)是自组装膜层表面形貌,其表面平滑 与褶皱并存,与 Huang 等^[24]、Jiang 等^[35]、Xia 等^[36] 关于 GO 制备的膜层表面形貌图片一致, 图 13(a) 的形貌与图 12 的形貌有巨大差异;图 13(b) 1 层自 组装复合膜的膜层厚度在 SEM 比例尺测算下约为 0.2 μm, 图 13(c) 2 层自组装复合膜的膜层厚度在 SEM 比例尺测算下约为 0.4 µm, 2 层的复合膜层厚

(a) surface image of composite NF membrane

度约为1层复合膜层厚度的2倍;图13(d)是2层自 组装膜层断截面形貌,颗粒较大且散乱的为陶瓷支 撑体,颗粒较小且密集的为氧化铝颗粒,翘起且较 平整的为自组装膜层,由于陶瓷支撑体、氧化铝颗 粒、自组装膜层三者的形貌相差太大,形成明显的 分界线,说明自组装膜层成功地平铺于多孔陶瓷基 膜上。

2.4 过滤过程机理分析

GO 膜层浸入水溶液之后, 膜层间距增大, GO

(b) surface image of composite NF membrane (1 layer)

(c) surface image of composite NF membrane (2 layers) (d) cross-section image of composite NF membrane 图 13 复合膜层的表面和断截面形貌

Fig.13 Surface image and cross-section image of composite NF membrane

Fig.15 Schematic illustration of aquaporin of composite NF membrane^[23,31]

片层之间形成毛细管力,促进水分子沿着 GO 片层 的边缘和层间通道流过,直径小于 GO 层间通道的 水合离子或分子有了快速运输通道,而直径大于 GO 层间通道的水合离子或分子则被筛分和阻碍。 在致密 PEI 膜层对无机盐离子的静电作用(图 14)、 PEI 空间网络结构以及 GO 烯层间结构对无机盐离 子的筛分作用(图 15)的共同作用下,产生自组装 膜对 MgCl₂、MgSO₄、NaCl 、Na₂SO₄的截留效果。

3 结 论

本文以 0.1 µm 的多孔氧化铝管式陶瓷膜为基 膜,经硅烷偶联剂处理后基膜,用 GO 溶液和 PEI 溶液交替进行自组装制备膜层,再用 ECH 交联, 制备氧化石墨烯-陶瓷复合纳滤膜。最佳制备工艺 为: PEI 浓度 5 g • L⁻¹、 pH = 9, NaCl 浓度 0.3 mol • L⁻¹, GO 浓度 0.6 mg • ml⁻¹、 pH = 4.5, ECH 用量为 6.25 ml • L⁻¹, 50℃条件下处理 70 min。在 0.6 MPa 的操作压力下, 1~4 层自组装膜对浓度为 2 g • L⁻¹ 的 MgCl₂ 的截留率分别为 90.16%、93.71%、 97.54%、92.93%。其中 1 层自组装膜的渗透通量为 21.92 L • m⁻² • h⁻¹, 对 4 种无机盐的截留率大小为 MgCl₂>MgSO₄>NaCl>Na₂SO₄, 复合纳滤膜符合 典型的正电荷纳滤膜特征。在致密 PEI 膜层对无机 盐离子的静电作用、PEI 空间网络结构以及 GO 层 间结构对无机盐离子的筛分和阻碍作用的共同作用 下,实现对无机盐的有效截留。

符号说明

C_1 ——进料液的的电导率,mS•cm ⁻¹
C_2 ——出料液的的电导率,mS•cm ⁻¹
d _{cr} ——氯离子的水合离子的直径, nm
$d_{_{Mg^{2+}}}$ ——镁离子的水合离子的直径,nm
$d_{_{Na^{+}}}$ ——钠离子的水合离子的直径, nm
$d_{so_4^2}$ ——硫酸根离子的水合离子的直径, nm
J ——通量, $L \cdot m^{-2} \cdot h^{-1}$
R ——截留率, %
<i>S</i> ——膜的有效面积,m ²
<i>T</i> ——测量时间, h
V——渗透液体积,L

References

- MOHAMMAD A W, TEOW Y H, ANG W L, *et al.* Nanofiltration membranes review: recent advances and future prospects [J]. Desalination, 2015, **356** (1): 226-254.
- [2] YU S C, GAO C J, SU H X, et al. Nanofiltration used for desalination and concentration in dye production [J]. Desalination, 2001, 140 (1): 97-100.
- [3] HAN J, YANG D, ZHANG S, et al. Preparation and performance of SPPES/PPES hollow fiber composite nanofiltration membrane with high temperature resistance [J]. Desalination, 2014, 350: 95-101.
- [4] WEI X, KONG X, YANG J, et al. Structure influence of hyperbranched polyester on structure and properties of synthesized nanofiltration membranes [J]. Journal of Membrane Science, 2013, 440: 67-76.
- [5] JOSEPH N, AHMADIANNAMINI P. 'Up-scaling' potential for polyelectrolyte multilayer membranes [J]. Journal of Membrane Science, 2015, 492: 271-280.
- [6] LAU W J, ISMAIL A F. A recent progress in thin film composite membrane: a review [J]. Desalination, 2012, 287: 190-199.
- [7] CHEN Y W, XU N P. Organic-inorganic composite pervaporation membranes prepared by self-assembly of polyelectrolyte multilayers on macroporous ceramic supports [J]. Journal of Membrane Science, 2007, 302 (1): 78-86.

- [8] WANG L,WANG Z. A new approach for the fabrication of an alternating multilayer film of poly (4-vinylpyridine) and poly (acrylic acid) based on hydrogen bonding [J]. Macromolecular rapid communications, 1997, 18 (6): 509-514.
- [9] XIONG H, CHENG M. A new approach to the fabrication of a self-organizing film of heterostructured polymer/Cu₂S nanoparticles
 [J]. Advanced Materials, 1998, 10 (7): 529-532.
- [10] SUN J, WU T. Fabrication of acovalently attached multilayer via photolysis of layer-by-layer self-assembledfilms containing diazo-resins [J]. Chemical Communications, 1998, 17: 1853-1854.
- [11] SHIMAZAKI Y, MITSUISHI M. Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction [J]. Langmuir, 1997, 13 (6): 1385-1387.
- [12] NG L Y, MOHAMMAD A W. A review on nanofiltration membrane fabrication and modification using polyelectrolytes: effective ways to develop membrane selective barriers and rejection capability [J]. Advances in Colloid and Interface Science, 2013, **197**: 85-107.
- [13] LIU C, SHI L. Crosslinked layer-by-layer polyelectrolyte nanofiltration hollow fiber membrane for low-pressure water softening with the presence of SO₄²⁻ in feed water [J]. Journal of Membrane Science, 2015, 486: 169-176.
- [14] CHO K L, HILL A J. Chlorine resistant glutaraldehyde crosslinked polyelectrolyte multilayer membranes for desalination [J]. Advanced Materials, 2015, 27 (17): 2791-2796.
- [15] GUO H, CHEN M. LbL assembly of sulfonated cyclohexanone-formaldehyde condensation polymer and poly(ethyleneimine) towards rejection of both cationic ions and dyes [J]. Desalination , 2015, 365: 108-116.
- [16] CHEN Q, YU P, HUANG W Q, et al. High-flux composite hollowfiber nanofiltration membranes fabricated through layer-by-layer deposition of oppositely charged crosslinked polyelectrolytes for dye removal [J]. Journal of Membrane Science, 2015, 492: 312-321.
- [17] NG L Y, MOHAMMAD A W. Development of nanofiltration membrane with high salt selectivity and performance stability using polyelectrolyte multilayers [J]. Desalination, 2014, 351: 19-26.
- [18] DANIELA C, MARCANO, DMITRY V, et al. Improved synthesis of graphene oxide [J]. ACS Nano, 2010, 4 (8): 4806-4814.
- [19] WANG L,WANG N X. Layer-by-layer self-assembly of polycation/GO nanofiltration membrane with enhanced stability and fouling resistance [J]. Separation and Purification Technology, 2016, 160: 123-131.
- [20] WANG N X, JI S L. Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation [J]. Chemical Engineering Journal, 2012, 213: 318-329.
- [21] HU M, MI B X. Layer-by-layer assembly of graphene oxide membranes via electrostatic interaction [J]. Journal of Membrane Science, 2014, 469: 80-87.
- [22] ZHANG Y, ZHANG S. Nanometric graphene oxide framework membranes with enhanced heavy metal removal *via* nanofiltration [J]. Environmental Science & Technology, 2015, **49** (16): 10235-10242.

- [23] HU M, MI B X. Enabling graphene oxide nanosheets as water separation membranes [J]. Environmental Science & Technology, 2013, 47: 3715-3723.
- [24] KAI X, BO F, HUANG A S. Synthesis of highly stable graphene oxide membranes on polydopamine functionalized supports for seawater desalination [J]. Chemical Engineering Science, 2016, 146: 159-165.
- [25] CHEN J T, FU Y J, AN Q F, et al. Tuning nanostructure of graphene oxide/polyelectrolyte LbL assemblies by controlling pH of GO suspension to fabricate transparent and super gas barrier films [J]. Nanoscale, 2013, 5: 9081-9088.
- [26] YU L, LIM Y S. A graphene oxide oxygen barrier film deposited via a self-assembly coating method [J]. Synthetic Metals, 2012, 162: 710-714.
- [27] ZHAO L L, ZHANG H Y. Preparation of graphene oxide/polyethyleneimine layer-by-layer assembled film for enhanced hydrogen barrier property [J]. Composites Part B: Engineering, 2016, 92: 252-258.
- [28] LEE K, WANG H, HONG J H, et al. Spin self-assembly of highly ordered multilayers of graphene-oxide sheets for improving oxygen barrer performance of polyolefin films [J]. Carbon, 2015, 83: 40-47.
- [29] ZHANG D Z, TONG J, XIA B K, et al. Ultrahigh performance humidity sensor based on layer-by-layer self-assembly of graphene oxide/polyelectrolyte nanocomposite film [J]. Sensors and Actuators B, 2014, 203: 263-270.
- [30] QU Q S, GU C H, GU Z L, et al. Layer-by-layer assembly of polyelectrolyte and graphene oxide for open-tubular capillary electrochromatography [J]. Journal of Chromatography A, 2013, 1282: 95-101.
- [31] OU Y L, MALAISAMY R , BRUENING R M, et al. Multilayer polyelectrolyte films as nanofiltration membranes for separating monovalent and divalent cations [J]. Journal of Membrane Science, 2008, 310: 76-84.
- [32] AHMADIANNAMINI P, LI X, GOYENS W, et al. Multilayered PEC nanofiltration membranes based on SPEEK/PDDA for anion separation [J]. Journal of Membrane Science, 2010, 360: 250-258.
- [33] WANG N X, LIU T J. Ceramic tubular MOF hybrid membrane fabricated through *in situ* layer-by-layer self-assembly for nanofiltration [J]. AIChE Journal, 2016, 62 (2): 538-546.
- [34] ERRIN T, JOHN S. Significance of hydrated radius and hydration shells on ionic permeability during nanofiltration in dead end and cross flow modes [J]. Separation and Purification Technology, 2006, 51: 40-47.
- [35] TAI H L, ZHEN Y, LIU C H, et al. Facile development of high performance QCM humidity sensor based on protonated polyethylenimine-graphene oxide nanocomposite thin film [J]. Sensors and Actuators B, 2016, 230: 501-509.
- [36] ZHANG D Z, TONG J, XIA B K. Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly [J]. Sensors and Actuators B, 2014, 197: 66-72.