70 research outputs found

    Supercell Altermagnets

    Full text link
    Altermagnets are compensated magnets with unconvetional dd, gg and ii-wave spin-channel order in reciprocal space. So far the search for new altermagnetic candidates has been focused on materials in which the magnetic unit cell is identical to the non-magnetic one, i.e. magnetic structures with zero propagation vector. Here, we substantially broaden the family of altermagnetic candidates by predicting supercell altermagnets. Their magnetic unit cell is constructed by enlarging the paramagnetic primitive unit cell, resulting in a non-zero propagation vector for the magnetic structure. This connection of the magnetic configuration to the ordering of sublattices gives an extra degree of freedom to supercell altermagnets, which can allow for the control over the order parameter spatial orientation. We identify realistic candidates MnSe2_2 with a dd-wave order, and RbCoBr3_3, CsCoCr3_3, and BaMnO3_3 with gg-wave order. We demonstrate the reorientation of the order parameter in MnSe2_2, which has two different magnetic configurations, whose energy difference is only 5 meV, opening the possibility of controlling the orientation of the altermagnetic order parameter by external perturbations.Comment: 10 pages, 4 figure

    Strain control of band topology and surface states in antiferromagnetic EuCd2_2As2_2

    Full text link
    Topological semimetal antiferromagnets provide a rich source of exotic topological states which can be controlled by manipulating the orientation of the N\'eel vector, or by modulating the lattice parameters through strain. We investigate via ab initio{ab\ initio} density functional theory calculations, the effects of shear strain on the bulk and surface states n two antiferromagnetic EuCd2_2As2_2 phases with out-of-plane and in-plane spin configurations. When magnetic moments are along the c\textit{c}-axis, a 3%3\% longitudinal or diagonal shear strain can tune the Dirac semimetal phase to an axion insulator phase, characterized by the parity-based invariant η4I=2\eta_{4I} = 2. For an in-plane magnetic order, the axion insulator phase remains robust under all shear strains. We further find that for both magnetic orders, the bulk gap increases and a surface gap opens on the (001) surface up to 16 meV. Because of a nonzero η4I\eta_{4I} index and gapped states on the (001) surface, hinge modes are expected to happen on the side surface states between those gapped surface states. This result can provide a valuable insight in the realization of the long-sought axion states.Comment: 5 pages, 4 figure

    Spontaneous anomalous Hall effect arising from an unconventional compensated magnetic phase in a semiconductor

    Full text link
    The anomalous Hall effect, commonly observed in metallic magnets, has been established to originate from the time-reversal symmetry breaking by an internal macroscopic magnetization in ferromagnets or by a non-collinear magnetic order. Here we observe a spontaneous anomalous Hall signal in the absence of an external magnetic field in an epitaxial film of MnTe, which is a semiconductor with a collinear antiparallel magnetic ordering of Mn moments and a vanishing net magnetization. The anomalous Hall effect arises from an unconventional phase with strong time-reversal symmetry breaking and alternating spin polarization in real-space crystal structure and momentum-space electronic structure. The anisotropic crystal environment of magnetic Mn atoms due to the non-magnetic Te atoms is essential for establishing the unconventional phase and generating the anomalous Hall effect.Comment: 34 pages, 14 figure

    Symmetry and topology in antiferromagnetic spintronics

    Full text link
    Antiferromagnetic spintronics focuses on investigating and using antiferromagnets as active elements in spintronics structures. Last decade advances in relativistic spintronics led to the discovery of the staggered, current-induced field in antiferromagnets. The corresponding N\'{e}el spin-orbit torque allowed for efficient electrical switching of antiferromagnetic moments and, in combination with electrical readout, for the demonstration of experimental antiferromagnetic memory devices. In parallel, the anomalous Hall effect was predicted and subsequently observed in antiferromagnets. A new field of spintronics based on antiferromagnets has emerged. We will focus here on the introduction into the most significant discoveries which shaped the field together with a more recent spin-off focusing on combining antiferromagnetic spintronics with topological effects, such as antiferromagnetic topological semimetals and insulators, and the interplay of antiferromagnetism, topology, and superconductivity in heterostructures.Comment: Book chapte

    Band structure of CuMnAs probed by optical and photoemission spectroscopy

    Get PDF
    The tetragonal phase of CuMnAs progressively appears as one of the key materials for antiferromagnetic spintronics due to efficient current-induced spin-torques whose existence can be directly inferred from crystal symmetry. Theoretical understanding of spintronic phenomena in this material, however, relies on the detailed knowledge of electronic structure (band structure and corresponding wave functions) which has so far been tested only to a limited extent. We show that AC permittivity (obtained from ellipsometry) and UV photoelectron spectra agree with density functional calculations. Together with the x-ray diffraction and precession electron diffraction tomography, our analysis confirms recent theoretical claim [Phys. Rev. B 96, 094406 (2017)] that copper atoms occupy lattice positions in the basal plane of the tetragonal unit cell

    Control of antiferromagnetic spin axis orientation in bilayer Fe/CuMnAs films

    Get PDF
    Using x-ray magnetic circular and linear dichroism techniques, we demonstrate a collinear exchange coupling between an epitaxial antiferromagnet, tetragonal CuMnAs, and an Fe surface layer. A small uncompensated Mn magnetic moment is observed which is antiparallel to the Fe magnetization. The staggered magnetization of the 5 nm thick CuMnAs layer is rotatable under small magnetic fields, due to the interlayer exchange coupling. This allows us to obtain the x-ray magnetic linear dichroism spectra for different crystalline orientations of CuMnAs in the (001) plane. This is a key parameter for enabling the understanding of domain structures in CuMnAs imaged using x-ray magnetic linear dichroism microscopy techniques

    Altermagnetic lifting of Kramers spin degeneracy

    Full text link
    Lifted Kramers spin-degeneracy has been among the central topics of condensed-matter physics since the dawn of the band theory of solids. It underpins established practical applications as well as current frontier research, ranging from magnetic-memory technology to topological quantum matter. Traditionally, lifted Kramers spin-degeneracy has been considered to originate from two possible internal symmetry-breaking mechanisms. The first one refers to time-reversal symmetry breaking by magnetization of ferromagnets, and tends to be strong due to the non-relativistic exchange-coupling origin. The second mechanism applies to crystals with broken inversion symmetry, and tends to be comparatively weaker as it originates from the relativistic spin-orbit coupling. A recent theory work based on spin-symmetry classification has identified an unconventional magnetic phase, dubbed altermagnetic, that allows for lifting the Kramers spin degeneracy without net magnetization and inversion-symmetry breaking. Here we provide the confirmation using photoemission spectroscopy and ab initio calculations. We identify two distinct unconventional mechanisms of lifted Kramers spin degeneracy generated by the altermagnetic phase of centrosymmetric MnTe with vanishing net magnetization. Our observation of the altermagnetic lifting of the Kramers spin degeneracy can have broad consequences in magnetism. It motivates exploration and exploitation of the unconventional nature of this magnetic phase in an extended family of materials, ranging from insulators and semiconductors to metals and superconductors, that have been either identified recently or perceived for many decades as conventional antiferromagnets

    Room-temperature spin-orbit torque in NiMnSb

    Get PDF
    Materials that crystallize in diamond-related lattices, with Si and GaAs as their prime examples, are at the foundation of modern electronics. Simultaneously, inversion asymmetries in their crystal structure and relativistic spin–orbit coupling led to discoveries of non-equilibrium spin-polarization phenomena that are now extensively explored as an electrical means for manipulating magnetic moments in a variety of spintronic structures. Current research of these relativistic spin–orbit torques focuses primarily on magnetic transition-metal multilayers. The low-temperature diluted magnetic semiconductor (Ga, Mn)As, in which spin–orbit torques were initially discovered, has so far remained the only example showing the phenomenon among bulk non-centrosymmetric ferromagnets. Here we present a general framework, based on the complete set of crystallographic point groups, for identifying the potential presence and symmetry of spin–orbit torques in non-centrosymmetric crystals. Among the candidate room-temperature ferromagnets we chose to use NiMnSb, which is a member of the broad family of magnetic Heusler compounds. By performing all-electrical ferromagnetic resonance measurements in single-crystal epilayers of NiMnSb we detect room-temperature spin–orbit torques generated by effective fields of the expected symmetry and of a magnitude consistent with our ab initio calculations.University of WürzburgThis is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nphys377

    X-Ray Magnetic Circular Dichroism in Altermagnetic α-MnTe

    Get PDF
    Altermagnetism is a recently identified magnetic symmetry class combining characteristics of conventional collinear ferromagnets and antiferromagnets, that were regarded as mutually exclusive, and enabling phenomena and functionalities unparalleled in either of the two traditional elementary magnetic classes. In this work we use symmetry, ab initio theory, and experiments to explore x-ray magnetic circular dichroism (XMCD) in the altermagnetic class. As a representative material for our XMCD study we choose α-MnTe with compensated antiparallel magnetic order in which an anomalous Hall effect has been already demonstrated. We predict and experimentally confirm a characteristic XMCD line shape for compensated moments lying in a plane perpendicular to the light propagation vector. Our results highlight the distinct phenomenology in altermagnets of this time-reversal symmetry breaking response, and its potential utility for element-specific spectroscopy and microscopy
    corecore